
Extending the Belgian eID Technology with

Mobile Security Functionality

Jorn Lapon1, Bram Verdegem1, Pieter Verhaeghe2,
Vincent Naessens1, and Bart De Decker2

1 Katholieke Hogeschool Sint-Lieven, Department of Industrial Engineering
Gebroeders Desmetstraat 1, 9000 Gent, Belgium

2 Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, 3001 Heverlee, Belgium

Abstract. The Belgian Electronic Identity Card was introduced in
2002. The card enables Belgian citizens to prove their identity digitally
and to sign electronic documents. Today, only a limited number of citi-
zens really use the card in electronic applications. A major reason is the
lack of killer functionality and killer applications.

This paper presents two reusable extensions to the Belgian eID tech-
nology that opens up new opportunities for application developers. First,
a secure and ubiquitously accessible remote storage service is presented.
Second, we show how the eID card can be used to issue new certificates.
To demonstrate the applicability and feasibility of both extensions, they
are combined in the development of a secure e-mail application. The
proposed solution offers strong privacy, security and key management
properties while increasing the accessibility of confidential e-mail com-
pared to existing solutions (such as PGP and S/MIME).

Keywords: Identity Technology, Security, Privacy, Mobile Access.

1 Introduction

In 2002, Belgium has introduced an electronic identity card (eID) [1] as one of
the first countries in Europe. The card enables individuals to prove their identity
digitally and to sign electronic documents. The Belgian eID card opens up new
opportunities for the government, their citizens, service providers and application
developers. Although many eID applications have been developed, the success of
the Belgian eID technology is still limited. A major reason is the lack of essential
functionality and, more importantly, real killer applications. Moreover, the use of
the current eID card involves a few security and privacy hazards [2,3].

This paper presents two enhancements to the current Belgian eID technology
while addressing certain privacy shortcomings. A first extension defines a service
that allows users to store and update sensitive data (such as passwords, keys,
tickets, . . .) securely at a remote location. The service is ubiquitously accessible
with the Belgian eID card. Moreover, the data that is kept at the server is
useless to internal and external attackers. A second extension defines the creation

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 97–109, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

98 J. Lapon et al.

and use of proxy certificates that are certified by means of the Belgian eID
card. Hence, an individual can create new certificates that can be used to send
confidential messages, to setup a mutually authenticated secure channel between
two individuals, etc. An external certificate authority is no longer required to
issue these certificates.

Both extensions are bootstrapped by means of the Belgian eID Card and
can be integrated in many applications. To demonstrate their usefulness, both
extensions have been incorporated in a ubiquitously accessible secure e-mail ser-
vice. This service allows individuals to send confidential (encrypted) and signed
messages using certificates that can be validated by certificate chains. The ap-
proach is more secure than PGP (which is based on trust levels) and tackles some
key management problems in S/MIME (i.e. confidential e-mail can be retrieved
from any location at which a web browser, Internet access and a card reader is
available).

The paper is structured as follows. Section 2 gives an overview of the Belgian
eID card technology. Section 3 describes the notation used in the rest of the
paper. Two extensions to the Belgian eID technology are proposed in section 4
and section 5. Both extensions are evaluated in section 6 and validated through
the development of a secure e-mail application in section 7. Finally, the paper
draws some conclusions and describes directions for future research.

2 Belgian Electronic Identity Card Technology

The Belgian eID card is a smart card that allows Belgian citizens to prove their
identity visually and digitally and to sign electronic documents [4]. The eID card
contains three files: (1) a digital picture of the citizen, (2) an identity file which
contains the basic identity information and a hash value of the picture file; this
file is signed by the National Registry, (3) an address file which contains the
citizen’s current residence; it is signed by the National Registry together with
the identity file to guarantee the link between both files.

Two private keys SKAuth and SKSig are stored in the eID card. These keys
are used for digital authentication and signing respectively. They are stored in
a tamper-proof part of the chip and can be activated with a PIN code. Each
corresponding public key (PKAuth and PKSig) is certified by a certificate. Each
certificate also keeps the name of the card holder and his nation-wide identifica-
tion number (i.e. the National Registry Number or NRN).

The Belgian government offers a middleware package [5,6] to facilitate inter-
action with the eID card. The middleware contains a GUI to enable end-users to
read the files and the certificates that are stored in the eID card and to change
the PIN code. Moreover, the middleware acts as an intermediary for all accesses
to the eID card by other applications. If a document has to be signed, the mid-
dleware passes a hash of the document to the card. Similarly, a hash of the
challenge is passed to the card for authentication purposes. When an applica-
tion wants to authenticate or sign a document with the eID card, the middleware
asks the user for a PIN code and forwards it to the eID card. The middleware

Extending the Belgian eID Technology with Mobile Security Functionality 99

can also check the validity of certificates (using CRL or OCSP). Note that the
middleware is not essential: an application can also implement the middleware
functionality and directly interact with the card.

The certificates on the eID card are part of a larger hierarchical infrastructure,
the Belgian Public Key Infrastructure [7]. The signature and authentication cer-
tificates are issued by a Citizen CA and the certificates of each Citizen CA are
issued by the Belgium Root CA, that is found at the top of the eID hierarchy.
In addition to the CA hierarchy, the PKI defines Certificate Revocation Lists [8]
that contain the serial numbers of revoked certificates issued by that CA.

The government aims at encouraging the use of the eID card in both e-
government and commercial applications. Currently, most applications use the
Belgian eID card for setting up an SSL connection with mutual authentication.
Many other applications (such as physical access control) only retrieve the iden-
tity information stored on the card.

3 Notations

The following notation is used throughout this paper:

– P1 ↔ P2 : NRN← authenticateeID() represents an interactive protocol, in
which P1 uses SKAuth in the eID card to authenticate to P2. As a result, P2

obtains P1’s NRN .
– P : sig ← signeID(hash(M)) denotes a user signing the hash of message M,

with SKSig in the eID card.
– P : K ← createSymmetricKey(PRG, seed) denotes the generation of a se-

cret/symmetric key, based on a pseudorandom number generator PRG and
a seed. Use of the same PRG and seed will always generate the same key.

– P : store(data; index) means that data is stored in a database at location
index.

4 Mobile Access to Secrets

A major challenge in today’s society is to enable access to sensitive data (e.g.
personal information, secret keys, . . .) from various locations. Data must be
stored securely on an easily accessible remote server. Data is typically encrypted
by the owner before it is stored on the server. Hence, the encrypted data is
useless to the server or any adversary that may have access to it. In this section
a scheme is discussed based on the Belgian eID card for securely storing sensitive
data. A trivial solution consists of encrypting the data with the public key of
the authentication certificate. Whenever needed, the ciphertext is fetched from
the server and decrypted using the corresponding private key.

However, encryption/decryption with the Belgian eID card is not possible.
Moreover, when the card is lost or renewed, decryption of previously encrypted
information is no longer possible. Therefore, a new mechanism is proposed that
uses the Belgian eID card as a bootstrap. A secret/symmetric key is derived from

100 J. Lapon et al.

Table 1. Storing sensitive data remotely

storeSensitiveData(data, tag):

(1) U : HkeyGen ← hashA(′KEY GEN ′||NRN ||CardNumber||otherUserInfo)
(2) U ↔ C : sig ← signeID(HkeyGen)
(3) U : KS ← createSymmetricKey(PRG, hashB(sig))
(4) U : Etag ← encrypt(tag,KS)
(5) U : R← generateRandom()
(6) U : KD ← createSymmetricKey(PRG, hashC(sig||R))
(7) U : Edata ← encrypt(data,KD)
(8) U ↔ S : NRN ← authenticateeID()
(9) U → S : (Edata, R, Etag)
(10) S : index← hashD(NRN ||Etag)
(11) S : store([Edata, R]; index)
(12) U ← S : (T imestamp, signS(hashE([T imestamp,Etag, Edata, R])))

a signature generated by the eID card. This secret key is used for encrypting data
before it is stored. When a user wants to retrieve his confidential information, the
encrypted information is fetched from the server and decrypted with the secret
key, regenerated using the same eID card. In the following paragraphs, the proto-
cols for storing and retrieving sensitive data are discussed in more detail.

Storing sensitive data. Table 1 shows the steps for storing sensitive data. The
user provides the data to be stored and a secret tag that serves as a name or
alias of the data.

First, the Belgian eID card is used to generate secret keys as follows. A message
with a fixed format is hashed using the middleware (1). The message consists
of a header ’KEYGEN’, the NRN , the serial number of the eID card and pos-
sibly some other user information, making the message card specific. The hash,
HkeyGen, is then signed with the signature key on the eID card resulting in a
1024 bits signature sig (2). The fixed format prevents that an adversary obtains
sig by requesting a signature on a forged message; any message to be signed
by the eID card should not match this format, except in this protocol. Subse-
quently, sig is used as the seed for generating two new symmetric keys, namely
KS and KD. To ensure that the same keys are generated, independent of the
platform, a specific pseudo-random generator PRG is passed as a parameter of
the createSymmetricKey function; also, the hash-functions used should be fixed.
KS is used for encrypting the secret tag associated with the data. The key is
derived from the hash of sig (3-4). The encrypted tag Etag is used in step 10 of
the protocol to derive an index to a record in the server database. KD is used for
encrypting the data. Each time information is stored (i.e. each time the protocol
is invoked), a new random number R is associated with it (5). From the hash of
R and sig the encryption key KD is derived (6) with which the data is encrypted
into the ciphertext Edata (7). In each execution of storeSensitiveData the data
will be encrypted with another key; this prevents linking of the same encrypted
data that is stored in more than one location.

Extending the Belgian eID Technology with Mobile Security Functionality 101

Next, the encrypted data Edata is stored on a remote server S. First, the user
authenticates with his eID, to ensure that later only the owner U can retrieve his
data (8). Next, U sends the encrypted tag Etag and the encrypted data Edata to S
(9). The NRN , disclosed during the authentication, is hashed together with Etag

and will be used as an index to the information that is stored in the server database
(10). The use of the encrypted secret tag, Etag, ensures the user’s privacy, while
making the index tag specific. A different tag* will result in another index. If the
server S is trustworthy and does not store the user’s NRN nor the Etag, dictionary
attacks on the index are no longer feasible. An adversary with full access to the
server data cannot link any data to a particular citizen.

Finally, the database stores a record with the encrypted data and the random
number R at location index (11). Although useless to the server or any other
adversary, the random number R is necessary for the owner of the data to derive
the correct symmetric key for decrypting Edata. A receipt is sent to the user,
certifying the proper storage of the encrypted data (12).

Table 2. Retrieving sensitive data remotely

retrieveSensitiveData(tag):

(1) U : HkeyGen ← hashA(′KEY GEN ′||NRN ||CardNumber||otherUserInfo)
(2) U ↔ C : sig ← signeID(HkeyGen)
(3) U : KS ← createSymmetricKey(PRG,hashB(sig))
(4) U : Etag ← encrypt(tag,KS)
(5) U ↔ S : NRN ← authenticateeID()
(6) U → S : requestRecord(Etag)
(7) U ← S : record← getRecord(hashD(NRN ||Etag))
(8) U : KD ← createSymmetricKey(PRG,hashC(sig||record.R))
(9) U : data← decrypt(record.Edata, KD)

Retrieving sensitive data. When the data has been stored on the remote server,
it can be retrieved by the owner from anywhere (see table 2). First, the hash
HkeyGen is regenerated (1) and signed with the eID card (2). With the signature
sig, the secret key KS (3) is regenerated for encrypting the secret tag (4). Next,
the user authenticates with his eID card (5). The encrypted secret tag, Etag is
sent to the server S and the corresponding record requested (6). The server S
fetches the record with index = hashD(NRN ||Etag) from his database; the record,
comprising of encrypted data and the random number, is sent to U (7). U can
now regenerate the data specific secret key KD from the hash of sig and R (8).
Finally, U decrypts Edata with the secret key KD (9).

Recovery of keys. This scheme exploits the property that a deterministic signa-
ture algorithm is implemented in the eID card. When creating a signature with
the eID card, the same input (HkeyGen), always results in the same signature sig.
As such, using the same PRG and the same hash-functions (hashA .. hashD), the
same secret keys KS and KD (for a certain R) are always regenerated. However,
in case of loss or renewal of the eID card, PK Sig, SKSig and CardNumber will

102 J. Lapon et al.

have changed and the generated signature sig* no longer matches the signature
sig (generated by the previous eID card), impeding the localization and decryp-
tion of the stored information. Therefore, to protect important data, a secured
backup of the signature sig is created the first time this signature is generated.
In case of loss or renewal, sig is restored from the backup and the keys can be
recovered. This secured backup could be provided by a key escrow service.

5 Proxying the Belgian eID

As illustrated above, it is now possible to perform symmetric encryption based
on the Belgian eID card. However, when other parties are involved, asymmetric
encryption may be required. Therefore, a second encryption scheme based on
the eID card is proposed.

Proxy certificates. Although the eID card itself cannot encrypt nor decrypt data,
the right to do this can be delegated to the host. This restricted delegation
and proxying to another entity is achieved through proxy certificates [9]. A
proxy certificate is an extended version of a normal X.509 certificate. Proxy
certificates can be derived from and signed by a normal X.509 certificate or by
another proxy certificate. Once a proxy certificate is created, the proxy certificate
and its corresponding private key can be used for asymmetric encryption resp.
decryption.

Modified standard. The standards for proxy certificates, as defined in the RFC
3820, impose some problems. Therefore, some modifications have to be made (see
figure 1). First, according to the RFC, proxy certificates should be issued by the
authentication certificate, since only this certificate of the Belgian eID contains
the required key-usage attribute. The key-usage attribute defines the purpose
of the public key contained in the certificate. However, using the authentication
key SKAuth is less secure than using the signature key SKSig since the PIN is
only required for the first authentication (Single Sign On feature), while it is
required for every signature. Therefore, SKSig is used to issue proxy certificates.
Second, the Belgian legislation prohibits to store the NRN . However, the NRN
is stored in the subject field of the eID certificates. This implies that the eID
certificates may not be stored. However, the proxy certificate standard defines
that the subject of the issuing certificate is copied into the issuer and subject
fields of new proxy certificates. To solve this problem, the name of the owner
is copied into the subject field and the hash of the NRN is copied into the
issuer field instead of the subject of the eID certificate. For validation purposes,
the serial number of the issuer certificate is also included in the certificate (i.e.
issuerSN). Additionally, another extra attribute indicates the type: BEID-PROXY.
In this scheme, we assume that when the eID certificate is revoked (e.g. in case
of loss or theft), the issued proxy certificates are no longer valid. Moreover, the
proxy certificate must expire before the expiration date of the eID certificate.
The protocol in table 3 demonstrates the creation of a BeID proxy certificate.
The user U generates an asymmetric key-pair (1). A serial number is generated
from the hash of the NRN and the issueDate of the new proxy certificate (2-3).

Extending the Belgian eID Technology with Mobile Security Functionality 103

Fig. 1. Content of the modified proxy certificate

Table 3. Create a new proxy certificate

createBeIDProxy([attributes]):

(1) U : (SK U ,PK U)← generateKeyPair()
(2) U : issueDate ← getDate()
(3) U : serialNb ← hash(NRN ||issueDate)
(4) U : proxyCert ← generateProxy(BEID-PROXY, certSig, serialNb,

PK U , issueDate, crlLocation, [attributes];SKSig)

The NRN in the hash avoids collisions, while the issueDate enables users
to have more than one proxy certificate. A proxy certificate proxyCert is then
generated and certified with SKSig of the eID card (4).

Revocation. A special purpose server Rp can publish revoked proxy CRLs. To
revoke a proxy certificate (cfr. table 4), the user authenticates with his eID
card (1) and sends the proxy certificate he wants to revoke (2). If the issuer
corresponds to the eID signing certificate (i.e. hash(certSig .NRN) = proxyC-
ert.Issuer), the proxy certificate is revoked by adding its serial number to the
latest CRL.

Table 4. Revoke a proxy certificate account

revokeBeIDProxy(proxyCert):

(1) U ↔ Rp : NRN ← authenticateeID()
(2) U → Rp : revokeCertificate(proxyCert.serialNumber)
(3) S : if (hash(certSig.SubjectName.NRN) �= proxyCert.Issuer) abort
(4) U ← S : true← addToCRL(proxyCert.serial)

Validation. A receiver validates a new proxy certificate by checking the validity
period, its revocation status and by verifying the rest of the certificate chain.
Since the hash of NRN is kept in the issuer field, name chaining (cfr. RFC 3280
[10]) for certification path validation will fail. However, the extra attribute is-
suerSN included in the certificate binds the eID certificate to the proxy cer-
tificate. The first step in creating the certification path is thus modified. The

104 J. Lapon et al.

serial number of the eID certificate must match the issuerSN in the proxy cer-
tificate. To comply with Belgian legislation, the eID certificate is removed after
validation. Hence, future validation is not possible. However, verifying the va-
lidity period and the revocation status suffices. This can be performed as the
proxy certificate is stored at a trusted location. Additionally, the revocation sta-
tus of the eID certificate can be verified by checking the issuerSN of the proxy
certificate in the CRLs of the Belgian eID.

Belgian citizens can now create legitimate proxy certificates themselves, that
can be used in many applications. Moreover, once a proxy certificate has been
created, the Belgian eID is no longer required.

6 Discussion

The extensions discussed above promise new opportunities for the Belgian eID
technology. Not only can the eID card be used for digital signatures or authen-
tication, the eID technology can also be used to store and to retrieve sensitive
data. The user only needs his card to access the encrypted data that is stored
on the remote server. However, adversaries might try to retrieve the secret keys
by continuously sending challenges to the eID card. Our solution tackles the
thread by using the signature key in the eID card. The latter requires a PIN for
every signature in contrast to the authentication key, which only requires a PIN
once. Moreover, the fixed format of the message allows to detect trojan horses
or malicious applications that request users to sign a certain message.

To support recovery of sensitive data if the eID card is lost or invalid, a secure
backup of the signature sig needs to be created the first time this signature is
generated. However, the user remains responsible for making the secure backup.
An alternative approach is to support a key-escrow mechanism [11,12]. The secret
sig is then split into n parts using a secret sharing algorithm and each part is
stored on a different escrow server. To reconstruct the secret, all n parts are
retrieved from the escrow servers and the interpolation of the parts results in
the secret. To ensure that users only obtain their own keys, eID authentication
can be used with the escrow servers. Additionally, a hash of NRN and the serial
number of the eID card can be combined as an index to store a part of the secret.
Every citizen can –online– lookup his current and previous card numbers at the
National Registry.

The proxy certificate mechanism allows owners of an eID card to setup mu-
tually authenticated secure channels without the need for a trusted third party.
Secure communication is even no longer restricted to SSL. The proposed system
with proxy certificates makes it more flexible and extensible. Although not com-
pletely complying with the standards, the proposed scheme supports asymmetric
encryption with the eID card. Moreover, the proxy certificates can be used for
asynchronous communication (i.e. recipients can decrypt confidential messages
after the communication channel is closed). Once the sender has deleted the eID
certificate (as imposed by Belgian legislation), he can still check the validity of
the proxy certificate and the revocation status of the eID certificate. Although

Extending the Belgian eID Technology with Mobile Security Functionality 105

other certificates in the validation path (i.e. Citizen CA, Belgium Root CA, . . .)
may have been revoked, the proxy certificate can include the issuer of the eID
certificate as an extra attribute to verify the validity of the rest of the certificate
chain. Note that optional attributes in the proxy certificate may further restrict
its use.

7 A Mobile and Secure e-mail Client

Both extensions discussed above are combined into a proof-of-concept applica-
tion. An e-mail client has been developed. It supports exchanging confidential
e-mail messages using the BeID proxy mechanism described in section 5. Indi-
viduals can use the e-mail service at any location as the necessary key material
and contact information are stored securely on an easy accessible remote server.

7.1 Requirements

– R1: The secure e-mail application is simple to use.
– R2: The e-mail service is ubiquitously accessible.
– R3: Certificates can be revoked (using CRL, OCSP).
– R4: Contact information is kept private.
– R5: Data stored on a remote server is useless to any third party.

7.2 Protocols

In this discussion, abstraction is made of the message format and the e-mail
system that is responsible for the transport of e-mail messages. The protocols
are designed to be compatible with existing e-mail systems.

setupProxy-Protocol (cfr. table 5). This protocol defines the creation and storage
of an e-mail proxy certificate. The user U generates a proxy certificate with his e-
mail address as an extra attribute (1). Next, a list of already existing credentials
creds (i.e. certificates and corresponding private keys) is fetched from the remote
secure store (2). The new credential consisting of SK proxy and proxyCert is added
to the credential list (3). Finally, the updated list is uploaded to the remote
store (4).

Table 5. Creating and remote storage of a proxy

setupProxy():

(1) U : (SKproxy, proxyCert) ← createBeIDProxy([E −mail : U.email])
(2) U ← S : creds ← retrieveSensitiveData(U.email + ”.creds”)
(3) U : creds* ← addToCredentials(creds, [SKProxy, proxyCert])
(4) U → S : storeSensitiveData(creds*, U.email + ”.creds”)

receiveBeIDProxy-Protocol (cfr. table 6) defines how a user U1 requests a valid
proxyCert from another user U2 and adds it to his contacts in the remote secure

106 J. Lapon et al.

Table 6. Retrieve the proxy certificate of a contact

receiveBeIDProxy():

(1) U1 → U2 : requestCertificate()
(2) U2 ← S2 : creds← retrieveSensitiveData(U2.email + ”.creds”)
(3) U2 : proxyCert← lookup(creds, U2.email)
(4) U1 ← U2 : (proxyCert, eID2.certsig, certCitizenCA , certBelgiumRootCA)
(5) U1 : if (!isValidCert(proxyCert, [eID2.certsig, . . .])) abort
(6) U1 : delete(eID2.certsig)
(7) U1 ← S1 : contacts← retrieveSensitiveData(U1.email + ”.contacts”)
(8) U1 : contacts* ← addToContacts(contacts,

[proxyCert, certChain/eID2.certsig])
(9) U1 → S1 : storeSensitiveData(contacts*, U1.email + ”.contacts”)

store. Storing the contact certificates online is required to enable remote access
from hosts on other locations. U1 requests the proxy certificate of U2 (1). Then,
U2 fetches his certificate from his secure credential store (2-3) and sends it to
U1 (4). U1 verifies the validity of the proxy certificate, taking into account the
modified certificate path generation (5). To comply with the Belgian legislation,
eID2.certsig is deleted after validation (6). Finally, U1 adds the proxy certificate
to his secure contact store indexed with the e-mail address (7-9).

sendEncryptedEmail -Protocol. Table 7 shows the protocol to send a confidential
message between two users. First, U1 fetches the proxy certificate proxyCertU2,
which he received earlier, from his contact store (1-2). U1 verifies the validity
of the proxyCertU2 (3). To improve the performance, a symmetric encryption
scheme is used to encrypt the message. Therefore, a new random symmetric key
sK is created (4-5). Next, the symmetric key sK itself is encrypted with the
public key proxyCertU2.PK in the proxy certificate of the contact U2 (6). Both
the encrypted message and encrypted symmetric key are mailed to U2 (7). To
read the confidential message, U2 fetches the corresponding secret key SKU2

(8-9)) to decrypt the symmetric key sK* (10). Finally, the message is decrypted
with sK* (11).

Table 7. Sending and receiving an encrypted message

sendSecureEmail(message):

(1) U1 ← S : contactsU1 ← retrieveSensitiveData(U1.email + ”.contacts”)
(2) U1 : (proxyCertU2, certChain)← lookup(contactsU1, U2.email)
(3) U1 : if (!isValidProxy(proxyCertU2, certChain))abort
(4) U1 : sK ← createSymmetricKey()
(5) U1 : Edata ← encrypt(msg, sK)
(6) U1 : EsK ← encrypt(sK, proxyCertU2.PK)
(7) U1 → U2 : sendEmail(Edata, EsK , U2.email)
(8) U2 ← S : creds ← retrieveSensitiveData(U2.email + ”.creds”)
(9) U2 : SKU2 ← lookupKey(U2.email, credsU2)
(10) U2 : symKey* ← decrypt(EsK , SKU2)
(11) U2 : message* ← decrypt(Edata,symKey*)

Extending the Belgian eID Technology with Mobile Security Functionality 107

7.3 Evaluation

This paragraph first evaluates the initial requirements. Next, our solution is
compared to other approaches for securing e-mail services.

– R1: Only the setup and request of a proxy certificate may imply some ad-
ditional user interaction. The other protocols can be processed transpar-
ently. Of course when accessing the remote secure store or creating new
proxy certificates, two PINs of the eID card are required: for authentication
and signing (key generation). This may seem awkward. However, a possi-
ble solution may be to detach the fetching and storing of secure data (i.e.
retrieveSensitiveData resp. storeSensitiveData) from the protocols above and
only perform them at the initialization and closing of the e-mail client: the
user will have to enter his authentication PIN once and his signing PIN
twice (of which one can be avoided if the application caches the signature
temporarily).

– R2: Confidential e-mails can be sent and received from any host with a card
reader.

– R3: A separate server maintains CRLs of revoked proxy certificates. More-
over, a sender can verify that the eID certificate of the owner of a proxy
certificate is (not) revoked.

– R4: Access to contact information is only possible using the Belgian eID.
Adversaries do not have access to the proxy certificates of the contacts.

– R5: All information stored on the remote secure storage server is encrypted
and if the server is trustworthy (i.e. the server does not store the encrypted
tag nor the NRN), an adversary cannot link any data or even discover the
presence of data of a particular individual. Moreover, only the owner can get
access to his encrypted data.

PGP [13] has a different trust model compared to our approach. PGP was ini-
tially based on chains of trust, while our solution is based on valid certificate
chains. The trust level of public keys in PGP depends on the number of signa-
tures on these keys by other users. Verifying the validity of those keys is not
trivial and less reliable. Users have to interpret trust levels themselves. In the
more recent OpenPGP specification [14], trust signatures can be used to support
the creation of certificate authorities.

S/MIME [15] also offers a solution to send confidential messages based on
certificate chains. S/MIME typically stores keys and certificates on a user work-
station which implies that e-mail cannot be sent or retrieved on different hosts.
Some attempts have been made to store keys and certificates for e-mail services
on a remote server. Those solutions mainly use password based encryption to
support ubiquitous access. Our eID based solution provides stronger security
while maximizing the availability.

Moreover, the creation of a BeID proxy certificate does not require a complex
registration procedure. The individual can even create a proxy certificate off-line.
Some certificate authorities offer free e-mail certificates for exclusive S/MIME
usage on their web site. Users must sign up for an account. However, this does

108 J. Lapon et al.

not automatically allow usage of one’s name in the certificate. For that, one has
to prove ones identity in person to at least two Thawte notaries that are part of
their Web of Trust.

PGP and S/MIME also support digital signatures and mechanisms to ensure
the integrity of e-mails. Since the eID card can directly be used to sign e-mail
messages, we have omitted the description of this functionality of our e-mail client.

8 Conclusion

This paper presents two reusable extensions to the Belgian eID technology,
namely a ubiquitously accessible remote secure storage service and a mechanism
to issue proxy certificates. The former allows Belgian citizens to manage sensi-
tive personal data such as contact information, passwords, keys, tickets, etc. The
latter can be used to self-certify asymmetric encryption keys. The validation of
the proxy certificates slightly deviates from the standard, because of the current
design of the eID certificates and restrictions imposed by the Belgian legislation.
However, this problem can easily be solved by redesigning the eID certificates.
Hence, this paper also offers some guidelines for countries that consider intro-
ducing an eID card in the future. As a proof-of-concept, both extensions have
been incorporated in a secure e-mail client. The approach is more secure than
PGP and avoids some key management problems in S/MIME.

Acknowledgements

This research is partially funded by the Interuniversity Attraction Poles Pro-
gramme Belgian State, Belgian Science Policy and the Research Fund
K.U.Leuven, the IWT-SBO project ADAPID and the IWT-Tetra project e-IDea.

References

1. De Cock, D., Wolf, C., Preneel, B.: The Belgian Electronic Identity Card
(Overview). LNI, vol. P-77, pp. 298–301. Bonner Köllen Verlag (2006)

2. Verhaeghe, P., Lapon, J., De Decker, B., Naessens, V., Verslype, K.: Security and
privacy improvements for the belgian eid technology. In: 24th IFIP International
Information Security Conference (SEC). Springer, Heidelberg (2009)

3. Dumortier, J.: eID en de paradoks van het rijksregisternummer (2005)
4. Stern, M.: Belgian Electronic Identity Card content, 2nd edn., CSC, Zetes (2003)
5. Andries, P.: eID Middleware Architecture Document, 1st edn., Zetes (2003)
6. Rommelaere, J.: Belgian Electronic Identity Card Middleware Programmers Guide,

1st edn., Zetes (2003)
7. Ramlot, G.: eID Hierarchy and Certificate Profiles, 3rd edn., Zetes – Certipost

(2006)
8. Belgian certificate revocation list, http://status.eid.belgium.be
9. Tuecke, S., Welch, V., Engert, D., Pearlman, L., Thompson, M.: Rfc 3820 - Internet

x.509 public key infrastructure (pki) proxy certificate profile (2004)

http://status.eid.belgium.be

Extending the Belgian eID Technology with Mobile Security Functionality 109

10. Housley, R., Polk, W., Ford, W., Solo, D.: Rfc 3280 - Internet x. 509 public key
infrastructure certificate (pki) and certificate revocation list (crl) profile (2002)

11. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
12. Bellare, M., Goldwasser, S.: Verifiable partial key escrow. In: CCS 1997: Proceed-

ings of the 4th ACM conference on Computer and communications security, pp.
78–91. ACM, New York (1997)

13. Garfinkel, S.: PGP: Pretty Good Privacy. O’Reilly Media, Sebastopol (1994)
14. Callas, J., Donnerhacke, L., Finney, H., Shaw, D., Thayer, R.: Rfc 4880 (Proposed

Standard) – OpenPGP Message Format (2007)
15. Ramsdell, B.: Rfc 2633 – s/mime version 3 message specification (1999)

	Extending the Belgian eID Technology with Mobile Security Functionality
	Introduction
	Belgian Electronic Identity Card Technology
	Notations
	Mobile Access to Secrets
	Proxying the Belgian eID
	Discussion
	A Mobile and Secure e-mail Client
	Requirements
	Protocols
	Evaluation

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

