
Context-Aware Monitoring of Untrusted Mobile

Applications

Andrew Brown and Mark Ryan

School of Computer Science, University of Birmingham, B15 2TT, UK
{A.J.Brown,M.D.Ryan}@cs.bham.ac.uk

Abstract. Current measures to enhance the security of untrusted mo-
bile applications require a user to trust the software vendor. They do
not guarantee complete protection against the behaviours that mobile
malware commonly exhibits. This paper expands execution monitoring,
building a more precise system to prevent mobile applications deviating
from their intended functions. User judgements about program execu-
tion can be specified abstractly and compiled into a monitor capable
of identifying an event’s context. We demonstrate our development of
a prototype system for the BlackBerry platform and show how it can
defend the device against unseen malware more effectively than existing
security tools.

1 Introduction

The number of mobile devices in operation today exceeds the size of the pop-
ulation in over 30 countries. Of these, roughly 30% are “smart” devices that
allow the user to download, install and execute third-party applications. Such
an expansion in device capabilities has made them more vulnerable to attack.
This paper focuses on the prevention of unseen mobile malware, distributed by
a malicious third-party in order to compromise the confidentiality, integrity and
availability of a user’s interaction with mobile data and services.

1.1 Mobile Malware Defence

Java Micro Edition (Java ME) is the most popular framework for executing
third-party mobile applications. It consists of two components: the Connection
Limited Devices Configuration (CLDC) [11], which facilitates program access to
the native methods which control device hardware, and the Mobile Information
Device Profile (MIDP) [12], which provides programmers with abstractions of
generic device functionalities (e.g., sending SMS and e-mail messages). Java ME
applications are called MIDlets.

Java ME’s security model is not flexible enough to allow guarantees to be
made about all security-relevant events an application might perform. In most
cases, it only takes into account the application provider (i.e., the signatory of
the MIDlet). Java Security Domains [14] are implemented in some architectures

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 83–96, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

84 A. Brown and M. Ryan

to block security-relevant API calls, though this can also prevent an application
being used for its primary purpose.

Application-level virtualisation allows users to run additional security tools
to verify the identity and integrity of the downloaded application. Code signing,
discretionary access controls and signature-based anti-virus software are the most
commonly used approaches. Each has the following associated problems:

– Digitally signing a hash of an executable can confirm its author and guaran-
tee that it has not been altered since it was signed, but does not guarantee
the quality or security of code the application will execute.

– Access controls contribute to a systematic security framework1 but can be
inflexible, with default settings leaving the device vulnerable to attack and
stricter ones impeding program functionality.

– Mobile anti-virus software requires signature dictionaries to be downloaded
and updated, which is infeasible for devices with low power and/or lim-
ited network connectivity. Further, attack recovery is rather rigid; it simply
deletes executable files.

1.2 Execution Monitoring

We employ a well-known technique called execution monitoring [1, 3, 5, 7, 8, 9,
16,17,18] to defend devices against malicious and defective software. An execu-
tion monitor is a co-routine that runs in parallel with a target program, fully
regulating its interaction with its host machine. The approach can prevent and
recover from harmful behaviour in real-time, rather than after an attack has
succeeded, with minimal disturbance to legitimate program features. Execution
monitors analyse either system calls or API calls, providing their host with a
more fine-grained view of target application behaviour.

Despite these advantages, execution monitoring has not been widely adopted
by developers building anti-malware products. The following reasons explain this:

Specifying an execution monitor is a complex process. Monitor implementation
requires sequences of triggering and recovery events to be defined. High-level
policy languages exist to counteract this problem, but most require reasoning
about misuse event sequences in an imperative fashion and so are difficult for
non-technical users comprehend.

Execution monitors cannot precisely capture malicious behaviour patterns. Iden-
tification of the context in which a target program invokes an event is required
to achieve this. Existing monitoring schemes, including those for Java ME [5],
cannot store sufficient information about an event’s properties and so restrict
application behaviour beyond the set of security-relevant events.
1 Access controls can prevent an unsigned application being linked to the CLDC APIs

which control native device functions. This type of mitigation is often still too coarse-
grained.

Context-Aware Monitoring of Untrusted Mobile Applications 85

1.3 Paper Structure

Section 2 presents our approach to allow more fine-grained control of mobile ap-
plications. We develop declarative language called Application Behaviour Mod-
elling Language (ABML) to express policies that identify the context of a
program event. In Section 3, we use our operational experiences in mitigating
BlackBerry intrusions to demonstrate our work and provide an empirical eval-
uation. Section 4 details our enforcement mechanism for ABML, which works
by translating a policy into Java source code, for input to a policy enforcement
engine called Polymer [3]. We conclude by relating our contributions to those of
others and proposing future work.

2 Modelling Application Behaviour

Mobile malware often uses HTTP, HTTPS, or other popular protocols to com-
pose an attack. By employing seemingly ‘legitimate’ combinations of events and
protocols to transmit sensitive information, unseen malware can avoid detec-
tion. Context-aware monitoring of event invocations can mitigate such attacks
and preserve program functionality.

2.1 Approach Summary

Our approach places application monitoring wrappers around arbitrarily
downloaded MIDlets in order to implement a security policy and so constrain un-
desirable functionality. We use these to apply user-specified policies in an aspect-
oriented manner, creating flexible security against malicious components. Our
policies are generic first-class objects and can be applied to any MIDlet as follows:

1. At download-time, a MIDlet’s bytecode is scanned to identify all API calls
it makes. Only application-relevant calls can be contained in a policy.

2. At specification-time, every high-level policy is compiled into monitor source
code, which is contained within a Java class.

3. At load-time, every API call in the libraries a MIDlet can access is instru-
mented with calls to the monitor.

4. At runtime, control is passed to the monitor when any event which the policy
reasons about is invoked.

Figure 1 illustrates the technologies we employ to implement our framework.
Our approach uses Polymer2 [3], a fully-implemented engine for enforcing exe-
cution monitoring threads on arbitrary Java programs. It responds to a policy
violation by transforming a target to adhere to conditions of the applied policy.

2 We have modified Polymer to allow it to operate on MIDlets, using MIDP2 and
CLDC libraries [11,12].

86 A. Brown and M. Ryan

Fig. 1. Integration of Polymer and
Java ME on the BlackBerry

Our system architecture targets two classes
of user separately:

– Administrators can construct and dis-
tribute groups of policies to the devices
which they manage, specifying them tex-
tually or by means of a comprehensive
user interface.

– Users can manage and modify policies
set by an administrator3, or select a pre-
specified policy from a repository, based
on the class of program they perceive
to have downloaded. Our MIDlet pol-
icy classes are editor, a browser, a shell,
a viewer, a transformer, a game, and a
messenger.

2.2 Application Behaviour Modelling Language (ABML)

ABML is a policy specification language for reasoning about application be-
haviour in a declarative manner using arbitrary events. It is inspired by Be-
haviour Modelling Specification Language (BMSL) [17], in which event-based
security-relevant properties can be expressed in order to capture the intended
behaviour of a system, or misuse behaviours associated with vulnerabilities and
their exploitation. ABML builds on BMSL with:

– High-level constructs for specifying event histories and recovery sequences;
– The notion and strongly- and weakly-ordered events;
– Abstraction mechanisms for referring to events and the data they use;
– Operators to increase the power of comparison between event conditions.

ABML’s primary constructs are:

1. Policies: A policy consists of a set of rules, or a set of variables followed by
a set of rules. Variable declaration may be local or global: a local variable’s
scope is limited to a single rule, whereas a global variable can be applied
within all rules in a policy.

2. Rules: A rule is of the form H → R, where H denotes a history of actions
invoked by the target application which triggered a rule, and R denotes some
postcondition which (i) either must hold true for that history, or (ii) must
specify some responsive steps to be followed where a rule is triggered.

3. History patterns: A history, H, models the target application’s instruc-
tion stream and is expressed by a pattern over a sequence of events: pat. A
pat can measure event occurrence, non-occurrence, sequencing, alternation
and repetition, providing a means of specifying the temporal properties of
application behaviour [17].

3 Where the administrator has granted the user sufficient access permissions.

Context-Aware Monitoring of Untrusted Mobile Applications 87

(a) Strongly-ordered patterns: A strongly-ordered pat considers events
strictly in the order they occur in. It is specified by separating events
with a semi-colon (‘;’).

(b) Weakly-ordered patterns: A weakly-ordered pat allows events which
a policy does not reason about to occur in between those events which
it does reason about. This representation is suitable where events may
happen simultaneously, or housekeeping operations are to be performed
between events. It is specified by separating events with a double semi-
colon (‘;;’).

4. Events: The following may be referred to within a rule:
(a) Atomic events have the form e(value1, value2, ..., valuen)|cond, where

e is an API call name, value is an argument to that call and cond is
a boolean-valued expression on that call’s arguments. We add compari-
son operators such as contains, startsWith and endsWith to enable more
advanced reasoning about event conditions.

(b) Abstract events, E, provide a means of concatenating atomic events
to form suitable abstractions that reflect a host’s ontology (e.g., read
from a local file, send an SMS message over carrier network, read data
from device’s GPS module). An E is referenced using the constructs zone,
resource and action, which allow one to refer to the zone a program may
interact with (e.g., internet, network, localdevice), the resources within
that zone it can access and the actions it may perform on those resources.

(c) Recovery events allow users to reason about policy violations without
having in-depth knowledge of the target application. A postcondition, R,
assists this reasoning process. It allows the policy author to:
– Deny the invocation of a triggering event (⊥);
– Enforce a condition on a triggering event (cond):

– If cond is true when a rule is evaluated, program execution is
permitted to continue;

– Otherwise, a sequence of recovery events of type E are derived
from cond at compile-time.

– Refer to an alternative event, which may be abstract (E);
– Make a call to terminate the target application (halt).

5. Event data usage: An event’s context is normally specified at the atomic
level by populating the arguments to that event (e.g., setting one or more
values in e(value1, value2, ..., valuen)). Because abstract events are collections
of atoms, each may have a different argument signature. ABML therefore
provides an event data tracking construct, which allows some abstract data
object, O, to be instantiated at runtime with the concrete data used by
that event. For example, HttpResponse represents a response over the HTTP
protocol. It contains instance variables to capture that response’s head (e.g.,
status code, date, server, content-type), body (e.g., (X)HTML, XML) and
a reference to the HttpRequest which invoked it. Section 4.2 illustrates this
process’ enforcement.

88 A. Brown and M. Ryan

3 Demonstration

In order to demonstrate ABML policy enforce-
ment, we present our operational experiences in
monitoring the execution of an untrusted MIDlets
on the BlackBerry 8800 series device [10]. The MI-
Dlet we consider is an instant messaging applica-
tion, which was downloaded to the device over
GPRS at the user’s request. The user wishes to
control the MIDlet’s features with the device’s in-
put apparatus; initiate ‘live’ messaging sessions
with remote devices in a contacts list; send asynchronous messages (e.g., SMS,
e-mail) to a contact; and, receive software updates from a remote server.

3.1 Existing Device Protection

The MIDlet may invoke other behaviours which the user is unaware of, some of
which may occur despite the BlackBerry’s code signing or access control mecha-
nisms. It must be linked to the CLDC libraries in order to execute and so must
be signed. The user can set the device’s access controls, as illustrated in Table
1, to prevent the signed code behaving maliciously.

Table 1. Settings for device access controls to prevent a MIDlet forwarding data

Attack on... Application Permission Set to...

1 – SMS Connections > Carrier Internet Deny

2 – E-mail User data > E-mail Deny

3 – TCP/IP Connections > Carrier Internet Deny

4 – Bluetooth Connections > Bluetooth Deny

Such measures clearly inhibit the primary functions of a messenger. For ex-
ample, the only means the user has to prevent the MIDlet intercepting and
forwarding SMS messages to an attacker is to deny its use of the BlackBerry
Internet Service. This renders it unusable for the purpose for which the user
downloaded it.

3.2 Attacks and Countermeasures

Users can apply an ABML policy which predicts and defends against attacks
in a more fine-grained way. Such a policy would be crafted by an administrator
or device vendor and applied by the user when they first download the MIDlet
(§2.1). The ABML rules we outline below are contained in our messenger policy,
from which a Java Policy is computed that generates an execution monitor.
Both the MIDlet and its monitor execute on the device as a separate threads in-
side the Polymer framework, so the device’s application permissions for Polymer
(for connections and user data) must all be set to “allow”.

Context-Aware Monitoring of Untrusted Mobile Applications 89

[1] Bluetooth backdoor attack: MIDlets can transmit data to and from the
device via its Bluetooth serial port. They must be signed to establish a Bluetooth
connection, but can use an open serial port without being signed. Sensitive data
(e.g., e-mail, SMS messages, Personal Information Manager (PIM) contacts) can
be captured and transmitted to other in-range devices, some of which may be
attacker-controlled. To prevent this, the following rule should be applied: “the
target may send data to the Bluetooth serial port only if it has established a
client-side Bluetooth connection with a paired device”.

Policy 1. Policy to prevent a MIDlet using a Bluetooth backdoor
ABML rule Connection b, c:

device.data.Send(Stream s, c)|c.address startsWith “btspp://” →
device.service.Connect(b)|b.address := c.address:

Rule format var1: var2: H{E2(O2)|cond(2)} → E1(O1)|cond(1,2) :
Triggering event device.data.Send(Stream s, Connnection c)
Monitored calls javax.microedition.io.Connector.<init>

net.rim.device.api.bluetooth.BluetoothSerialPort.<init>

A significant level of user interaction is required to establish such a connec-
tion, so users are unlikely to be coerced into doing so easily. The abstract event
localdevice.data.Send(Stream s, Connnection c) triggers Policy 1. It relates to the
low-level actions a MIDlet may use to stream data to some connection and is
conditional on that connection being to a Bluetooth serial port. If the policy’s
conclusion evaluates to true, the monitor has recorded that a legal client-side
Bluetooth connection has been established with a paired device and the Send
event’s address parameter matches that of the established connection – invo-
cation is allowed. Otherwise, Send is suppressed and the MIDlet’s execution
continues without that data being transmitted.

[2] SMS interception attack: Sending and receiving an SMS message uses
the MIDP 2.0 standard [12] and so does not require an application to be signed.
Once the BlackBerry user has agreed to its standard prompt “Allow Network
Access?”, they do not receive further warnings, even for subsequent executions.
An untrusted MIDlet can create an ‘SMS channel’, which remains in place where
the attacker has programmed it to run as a background process on receiving an
exit event. We therefore add the rule: “the target may send an SMS message only
if the data that message contains was entered manually by the user and the user
invoked the sending of that SMS by pressing the device’s trackwheel”.

If the application attempts to send an SMS message containing data that was
not user-entered, invocation of internet.data.Send(SMSMessage s) is suppressed.
Policy 2 uses the construct H → R, where R refers to an abstract event sequence
that must have already occurred (and any conditions on its occurrence satisfied)
for H to be invoked. If this is not the case, any event which relates to sending
an SMS message to the internet domain is prevented.

Our extensions to the Polymer engine determine the context of the triggering
event by monitoring the MIDlet getting data from a text field after the user has

90 A. Brown and M. Ryan

Policy 2. Policy to defend the BlackBerry against SMS interception
ABML rule SMSMessage s: Text r, t:

internet.data.Send(s) →
device.keypad.Press(r);;
device.trackwheel.Click();
device.gui.GetText(t)|t := s.body ∧ t contains r:

Rule format var1: var2: var3:
H{E4(O4)} → E1(O1);; E2(..); E3(O3)|cond(3,1,2) :

Triggering event internet.data.Send(SMSMessage s)
Monitored calls net.rim.blackberry.api.sms.OutboundMessageListener.notifyOutgoingMsg(Msg m)

net.rim.device.api.system.EventInjector.KeypadEvent(..)
net.rim.device.api.system.EventInjector.TrackwheelEvent(THUMB CLICK, .., ..)
net.rim.device.api.ui.component.TextField.getText(..)

manually entered it and pressed an interface button to send an SMS message
containing that text. Our compiler creates empty objects (O of type Text) that
refer to all live instances of Text pertaining to the user’s interaction. Further
details on this process are provided in Section 4.2.

This policy uses a strong temporal order between E2 and E3. If events which
this sequence does not reason about occur in between these, the policy is violated
and its triggering event supressed. The method call TextField.getText(..) is
tied as closely as possible to a TrackwheelEvent that uses a ‘thumb click’. More
complex reasoning here would require the policy to model the MIDlet’s user
interface, which is not possible for unseen malware.

[3] HTTP proxy attack: Unsigned MIDlets can create TCP connections on
the BlackBerry, again prompting the user with the BlackBerry’s “Allow Network
Access?” dialog only once. Attack code can then use the device as a proxy for
traffic; the attacker often having the intention of accessing illicit material or
performing denial of service attacks.

In order to mitigate this, we construct a policy to analyse the messenger’s use
of the device’s Internet connection. This states: “the target may send an HTTP
response (r) to the network only if it has not previously received an HTTP request
(n) whose host’s name matches that of r’s host; where r was proceeded by the
sending of an HTTP request (p) and the receipt of an HTTP response (q) whose
hosts match”.

Policy 3. Policy to prevent a MIDlet using the BlackBerry as an HTTP proxy
ABML rule HttpResponse r, q:

HttpRequest n, p:
internet.data.Send(r) →
internet.data.Receive(n)|n.host ¬ = r.host;;
internet.data.Send(p);;
internet.data.Receive(q)|p.host := q.host:

Rule format var1: var2: var3: var4:
H{E4(O4)} → E1(O1)|cond(3,1) ;; E2(O2);; E3(O3)|cond(4,2) :

Triggering event internet.data.Send(HttpResponse r)
Monitored calls javax.microedition.io.HttpConnection.openInputStream(..)

javax.microedition.io.HttpConnection.openDataInputStream(..)
javax.microedition.io.OutputStream.openOutputStream(..)
javax.microedition.io.DataOutputStream.openDataOutputStream(..)

Context-Aware Monitoring of Untrusted Mobile Applications 91

The monitor constructed here analyses request calls to HttpConnection and
ascertains whether a related HTTP response is ever sent to the network. Our en-
forcement model constructs HttpRequest and HttpResponse objects whenever
abstract events whose arguments match these are triggered (§4.2). These encap-
sulate any data being sent or received over HTTP by the messenger application.

4 Policy Compilation and Enforcement

Our compiler translates ABML policies into Java classes (of type Policy). Trans-
lation from an ABML policy to a Policy class is performed in a compositional
manner, so incremental changes can be handled with ease. Users may wish to
weaken a policy where it denies some program behaviour they wish to permit,
or strengthen it where they learn of some vulnerability in the target MIDlet.

4.1 Synthesising Monitors from ABML Specifications

Each Policy output by our compiler contains a method called query(), in which
every rule is implemented by enumerating cases in a switch() statement. A
policy is triggered where an event’s signature is matched by precisely one case.
The method then returns a Suggestion object which indicates how that event
should be dealt with. At the highest level, our compiler’s algorithms operate as
follows to compose a Policy.

1. ∀ E, select the pre-compiled AbstractAction class which E refers to. Insert
appropriate import statements into Policy to provide access to these classes.
(a) ∀ O in E, create an empty class of type AbstractDatawith instance vari-

ables to reflect O’s parameters. Insert appropriate import statements.
i. Provide appropriate accessor and mutator methods to access O’s

parameters.
2. Populate query()’s switch() statement with one case per E. Set that case’s

trigger to the AbstractAction selected in (1).
(a) If E is non-atomic, prepend each case’s trigger with the keyword “abs”4.

3. ∀ cond in E, declare one boolean variable, bn, setting its value to false.
4. ∀ E, such that E’s arguments contain O, insert a reference to that O inside

that case’s trigger5.
5. ∀ E, construct one conditional statement for each related bn in that E’s case.

Populate it with an expression to represent E’s cond6.
(a) ∀ E such that cond evaluates to true, set related bn = true.

6. Compute reasoning constructs to recover from a rule violation. ∀ rule:
(a) ∀ cond in a rule’s premise:

i. If cond = true, return an OKSug (e.g., that event can be executed);
ii. Else if cond = false, this event is irrelevant: return an IrrSug.

4 E.g., internet.data.Send(..) → case <abs void internet.data.Send(..)>:
5 E.g., internet.data.Send(Request r) → case <abs void internet.data.Send(r)>:
6 E.g., head.startsWith(‘‘http://’’)

92 A. Brown and M. Ryan

(b) ∀ cond in a rule’s conclusion:
i. If R = ⊥, return Suggestion to halt the MIDlet (HaltSug);
ii. Else if R = cond, and cond is false, halt the MIDlet;
iii. Else if R = E:

– If bn = false, this event is irrelevant: return an IrrSug;
– Else return ExnSug to suppress E but continue execution.

Rule precedence is determined by the order rules are listed in a policy. A mon-
itor queries its first rule implementation and always follows the Suggestion
of that rule if it considers the trigger action to be security-relevant (e.g., an
ExnSug or a HaltSug is returned, but not an IrrSug or an OKSug). Otherwise,
the Suggestion of the second rule is followed, and so on. Authors whom edit
policies in a textual manner should therefore take care, though we presume most
will modify policies using our specification GUI.

4.2 ABML Policy Enforcement

Figure 2 illustrates our monitoring model and depicts a target application and
an execution monitor in execution on the JVM. The three grey-shaded elements
represent the classical execution monitoring process, as was first described by
Schneider [16], and as is implemented by Polymer [3,2]. All events invoked by the
target program are analysed by the execution monitor: events which the policy
does not reason about are executed without analysis and those which it reasons
about are apprehended if any conditions on them evaluate to false.

Fig. 2. Operation of our ABML policy enforcement mechanism

Our extensions to this approach (white-shaded elements) “investigate” the
context in which an event occurs to achieve more precise separation between
legitimate and misuse behaviours. This process works as follows:

– Empty objects, derived from any O in a rule at compile-time, are created.
They extend AbstractData and contain the necessary instance variables to
represent O. This mapping is pre-defined in an XML file.

– Accessors and mutators for each O are set by our compiler and are mapped
to any ABML event (E) which refers to it.

Context-Aware Monitoring of Untrusted Mobile Applications 93

– Each AbstractData object is instantiated when a MIDlet performs a related
event which a Policy reasons about (cf. step 5 in Figure 2):

– A new class is created, whose unique reference identifies the data used
by that call;

– Garbage-collected instances of this class are checked for in classMap,
which is a hash map that collects class names and their references to
other classes;

– If an object has not been garbage-collected then it is a live instance. Its
reference is set to its associated instance variable in Policy.

– A Policy is able to query that object using the accessors and mutators it
provides.

Preventing calls which bypass APIs. Malicious programs may try to load native
code in order to mirror the functions of an API and so effectively bypass it. Our
approach can avoid such an attack. MIDlet bytecode is “pre-verified” by the
CLDC Class Verifier, which acts to sandbox an application by inserting certain
security checks as class file annotations to be carried out when the device loads
the class. Changes to bytecode after this has occurred are detected at runtime
by the JVM, which will reject the class [6]. Furthermore, our system sets a Java
SecurityManager policy which itself does not set a checkLink permission for
any native library. Attempts at executing the load() or loadLibrary()methods
therefore result in a SecurityException.

4.3 Performance Analysis

Expressing policies: We have tested our language and enforcement engine
using the attacks presented (§3.2). In order to mitigate these, our compiler
generated 356 lines policy code, split between three Policy classes and three
Combinator classes. The latter enforce rule precedence. An equivalent ABML
requires only 15 lines of code: 5 lines of global variable declarations and 10 lines of
ABML rule specifications (an arithmetic mean of 5 lines per attack). The policies
ABML can express are more readable than their imperative counterparts.

Mitigating information flow: Our model enables a class of policies which
prevent malicious programs from leaking sensitive information. We ensure that if
an information flow constraint cannot be mitigated, the events which cause it are
denied. Execution monitoring cannot capture all cases of information flow [16];
full information flow analysis is required to achieve this [13]. The significant
difference between our language and others when considering information flow
is its ability to specify live instances of data as arguments to events.

Execution-time overhead: As mobile devices have limited computing power,
we examine the costs of enforcing policies using our approach at:

– Download-time: Scanning a MIDlet’s bytecode for API calls is dependant
on the number of calls it makes. Our test code contained 83 such calls, which
our scanner took 4.4s to extract and add to an event definition file.

94 A. Brown and M. Ryan

– Specification-time: Compilation of a policy is also dependant on its com-
plexity. Compiling our rules to prevent attacks 1 through 3 (§3.2) took 1.2s.

– Load-time: The total time to instrument every method in the Java ME
and BlackBerry APIs (i.e., the 7352 methods in the 933 classes in the javax
and net.rim packages of the BlackBerry API v.4.5.0) was 185s, or an aver-
age 25ms per instrumented method. This cost is reasonable because library
instrumentation need only be performed once per download.

– Runtime: The cost of transferring control to and from a policy while exe-
cuting a target is very low (approximately 1.44 ms per policy decision point).
Therein, the run-time overhead of monitoring is is dependent on the com-
plexity of the security policy.

5 Related Work

The foundations of execution monitoring are described by Schneider in [16],
where a formal treatment is given to techniques which analyse the actions of
a target program and terminate it where it violates a policy. Ligatti [1, 4] have
extended this model to suppress program actions, allowing program execution to
continue after a policy is violated. This class of monitor is modelled by the edit
automaton, which is implemented by Polymer [2, 3]. Its policies are separated
from the target program and are therefore easy to maintain, re-use, or compose
into a hierarchy. Furthermore, it allows only sound execution monitors to be
computed. A weakness of Polymer is its input language (a constrained Java
syntax), which has high expressive power but is difficult for end-users to write
policies in.

Much work has been undertaken in developing languages for specifying process
behaviours that signify an intrusion. Sekar et al. devised Behaviour Modelling
Specification Language (BMSL) [17, 18], a more user-friendly policy language
for reasoning about a program’s execution through combining system call ab-
stractions. BMSL can express policies that capture the values of arguments to
events, but a policy author must forecast the strong temporal order of trigger
and recovery events: an infeasible expectation of most.

Later work on policy enforcement seems not to have focussed much on enhanc-
ing its precision. Castrucci et al. [5] describe how to monitor MIDlets, although
their policy language requires imperative reasoning using atomic method call sig-
natures and cannot precisely capture the temporal order or the context of event
invocations. Those which have attempted this [9] have done so in a low-level man-
ner, focussing on system calls on traditional hosts. It is often difficult, or even
impossible, to attribute a system call sequence to a particular program event [15].

6 Conclusion

We have designed a user-operable sandboxing technique to control the execution
of untrusted mobile software. It consists of an abstract policy language and an
enforcement model based on Polymer. Our language is more expressive than

Context-Aware Monitoring of Untrusted Mobile Applications 95

other policy languages, but uses purely declarative constructs. Its policies require
lower development effort and can be composed and applied incrementally.

ABML’s main contribution is its association of atomic events to program
data and its mapping of this process to suitable abstractions, which helps to
increase accuracy and reduce vulnerabilities and redundancies. We have provided
an enforcement model that is more powerful than existing execution monitors
– it is aware of the context in which an event has occurred and so broadens
the functionalities of the target application. Our future work will prove that the
policies we compute are at least as strong as the ABML policies which specified
them when enforced by our model and that their translation into a Policy class
is sound. This will enable users to place guarantees in our work.

References

1. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: FLoC
2002: Proceedings of the 2002 Workshop on Foundations of Computer Security,
pp. 95–104 (2002)

2. Bauer, L., Ligatti, J., Walker, D.: A language and system for composing security
policies. Technical Report TR-699-04, Princeton University (2004)

3. Bauer, L., Ligatti, J., Walker, D.: Composing security policies with Polymer. In:
PLDI 2005: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation, pp. 305–314. ACM Press, New York (2005)

4. Bauer, L., Ligatti, J., Walker, D.: Edit automata: Enforcement mechanisms for
run-time security policies. International Journal of Information Security 4(1-2),
2–16 (2005)

5. Castrucci, A., Martinelli, F., Mori, P., Roperti, F.: Enhancing Java ME Security
Support with Resource Usage Monitoring. In: Chen, L., Ryan, M.D., Wang, G.
(eds.) ICICS 2008. LNCS, vol. 5308, pp. 256–266. Springer, Heidelberg (2008)

6. Java Community Process: CLDC 1.1 Specification, http://jcp.org/aboutJava/
communityprocess/final/jsr139/

7. Erlingsson, U., Schneider, F.B.: IRM enforcement of Java stack inspection. In:
SP 2000: Proceedings of the 2000 IEEE Symposium on Security and Privacy, pp.
246–259. IEEE Computer Society Press, Washington (2000)

8. Evans, D., Twyman, A.: Flexible policy-directed code safety. In: SP 1999: Pro-
ceedings of the 1999 IEEE Symposium on Security and Privacy, pp. 32–45. IEEE
Computer Society Press, Washington (1999)

9. Giffin, K., Jha, S., Miller, B.: Efficient context-sensitive intrusion detection. In:
NDSS 2004: Proceedings of the 11th Annual Network and Distributed Systems
Security Symposium. Internet Society Press, Reston (2004)

10. Research in Motion: Blackberry Simulators, http://na.blackberry.com/eng/

developers/downloads/simulators.jsp

11. Sun Microsystems: Connected Limited Device Configuration (CLDC), http://

java.sun.com/products/cldc/

12. Sun Microsystems: Mobile Information Device Profile (MIDP), http://java.sun.
com/products/midp/

13. Myers, A.C., Liskov, B.: Protecting privacy using the decentralized label model.
ACM Transactions on Software Engineering Methodology 9(4), 410–442 (2000)

14. Forum Nokia: Java Security Domains, http://wiki.forum.nokia.com/index.

php/JavaSecurityDomains/

http://jcp.org/aboutJava/communityprocess/final/jsr139/
http://jcp.org/aboutJava/communityprocess/final/jsr139/
http://na.blackberry.com/eng/developers/downloads/simulators.jsp
http://na.blackberry.com/eng/developers/downloads/simulators.jsp
http://java.sun.com/products/cldc/
http://java.sun.com/products/cldc/
http://java.sun.com/products/midp/
http://java.sun.com/products/midp/
http://wiki.forum.nokia.com/index.php/JavaSecurityDomains/
http://wiki.forum.nokia.com/index.php/JavaSecurityDomains/

96 A. Brown and M. Ryan

15. Provos, N.: Improving host security with system call policies. In: Proceedings
of 12th USENIX Security Symposium, pp. 128–146. USENIX Press, Washington
(2003)

16. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
Systems Security 3(1), 30–50 (2000)

17. Sekar, R., Uppuluri, P.: Synthesizing fast intrusion prevention/detection systems
from high-level specifications. In: SSYM 1999: Proceedings of the 8th USENIX
Security Symposium. USENIX Association, Berkeley (1999)

18. Sekar, R., Venkatakrishnan, V.N., Ram, P.: Empowering mobile code using ex-
pressive security policies. In: NSPW 2002: Proceedings of the 10th New Security
Paradigms Workshop, pp. 61–68. ACM Press, New York (2002)

	Context-Aware Monitoring of Untrusted Mobile Applications
	Introduction
	Mobile Malware Defence
	Execution Monitoring
	Paper Structure

	Modelling Application Behaviour
	Approach Summary
	Application Behaviour Modelling Language (ABML)

	Demonstration
	Existing Device Protection
	Attacks and Countermeasures

	Policy Compilation and Enforcement
	Synthesising Monitors from ABML Specifications
	ABML Policy Enforcement
	Performance Analysis

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

