
Building Efficient Integrity Measurement and
Attestation for Mobile Phone Platforms

Xinwen Zhang1, Onur Acıiçmez1, and Jean-Pierre Seifert2

1 Samsung Information Systems America, San Jose, CA, USA
{xinwen.z,o.aciicmez}@samsung.com

2 Deutsche Telekom Laboratories and Technical University of Berlin
jean-pierre.seifert@telekom.de

Abstract. Integrity measurement and attestation mechanisms have already been
developed for PC and server platforms, however, porting these technologies di-
rectly on mobile and resource-limited devices does not truly satisfy their
performance constraints. Therefore, there are ongoing research efforts on mobile-
efficient integrity measurement and attestation mechanisms. In this paper we pro-
pose a simple and efficient solution for this problem by considering the unique
features of mobile phone devices. Our customized secure boot mechanism en-
sures that a platform can boot to a secure state. During runtime an information
flow–based integrity model is leveraged to maintain high integrity status of the
system. Our solution satisfies identified security goals of integrity measurement
and attestation. We have implemented our solution on a LiMo compatible mobile
phone platform.

1 Introduction

Mobile devices such as cellular phones and smartphones have been evolved to be more
open and general-purpose so that security has become a significant issue for device
manufactures, network and service providers. On one side, today’s smartphones typi-
cally have increasing processing power, integrated functions, and network connectivity,
and hence, there are more services deployed on these devices not only voice but also
data, such as messaging, content sharing, and enterprise data processing. On the other
side, mobile phone devices face the same kind of threats that have been surging in PC
world. According to F-Secure [22], currently there are more than 350 mobile malware
in circulation. Examples of the most notorious threats to cellphones include Skull [16],
Cabir [2], and Mabir [10] targeting at Symbian operating systems. McAfee’s 2008 mo-
bile security report [11] indicates that nearly 14% of global mobile users have been di-
rectly infected or have known someone who was infected by a mobile virus, and more
than 70% of users expect mobile operators or device manufacturers to preload mobile
security functionality.

One major attack mechanism of mobile malware is to maliciously change system
files or configurations thus disable some phone or platform functions. For example,
mobile viruses like Dampig [4], Fontal [6], Locknut [9], and Skulls [16] maliciously
modify system files and configurations thus disable application manager and other le-
gal applications on a phone. Phones can even become unable to uninstall or disable

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 71–82, 2009.
c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

72 X. Zhang, O. Acıiçmez, and J.-P. Seifert

the malware once they are infected. Doomboot [5] installs corrupted system binaries
into c: drive of a Symbian phone, and when the phone re-boots these corrupted bina-
ries are loaded instead of the correct ones, and the phone crashes at boot. Similarly
Skulls [16] can break phone services like messaging and camera. For another example,
Cardblock [3] deletes system directories and destroys information about installed ap-
plications, MMS and SMS messages, phone numbers stored on the phone, and other
critical system data. According to F-Secure [22], user installed applications are ma-
jor threats to mobile platform security, including those downloaded from Internet or
received from MMS and Bluetooth.

All these existing attacks compromise the integrity of a mobile phone device.
Integrity measurement is a technique to enable a party to query the integrity status
of software running on a platform, e.g., through attestation challenges. Several integrity
measurement mechanisms have been proposed and developed. Trusted
Computing Group (TCG) has published a set of specifications to measure, store, and
report hardware and software integrity via transitive trust concept with hardware root-
of-trust called Trusted Platform Module (TPM) and Core-Root-of-Trust-Measurement
(CRTM). On a TPM-enabled platform, the CRTM measures the bootloader of the sys-
tem before it is executed, and then stores the measured value into one of the platform
configuration registers (PCRs) inside the TPM. The bootloader then loads OS image,
measures it and stores via PCR extension, and then executes it [18]. In turn, the OS mea-
sures the loaded applications and stores their integrity values in PCRs before executing
them. Upon an attestation challenge from a third party, the TPM signs a set of PCR
values with an attestation identity key (AIK) and sends back the result. The challenger
then can make decisions on the trust status of the platform by verifying the integrity
of these values and comparing with the corresponding known-good values. For mobile
phone platforms, TCG Mobile Phone Working Group has released specifications for
mobile trusted module (MTM) [17].

Problems. IBM Integrity Measurement Architecture (IMA) [26] is an implementation
of TCG specification in Linux. In IMA, GRUB is augmented to include measurement
functions for kernel, ramdisk images, and grub.conf. Also, a kernel module is imple-
mented to measure OS components after the kernel is loaded (post-boot), including
libraries, usual command and tool binaries, configuration files, and application mod-
ules. Unfortunately, there is no practical implementation of integrity measurement and
attestation for mobile platforms so far. One major reason is that, mobile devices such as
cellular phones are still limited in computing power, e.g., they typically employ proces-
sors running at 200-600 MHz and internal RAM memories of 32MB or 64MB in size.
This mandates that any security solution must be very efficient and leave only a tiny
footprint in the limited memory. However, IMA has 400-600 measurements on typical
desktop and server platforms [7], out of which around 350 measurements are post-boot
measurements. The measurements take long time during boot and introduces significant
performance delay during runtime. PRIMA [25] extends IMA on mobile phone devices
and simplifies the integrity measurements. However it still has more than 200 measure-
ments on an Openmoko phone device [25]. Although many software components (e.g.,
libs and binary images) on a phone are smaller than corresponding components in PC

Building Efficient Integrity Measurement and Attestation for Mobile Phone Platforms 73

and servers, the performance overhead is still very significant and degrades the overall
user experience.

Contributions. In this paper, we first identify the security goals and requirements for
mobile platform integrity measurement. We then propose an efficient solution towards
these goals and requirements. Our major design objective is to reduce the number of
software components to be measured on a platform, and thus reduces booting and run-
time performance overhead and eases the integrity verification for attestation. Our so-
lution consists of two major steps. First, we develop a secure boot mechanism to ensure
that a secure kernel is booted, which in turn ensures a well-behaved measurement agent
and enforces an authenticated security policy during runtime of the operating system
(OS). Runtime integrity assurance is then achieved by leveraging a simple integrity
model, which efficiently identifies the trusted and untrusted domains (including pro-
cesses and resources) of a mobile platform, and restricts modifications from untrusted
domain to trusted side. The essential idea of our integrity measurement is that we only
measure integrity protection policy and enforcement mechanism based on our model,
including OS kernel and user space components that accept inputs from untrusted do-
main on a platform (mainly framework daemons providing services to other applica-
tions on a platform). For verification, if our model is correctly enforced with carefully
designed policy, we have the assurance that processes and resources in trusted domain
are protected from untrusted applications, and the platform is always in good integrity
status during runtime. The rational that makes our approach practical is that in mobile
phone and many embedded devices, it’s much easier to identify the board line between
trusted and untrusted domains, as we discuss in later sections of this paper. While in PC
and server environments, due to many network-faced services and installed software
from many unverified resources, it’s a complex task.

Outline. In the next section we analyze the general security goals of integrity mea-
surement and attestation for mobile platform. We then present our solution with secure
boot and runtime integrity model to satisfy these goals in Section 3. We briefly present
some implementation information of our approach on a LiMo compatible real smart-
phone device in Section 4. Section 5 presents some related work on platform integrity
measurement. We conclude this paper in Section 6.

2 Security Goals

In this section we explain the security goals of integrity measurement and attestation
on general computing environments. We then identify some further requirements for
mobile platforms. We note that this is not a complete list of security goals, but the
aspects considered in our solution.

Trusted Boot. TCG specification requires trusted boot, which adopts the concept simi-
lar to AEGIS [19]. Specifically, upon booting, all software components including BIOS
and OS bootloader are transitively measured by the CRTM of a platform and the results
are extended in the PCRs of TPM. The bootloader then loads OS image, measures it

74 X. Zhang, O. Acıiçmez, and J.-P. Seifert

and stores via PCR extension, and then executes it [18]. In turn, the OS can measure
applications and stores their integrity values in PCRs before executing them.

Load-time Integrity Measurement. There are two different types of integrity mea-
surement for a software binary: load-time and runtime measurements. The TCG only
specifies load-time integrity measurement–a piece of code or data is measured when
it is mapped or loaded into main memory. In IMA [26], measurements are invoked in
several system call functions such as mmap and insmod when code or kernel modules
are loaded but before they are executed. After a code is mapped into memory and dur-
ing runtime, it is very difficult to measure the integrity of the process considering very
dynamic and undeterministic behaviors of typical applications, such as loading active
code, receiving external inputs, and allocating dynamic memory.

In addition to trusted boot and load-time integrity measurement, integrity protection
for mobile phones has the following extra requirements.

Secure Boot. Due to the business model of mobile industry, a mobile device is a service
convergence of many remote service stakeholders, including device manufacturer, net-
work operator, and other service providers. There is a set of mandatory engines [17] re-
side on a single mobile platform and provide critical and indispensable services, which
have to be running in known-good states, which mean that the integrity of these services
must be verified to assure their trustworthiness. Therefore TCG Mobile Phone Refer-
ence Architecture [17] states that secure boot is mandatory for MTM. As mentioned,
trusted boot requires any component during boot has to be measured and the result is
securely stored. Further, secure boot requires that a measured value has to be verified
before it is executed. If the measured result does not match a known-good value, the
booting is aborted.

Low Booting and Runtime Overhead. Most mobile devices such as cellular phones
and smartphones are still limited in computing power. Also, user experience is a key
business factor in consumer electronic (CE) market. This requires any security solution
to be very efficient not to degrade overall user experience. For example, a typical mobile
phone should boot in a reasonable time (e.g., less than 10s) and should not have a
high overhead when starting a widget or opening the keyboard screen when making a
phone call. Therefore low booting and runtime overhead is a pressing requirement for
mobile platforms and integrity measurement during boot and in post-boot state should
not degrade the performance and user experience too much.

Runtime Integrity Assurance. Although runtime integrity measurement is not practi-
cal in both PC and mobile platforms, there should be some mechanism to preserve the
integrity level of critical applications and resources during runtime, e.g., phone related
services (telephony server) and platform management agents. Both TCG and IMA do
not propose any mechanism for this purpose.

3 Our Approach

Overview. We leverage two mechanisms to achieve these security goals. First of them
is our security enhanced bootloader, which measures the kernel image, software TPM

Building Efficient Integrity Measurement and Attestation for Mobile Phone Platforms 75

module, and our security policy file when the platform boots up. If all these are au-
thenticated, we can assure that the base system (i.e., kernel) is trusted to (1) carry out
the rest of the integrity measurements and (2) enforce the security policy after booting.
Our second mechanism relies on a simple integrity model (crafted specificly for mobile
platforms) to identify the boundary between trusted and untrusted domains on a typical
mobile platform and control the information flow. Security policy implementing our
integrity model is enforced in both kernel and user space. The result is that only a few
number of binaries and data objects need to be measured in post-boot phase, as they
enforce our policy and handle service requests from both trusted and untrusted appli-
cations, e.g., most service daemons for platform management, telephony service, and
other trusted third party services.

Security Assumptions. We do not consider attacks in kernel, such as installing kernel
rootkits 1 to bypass our security policy enforcement in kernel space. We further assume
that an attacker cannot re-flash the bootloader on a mobile platform, e.g., which can
be stored in ROM. That is, our integrity measurement and attestation ensures that a
system is secure against software-based attacks, which is the major objective of trusted
computing technologies [18].

3.1 Secure Boot

The challenge for secure boot is that there is no hardware implementation of TPM or
MTM available for mobile phones so far. Our secure boot leverages a measurement
agent in bootloader. For security considerations, we assume that the bootloader and
especially this agent is tightly coupled with and protected by hardware, e.g., can be
written into ROM. Moreover, a public RSA key of the device manufacturer is encoded
in the measurement agent. We assume that the following known-good integrity values
(SHA1 value) of the kernel image, software TPM module (swTPM), and security policy
are signed by the device manufacturer and the corresponding certificates are stored
along with these binaries in the platform. As an alternative, these values can be received
from a trusted service provider over-the-air, e.g., from a server and signed by the mobile
network operator of the device, in which case the credentials would include the public
key certificate of the operator. This enhances the deployment flexibility as the kernel
and security policy can be updated after the device is released to customer.

When the platform boots, the measurement agent measures the integrity of the kernel
image, the swTPM module, and the binary policy and verifies these values by compar-
ing with those in the certificates. The kernel is executed only after a success verifica-
tion. The measured integrity values of the kernel image, swTPM, and the policy file
are passed to the kernel upon start of its execution. The kernel loads the policy file and
starts enforcing the access control rules following our integrity model. Recall that in
our architecture, we rely on kernel level mandatory access control mechanism, i.e., the
kernel has the ability to fully control the entire information flow in the platform. The
kernel also initiates the swTPM and extends the PCRs using the the integrity param-
eters passed from the bootloader. Through these steps, we ensure that a secure kernel

1 According to F-Secure [22], rootkits have not been found on cellphone devices.

76 X. Zhang, O. Acıiçmez, and J.-P. Seifert

is loaded, an authenticated swTPM is working, and the kernel is trusted to enforce an
authenticated security policy during runtime.

3.2 Secure Runtime

Due to very dynamic and undeterministic behaviors of typical applications, runtime in-
tegrity measurement is not practical in typical OS environment, if not impossible at all.
We propose to leverage an integrity model for runtime integrity preservation. The fun-
damental idea is, if needed, a trusted application always receives information from other
trusted applications or reads data from trusted domains, and untrusted processes cannot
write to trusted resources. Through this, the integrity of trusted services and resources
is preserved. That is, our model is a runtime information flow control mechanism.

Our model is built on the unique integrity requirements of mobile platforms. Typi-
cally, for desktop and server platforms, one of the major security objectives is to protect
network-faced applications and services such as httpd, smtpd, ftpd, and samba, which
accept unverified inputs from others [23]. As mentioned in Section 1, for mobile phone
platforms, on the other side, the major security objective is to protect system integrity
threaten by user installed applications, including those downloaded from Internet and
received from MMS and Bluetooth.

The architecture of a mobile platform is different from conventional desktop sys-
tems. For example, LiMo platform includes a set of frameworks, which provide services
to applications via function interfaces. Applications running on a mainstream Linux
OS in (e.g.) a desktop communicate directly with kernel to access hardware resources
through system call APIs. On the other hand, frameworks control the access and usage
of hardware resources on mobile phone devices. For example, mobile phone applica-
tions can access SIM data only through the interface APIs of the telephony framework.
This architecture is heavily dependent on the business model of mobile and wireless
telecommunication industry, where different stakeholders or vendors (device manufac-
tures, network carriers, and third-party service providers) provide variant frameworks
and give interfaces to application developers.

A trusted process such as a service daemon may accept requests from both trusted
and untrusted applications concurrently. Traditional integrity models are not efficient
and flexible under these scenarios. For example, LOMAC [20], UMIP [23], and CW-
lite [25] require a process dynamically downgrade its security level whenever it accesses
low integrity objects or receives inputs from low integrity processes. However, the pro-
cess needs to re-start whenever it needs to access high integrity objects later, which is
not efficient for mobile devices. Therefore, we propose our integrity model as follows.

Integrity Model. Like traditional security models, our model distinguishes subjects
and objects in OS. Basically, subjects are active entities that can access to objects,
which are passive entities in a system such as files and sockets. In our model, the set
of subjects S are mainly active processes and daemons, the set of objects O include all
possible entities that can be accessed by processes, and S ⊆ O. In an OS environment,
there are many different types of access operations. In our model, for integrity purposes,
we focus on three access operations: create, read, and write. From information flow
perspective, all other operations can be mapped to these three operations [15].

Building Efficient Integrity Measurement and Attestation for Mobile Phone Platforms 77

Table 1 shows the basic integrity rules in our model, where L(o) is the integrity level
of object o. Note that by default we consider trusted entities as high integrity and un-
trusted entities as low integrity in this paper. The first two creating rules are exclusively
applied upon a single object creation. Typically, the first rule applies to objects that
are privately created by a process. For example, an application’s logs, intermediate and
output files are private data of this process. The second rule applies to objects that are
precatively created by a process upon the request of another process. In one case, s1 is
a server running as a daemon process, the s2 can be any process that leverages the func-
tion of the daemon process to create objects, e.g., to create a GPRS session, or save its
configuration data with GConf daemon (gconfd). In another case, s1 is a common tool
or facility program that can be used by s2 to create object. In these cases, the integrity
level of the created object is corresponding to that of s2.

Table 1. Integrity Rules

Policy Rule Description
r1: create(s, o): L(o) = L(s) object o is created by a process s.
r2: create(s1, s2, o): L(o) =
MIN((L(s1), L(s2))

object o is created by process s1 with input from another process s2

r3: can read(s, o): L(s) ≤ L(o) a process s only can read from an equal or higher integrity process or
object o.

r4: can write(s, o): L(s) ≥ L(o) a high integrity process s can write to an equal or lower integrity process
or object o

r5: can read(s1, s2, o): L(s1) ≥
L(s2) ∧ can write(s1, o) ∧
L(s2) ≥ L(o)

a high integrity process s1 can receive information from an equal or
lower integrity subject s2, provided that the information will be written
to lower integrity subject or object o by the high integrity process s1.

The r3 and r4 rules indicate that there is no restriction on information flow within
trusted entities, and within untrusted entities, respectively, which is, fundamentally, a
BIBA-like integrity policy. Rule r5 states that a trusted subject to behave as a commu-
nication or service channel between untrusted entities. Therefore not every subject can
be trusted for this purpose. Typically, communications between applications and ser-
vice daemons can be modelled with this rule. For example, on a mobile phone device,
a telephony daemon can create a voice conversation between an application and wire-
less modem, upon the calling of telephony APIs. A low integrity process cannot modify
any information of the connection created by a high integrity process, thus preventing
stealthily forwarding the conversation to a malicious host, or making the conversation
into a conference call.

Boundary of Trusted and Untrusted Domains. Many embedded devices (including
mobile phones) use read-only filesystems to store static binary images and data for sys-
tem and application software, which is not a typical characteristics of desktop and server
platforms. On a LiMo compatible smartphone [8] that we have evaluated, all Linux
system binaries (e.g., init, busybox), shared libraries (/lib, /usr/lib), scripts
(e.g., inetd, network, portmap), and non-mutable configuration files
(fstab.conf,inetd.conf,inittab.conf,mdev.conf) are located in a read-
only cramfs filesystem. Also, all phone related application binaries, configurations, and
framework libraries are located in another cramfs filesystem. All mutable phone related

78 X. Zhang, O. Acıiçmez, and J.-P. Seifert

files are located in an ext3 filesystem, including logs, tmp files, database files, GConf
configuration resource files, and user-customizable configuration files (e.g., application
settings and GUI themes). All user applications can only be installed in a dedicated
directory of the ext3 filesystem and the /mnt/mmc, which is mounted when a flash
memory card is inserted. Based on this layout, we decide that all objects in user writable
filesystem and directories are untrusted, and the others (including read-only and read-
write filesystems and directories) are trusted. This is based on the integrity objective
of our solution – to protect system and service components from user installed appli-
cations. We have observed very similar filesystem layout on many other Linux mobile
phones, including Motorola A1200 [14] and Android [1].

We note that above approach to determine trusted and untrusted domains is just an
example mechanism. The general idea of our model is to decide the boundary between
platform system and service domains, and user installed application domains, via dif-
ferent filesystems and/or directories. Note that, filesystem layout is determined by the
device manufacturer of a platform and such a separation can be enforced quite easily.
This approach simplifies policy definitions and reduces runtime overhead compared to
traditional approaches such as SELinux on PCs, which sets the trust boundaries based
on individual files.

Integrity-aware IPC. Our integrity-aware IPC aims to control information flow be-
tween subjects. Most IPC objects (including domain sockets, pipes, fifo, message queues,
shared memory, and shared files) inherit their integrity levels from the processes that cre-
ate them. Therefore, our model restricts any access where a high integrity process tries
to receive data through an IPC object created by a low integrity process.

In many mobile Linux platforms such as LiMo, OpenMoko, GPE, Maemo, and
Qtopia, D-Bus is the major IPC, which is a message-based communication mechanism
between processes. A process builds a connection with a system- or user-wide D-Bus
daemon (dbusd). When this process wants to communicate with another process, it
sends messages to dbusd via this connection. The dbusd maintains all such connections
(from many different processes), and routes messages between them. A D-Bus message
is an object in our model, which inherits integrity level from its creating process. Ac-
cording to r5 of our model, trusted subject dbusd can receive any D-Bus message (low
or high integrity level) and forward to corresponding destination process. Typically, a
trusted process can only receive high integrity messages from dbusd. According to r5
of our model, if a process is a trusted daemon, like telephony service or GConf daemon,
it can receive high and low integrity messages from dbusd, and handle them separately
within the daemon.

Program Installation and Launching. Application installation is usually performed
by a dedicated installation program called installer. As the installer is trusted, it can
read both high and low integrity application packages according to our model. Again
according to our model, it can write (i.e., install) to trusted part of the filesystem if
it reads the data from a high integrity software package, and can write to untrusted
part of the filesystem if the data is from a low integrity software package. Similar to
installation, during the runtime of a mobile system, a process is invoked by a trusted
program called program launcher, and both high and low integrity processes can be

Building Efficient Integrity Measurement and Attestation for Mobile Phone Platforms 79

invoked by the program launcher. All processes invoked from trusted program files are
in high integrity level, and all processes invoked from untrusted program files are in low
integrity level.

Mobile phones can be infected with malware via variant communication channels
between phone devices and networks. For example, many malware in Symbian-based
phones send malicious codes via Bluetooth channel, or distribute with MMS messages
(either in message contents or as attachments). Therefore in our model we treat any
code received from these network-faced applications as untrusted by default. Thus,
according to our model, any process invoked from arbitrary code by MMS agent or
browser is in low integrity level and cannot write to trusted resources and services, such
as corrupting system binaries or changing platform configurations. It is possible that
some software received from Bluetooth/MMS/browser can be trusted. For instance, a
user can download a trusted software from his PC via Bluetooth or from a trusted ser-
vice provider’s website via browser. Therefore it can be installed to the trusted side on
read-write filesystem by the application manager on the phone, after the user explicitly
indicates or confirms that this application is trusted, or with a source verification (e.g.,
via digital signature) of the software package.

3.3 Putting Together: Integrity Measurement and Protection

After introducing our secure boot mechanism and runtime integrity model, it is time
explain how to measure and verify a mobile platform integrity. The overall platform
architecture and measurements are show in Figure 1. As aforementioned, with secure
boot, a mobile platform can boot to a state with an authenticated kernel, which in turn
is trusted to enforce an authenticated policy based on our model. The integrity values
of kernel image, swTPM and the policy are stored in PCRs of the swTPM, e.g., for
attestation purposes after booting. After this, a measurement agent in the kernel and the
swTPM can perform secure measurements and storage for other modules and trusted
subjects during runtime. Specifically, when a measurement target is to be loaded, the
measurement agent captures this event, measures its integrity, extends a correspond-
ing PCR of the swTPM, and then loads the target into main memory and transfers its
execution to it.

During runtime, our objective is to minimize the number of components to be mea-
sured for performance reasons. Firstly, according to our integrity model, when the ker-
nel is genuine, we have the assurance that all code and data in read-only filesystems
cannot be altered by any means. Secondly, for any code that is located in a read-write
filesystem and regarded as trusted, we check whether the code is an executable binary
of a daemon, which is a trusted subject and enforces security policy in our model. If it
is, we need to measure it. If the code is not a trusted daemon, we do not need to mea-
sure it, as its runtime integrity is preserved with the integrity policy rules based on our
model, and the policy is honestly enforced by the kernel and daemons. We do not need
to measure any other untrusted code and data, because they are already regarded as un-
trusted subjects and objects in our model and cannot alter any trusted entities due to our
model and policy enforcement mechanisms explained above. Similar to IBM IMA [26],
we do not measure dynamic data and configuration files.

80 X. Zhang, O. Acıiçmez, and J.-P. Seifert

Hardware

Kernel Image policy.21

apps

Credentials

Bootloader

Measurement
Agent

swTPM module

daemons

trusted
subjects

apps

Measurement
Agent

Fig. 1. Platform architecture: integrity measurement and verification with secure boot and runtime
integrity enforcement

The attestation of our platform is similar to traditional TCG-based approach. With
an attestation service agent on the platform (not shown in Figure 1), when receiving an
attestation challenge, the agent responses with PCR values signed by the swTPM. Due
to space limitation, we ignore the details of these steps and also the procedure to obtain
an attestation identity key for the platform.

4 Implementation

We have implemented our model on a real LiMo platform [8]. We augmented the boot-
loader (u-boot) on this platform with a simple integrity measurement agent. We ported
the TPM emulator [27] on this platform. We are also porting the software MTM mod-
ule [12] to this platform.

The integrity model is implemented with SELinux, which provides comprehensive
security checks via Linux Security Module (LSM) in kernel. SELinux provides domain-
type and role-based policy specifications, which can be used to define policy rules to
implement high level security models. Actually, current SELinux does not have an in-
tegrity model built-in. On one side, our implementation simplifies SELinux policy for
mobile phone devices by leveraging trusted and untrusted subject attributes. On the
other side, our implementation augments SELinux policy with our integrity model.

D-Bus is the major IPC mechanism for most Linux-based mobile platforms. Follow-
ing our integrity model, we extend D-Bus implementation in two aspects. First, each
message is augmented with a header field to specify its integrity level based on the
process which sends the message, and the value of this field is set by dbusd when it re-
ceives the message and before dispatches it. Secondly, according to our integrity model,
if a destination bus name is a trusted daemon process, it can accept both high and low
integrity messages; otherwise, it only accepts messages with the same integrity level
as itself. We also have augmented other framework daemons of this LiMo platform to
enforce similar integrity policy, including the GConf and telephony server, as they can
access both trusted and untrusted messages via D-Bus.

Building Efficient Integrity Measurement and Attestation for Mobile Phone Platforms 81

We define two domain attributes to specify high and low integrity processes: trusted
and untrusted, respectively. We use generalized filesystem labeling mechanism [13] in
SELinux to label both cramfs and ext3 filesystems. Our policy size is less than 20KB
including genfscon rules for filesystem labelling. Comparing to that in typical desk-
top Linux distributions such as Fedora Core 6 (which has 1.2MB policy file), our policy
footprint is tiny. We also studied the performance of our runtime security enforcement
with micro benchmark. Our results show that for most operations, our security enforce-
ment has less than 4% overhead, which is significantly less than the counterpart tech-
nology on PC [24].

5 Related Work

As aforementioned, IBM IMA [26,7] is the integrity measurement solution for PC plat-
forms. However, directly porting this to mobile devices is not practical due to its high
computation overhead during booting and runtime. PRIMA [25] leverages the CW-lite
information flow control to maintain a process’s integrity, where particular interfaces
of the process filter low integrity information when received by this process. However,
identifying filtering interfaces in many service processes (daemons) on a mobile phone
is not a easy task, especially many of them come from different software vendors, e.g.,
network carrier, device manufacturer, and third party service providers. Also, PRIMA
still has more than 200 measurements on an Openmoko phone device [25].

Dynamic root-of-trust-for-measurement (DRTM) [21] is a mechanism on x86 plat-
form to execute a piece of code in hardware protected trusted environment during run-
time and without physically rebooting the platform. However this is not practical in mo-
bile device. First of all, ARM processors have not built in this capability. Secondly, only
32KB size of code can be executed in the trusted environment in DRTM, which shifts
the integrity measurement problem to other mechanism after that code is launched.

Runtime integrity measurement has been proposed recently with copy-on-write
mechanism [28]. However, this is implemented on Xen-like virtualization environment,
which is so far not practical for mobile platforms.

6 Conclusion

Towards the protection of mobile platform integrity threaten from untrusted user appli-
cations, we propose a simple and efficient solution for integrity measurement and attes-
tation. Our solution uses a secure bootloader to measure the kernel and a software TPM,
which ensures that the platform can boot to a secure state. After booting, we leverage a
simple integrity model to preserve the runtime integrity of the system. Our model easily
distinguishes trusted and untrusted domains on both filesytem and memory space, thus
making the policy development very simple and verifiable. During runtime, we mea-
sure the enforcement mechanism of security policy based on our integrity model, i.e.,
trusted daemon processes, thus significantly reduce the number of components to be
measured. We are developing a formal specification and security property verification
of our proposed integrity model.

82 X. Zhang, O. Acıiçmez, and J.-P. Seifert

References

1. Android, http://code.google.com/android/
2. Cabir, http://www.f-secure.com/v-descs/cabir.shtml
3. Cardblock, http://www.f-secure.com/v-descs/cardblock_a.shtml
4. Dampig, http://www.f-secure.com/v-descs/dampig_a.shtml
5. Doomboot, http://www.f-secure.com/v-descs/doomboot_a.shtml
6. Fontal, http://www.f-secure.com/v-descs/fontal_a.shtml
7. IBM integrity measurement architecture, http://domino.research.ibm.com/

comm/research_projects.nsf/pages/ssd_ima.index.html
8. Limo Foundation,

http://www.limofoundation.org/en/technical-documents.html
9. Locknut, http://www.f-secure.com/v-descs/locknut_e.shtml

10. Mabir, http://www.f-secure.com/v-descs/mabir.shtml
11. Mcafee Mobile Security Report (2008), http://www.mcafee.com/us/research/

mobile_security_report_2008.html
12. MTM Emulator, http://hemviken.fi/mtm/
13. NSA Security-Enhanced Linux Example Policy, http://www.nsa.gov/selinux/
14. OpenEZX, http://wiki.openezx.org/main_page
15. Setools–policy analysis tools for selinux, http://oss.tresys.com/projects/

setools
16. Skulls, http://www.f-secure.com/v-descs/skulls.shtml
17. TCG Mobile Reference Architecture Specification Version 1.0, https://

www.trustedcomputinggroup.org/specs/mobilephone/
tcg-mobile-reference-architecture-1.0.pdf

18. TCG TPM Main Part 1 Design Principles Specification Version 1.2, https://www.
trustedcomputinggroup.org

19. Arbaugh, W.A., Farber, D.J., Smith, J.M.: A secure and reliable bootstrap architecture. In:
Proc. of IEEE Conference on Security and Privacy, pp. 65–71 (1997)

20. Fraser, T.: LOMAC: MAC you can live with. In: Proc. of the 2001 Usenix Annual Technical
Conference (2001)

21. Grawrock, D.: The Intel Safer Computing Initiative: Building Blocks for Trusted Computing.
Intel Press (2006)

22. Hypponen, M.: State of cell phone malware in 2007 (2007), http://www.usenix.org/
events/sec07/tech/hypponen.pdf

23. Li, N., Mao, Z., Chen, H.: Usable mandatory integrity protections for operating systems. In:
Proc. of IEEE Symposium on Security and Privacy (2007)

24. Loscocco, P., Smalley, S.: Integrating flexible support for security policies into the linux
operating system. In: Proc. of USENIX Annual Technical Conference, June 25-30, pp. 29–
42 (2001)

25. Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B.M., Jaeger, T.: Measuring integrity
on mobile phone systems. In: Proc. of the 13th ACM Symposium on Access Control Models
and Technologies (2008)

26. Sailer, R., Zhang, X., Jaeger, T., van Doorn, L.: Design and implementation of a TCG-based
integrity measurement architecture. In: USENIX Security Symposium (2004)

27. Strasser, M.: Software-based TPM emulator for linux. Semester Thesis, Department of Com-
puter Science, Swiss Federal Institute of Technology Zurich (2004)

28. Thober, M., Pendergrass, J.A., McDonell, C.D.: Improving coherency of runtime integrity
measurement. In: Proc. of the 3rd ACM workshop on Scalable Trusted Computing (2008)

http://code.google.com/android/
http://www.f-secure.com/v-descs/cabir.shtml
http://www.f-secure.com/v-descs/cardblock_a.shtml
http://www.f-secure.com/v-descs/dampig_a.shtml
http://www.f-secure.com/v-descs/doomboot_a.shtml
http://www.f-secure.com/v-descs/fontal_a.shtml
http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_ima.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/ssd_ima.index.html
http://www.limofoundation.org/en/technical-documents.html
http://www.f-secure.com/v-descs/locknut_e.shtml
http://www.f-secure.com/v-descs/mabir.shtml
http://www.mcafee.com/us/research/mobile_security_report_2008.html
http://www.mcafee.com/us/research/mobile_security_report_2008.html
http://hemviken.fi/mtm/
http://www.nsa.gov/selinux/
http://wiki.openezx.org/main_page
http://oss.tresys.com/projects/setools
http://oss.tresys.com/projects/setools
http://www.f-secure.com/v-descs/skulls.shtml
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org
https://www.trustedcomputinggroup.org
http://www.usenix.org/events/sec07/tech/hypponen.pdf
http://www.usenix.org/events/sec07/tech/hypponen.pdf

	Building Efficient Integrity Measurement and Attestation for Mobile Phone Platforms
	Introduction
	Security Goals
	Our Approach
	Secure Boot
	Secure Runtime
	Putting Together: Integrity Measurement and Protection

	Implementation
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

