
A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 58 – 70, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

An ECDLP-Based Threshold Proxy Signature Scheme
Using Self-Certified Public Key System*

Qingshui Xue1, Fengying Li1, 2, Yuan Zhou3, Jiping Zhang3, Zhenfu Cao4,
and Haifeng Qian5

1 School of Techniques, Shanghai Jiao Tong University, 201101, Shanghai, China
xue-qsh@sjtu.edu.cn

2 Dept. of Education Information Technology, East China Normal University, 200062,
Shanghai, China

fyli@sjtu.edu.cn, jpzhang@deit.ecnu.edu.cn
3 National Computer Network Emergency Response Technical Team/Coordination Center of

China, Beijing, 100029, China
zhouyuantdt@163.com

4 Dept. of Computer Science and Engineering, Shanghai Jiao Tong University, 200240,
Shanghai, China

zfcao@cs.sjtu.edu.cn
5 Dept. of Computer Science and Technology, East China Normal University, 200062,

Shanghai, China
hfqian@cs.ecnu.edu.cn

Abstract. In a),(nt threshold proxy signature scheme, one original signer
delegates a group of n proxy signers to sign messages on behalf of the original
signer. When the proxy signature is created, at least t proxy signers cooperate to
generate valid proxy signatures and any less than t proxy signers can’t
cooperatively generate valid proxy signatures. So far, all of proposed threshold
proxy signature schemes are based on public key systems with certificates,
which have some disadvantages such as checking the certificate list when
needing certificates. Most threshold proxy signature schemes use Shamir’s
threshold secret share scheme. Identity-based public key system is not pretty
mature. Self-certified public key systems have attracted more and more
attention because of its advantages. Based on Hsu et al’s self-certified public
key system and Li et al’s proxy signature scheme, one threshold proxy signature
scheme based on ECDLP and self-certified public key system is proposed. As
far as we know, it is the first scheme based on ECDLP and self-certified public
key system. The proposed scheme can provide the security properties of proxy
protection, verifiability, strong identifiability, strong unforgeability, strong
repudiability, distinguishability, known signers and prevention of misuse of
proxy signing power. That is, internal attacks, external attacks, collusion
attacks, equation attacks and public key substitution attacks can be resisted. In
the proxy signature verification phase, the authentication of the original and the
proxy signers’ public keys and the verification of the threshold proxy signature
are executed together. In addition, the computation overhead and
communication cost of the proposed scheme are analyzed as well.

* This paper is supported by the National Natural Science Foundation of China under Grant No.

60673079 and 60873217, and National Basic Research Program of China (973 Program)
under Grant No.2007CB311100.

 An ECDLP-Based Threshold Proxy Signature Scheme 59

1 Introduction

The proxy signature scheme [1], a variation of ordinary digital signature schemes,
enables a proxy signer to sign messages on behalf of the original signer. Proxy
signature schemes are very useful in many applications such as electronics transaction
and mobile agent environment.

Mambo et al. [1] provided three levels of delegation in proxy signature: full
delegation, partial delegation and delegation by warrant. In full delegation, the
original signer gives its private key to the proxy signer. In partial delegation, the
original signer produces a proxy signature key from its private key and gives it to the
proxy signer. The proxy signer uses the proxy key to sign. As far as delegation by
warrant is concerned, warrant is a certificate composed of a message part and a public
signature key. The proxy signer gets the warrant from the original signer and uses the
corresponding private key to sign. Since the conception of the proxy signature was
brought forward, a lot of proxy signature schemes have been proposed [2]-[19].

Recently, many threshold proxy signature schemes were proposed [2] [6]-[14]. In
threshold proxy signature schemes, a group of n proxy signers share the secret proxy
signature key. To produce a valid proxy signature on the message m, individual proxy
signers produce their partial signatures on that message, and then combine them into a
full proxy signature on m. In a),(nt threshold proxy signature scheme, the original

signer authorizes a proxy group with n proxy members. Only the cooperation of t or
more proxy members is allowed to generate proxy signatures. Threshold signatures
are motivated both by the demand which arises in some organizations to have a group
of employees agree on a given message or document before signing, and by the need
to protect signature keys from attacks of internal and external adversaries.

In 1999, Sun proposed a threshold proxy signature scheme with known signers [9].
Then Hwang et al. [7] pointed out that Sun’s scheme was insecure against collusion
attack. By the collusion, any 1−t proxy signers among t proxy signers can
cooperatively obtain the secret key of the remainder one. They also proposed an
improved scheme which can guard against the collusion attack. After that, [6] showed
that Sun’s scheme was also insecure against the conspiracy attack. In the conspiracy
attack, t malicious proxy signers can impersonate some other proxy signers to
generate valid proxy signatures. To resist the attack, they also proposed a scheme.
Hwang et al pointed out [8] that the scheme in [7] was also insecure against the attack
by the cooperation of one malicious proxy signer and the original signer. In 2002, Li
et al. [2] proposed a threshold proxy signature scheme with good properties and
performance.

All of the proposed schemes are based on Shamir’s secret share protocol and the
public key systems using certificates, which have some disadvantages such as
checking the certificate list when needing certificates, and high computation
overheads and communication cost.

So far, there are three kinds of public key systems involving using certificates,
identity-based and self-certified public keys. Currently, identity-based public systems
are not mature, as makes it not used in the real life.

60 Q. Xue et al.

The self-certified public key system was first introduced by Girault in 1991 [20]. In
self-certified public key systems, each user’s public key is produced by the CA
(Certification Authority), while the corresponding private key is only known to the
user. The authenticity of public keys is implicitly verified without the certificate. That
is, the verification of public keys can be performed with the subsequent cryptographic
applications such as key exchange protocols and signature schemes in a single step.
Compared with other two public systems, the system has the following advantages
[18]: ①the storage space and the communication overheads can be reduced since the
certificate is not needed; ②the computation overhead can be reduced as it doesn’t
require public key verification.

In public key cryptosystems, there are several kinds of cryptographic assumptions to
be used. Currently, only the discrete logarithm problem and factorization problem are
widely accepted. In addition, the elliptic curve cryptosystem (ECC) [21] is constructed
by integer points over elliptic curves in finite fields. The advantage of ECC is that it can
reach the same level of security constituted by DSA [22] or RSA [23] and provides
better efficiency than both discrete logarithm and factorization systems.

There are four trust levels for the security of public key systems [12]. Hsu et al
[18] pointed out that the self-certified public key systems might be the ideal choice
for realizing cryptographic applications according to security and efficiency. Further,
Hsu et al [18] proposed a kind of self-certified public key system. In 2004, Hwang et
al [19] proposed a generation of proxy signature based on elliptic curves. In the paper,
based on Hsu et al’s self-certified public key system and Hwang’s et al’s proxy
signature scheme, a threshold proxy signature scheme using self-certified public
system is proposed by us. The main advantage of the proposed scheme is that the
authenticity of the original and the proxy signers’ public keys, and the verification of
the proxy signature can be simultaneously executed in a single step. As far as we
know, this threshold proxy signature scheme is the first one using self-certified public
key system.

In the paper, we will organize the content as follows. In section 2, we will detail
the proposed threshold proxy signature scheme, which is based on the self-certified
public key system [18] and Hwang et al’s proxy signature scheme [17]. The security
of the proposed scheme will be analyzed and discussed in section 3. In section 4, we
will analyze the computational overheads and communication cost of the proposed
scheme. Finally, the conclusion is given.

2 The Proposed Scheme

In the scheme, a system authority (SA) whose tasks are to initialize the system, the
original signer oU , certification authority (CA) whose tasks are to generate the public

key for each user, the proxy group of n proxy signers },...,,{
21 nPPPP UUUG = , one

designated clerk C whose tasks are to collect and verify the individual proxy
signatures generated by the proxy signers, and construct the final threshold proxy
signature, and the signature verifier are needed.

 An ECDLP-Based Threshold Proxy Signature Scheme 61

Throughout the paper, q is a large prime and E is an elliptic curve over a finite
)(qGF . G is a base point on E with order n. h is a secure one-way hash function. The

parameters),,(nGq and the function h are made public. Let iID be the identifier of
the user iU . Assume that CAx and CAy are the private and public keys of the CA,
respectively, where *

qCA Zx ∈ and

Gxy CACA = (1)

wm is a warrant which records the identities of the original signer and the proxy
signers of the proxy group, parameters t and n, message type to sign, the valid
delegation time, etc. ASID (Actual Signers’ ID) denotes the identities of the actual
proxy signers.

The proposed scheme consists of four phases: registration, proxy share generation,
proxy signature issuing without revealing proxy shares and proxy signature
verification. We will detail them as follows.

2.1 Registration

Step 1. Each user iU selects an integer 11 −≤≤ nti at random, computes

GIDthv iii),(= (2)

and sends),(ii IDv to the CA.

Step 2. Upon receiving),(ii IDv from iU , the CA selects 11 −≤≤ nzi , calculates

Gzvy iii += (3)

nxIDyhze CAixiii mod),)((+= (4)

and returns),(ii ey to iU . Here x)(⋅ denotes the x-coordinate of point)(⋅ on E.

Step 3. iU computes

 nIDthex iiii mod),(+= (5)

and confirms its validity by checking that

GxyIDyhy iiixiCA =+),)(((6)

If it holds, iU accepts),(ii yx as his private and public keys. Moreover, the CA

publishes sUi ' public key iy when the registration is complete. Note that the CA

needn’t issue extra certificate associated with iy .

2.2 Proxy Share Generation

Step 1. The original signer chooses randomly an integer nko ≤≤1 , computes

GkK oo = (7)

62 Q. Xue et al.

nKmhxKk xowoxooo mod))(,()(+=σ (8)

and sends),,(oow Km σ to each of proxy signers.

Step 2. After receiving),,(oow Km σ , each of proxy signers confirms the validity of

),,(oow Km σ by

]),)(()[)(,()(ooxoCAxowoxoo yIDyhyKmhKKG ++=σ (9)

If it holds, each of proxy signers regards oσ as its proxy share.

2.3 Proxy Signature Issuing without Revealing Proxy Shares

Without loss of generality, the proposed scheme allows any t or more proxy signers to
represent the proxy group to sign a message m cooperatively on behalf of the original
signer oU .

Let },...,,{ '' 21 PtPPP UUUG = be the actual proxy signers for ntt ≤≤ ' . 'PG as a

group performs the following steps to generate a threshold proxy signature.

Step 1. Each proxy signer 'PP GU
i
∈ chooses an integer *

qi Zk ∈ at random, computes

GkK ii = (10)

and sends it to the other 1'−t proxy signers in 'PG and the designated clerk C.
Step 2. Upon receiving jK);',...,2,1(ijtj ≠= , each 'PP GU

i
∈ computes K and is as

follows:

∑
=

=
'

1

t

j

jKK (11)

))(mod,()'()(1 nASIDmhxtKks
iPoxii ++= −σ (12)

Here, is is an individual proxy signature which is sent to C.
Step 3. For each received is)',...,2,1(ti = , C checks whether the following

congruence holds:

),(]}),)(([

)]),)((())(,()[('{)(1

ASIDmhyIDyhy

yIDyhyKmhKKtKKGs

PiPixPiCA

ooxoCAxowoxoxii

+
++⋅++= −

 (13)

If it holds,),(ii sK is a valid individual proxy signature on m. If all the individual

proxy signatures of m are valid, the clerk C computes

nsS
t

i
i mod

'

1
∑

=

= (14)

Then,),,,,,(ASIDSKmKm ow is the proxy signature on m.

2.4 Proxy Signature Verification

After receiving the proxy signature),,,,,(ASIDSKmKm ow for m, any verifier can

verify the validity of the threshold proxy signature by the following steps.

 An ECDLP-Based Threshold Proxy Signature Scheme 63

Step 1. According to wm and ASID , the verifier can obtain the value of t and n, the
public keys of the original signer and proxy signers from CA and knows the number
't of the actual proxy signers. Then the verifier checks whether tt ≥' , if it holds,

he/she continues the following steps, or else, he/she will regard the threshold proxy
signature),,,,,(ASIDSKmKm ow invalid .

Step 2. The verifier confirms the validity of the proxy signature on m by checking

}]),)(([

)]),)((())(,()){[(,()(
'

1
∑

=

+

++⋅++=
t

i
PiPixPiCA

ooxoCAxowoxox

yIDyhy

yIDyhyKmhKKASIDmhKKSG

 (15)

If it holds, the proxy signature),,,,,(ASIDSKmKm ow is valid.

3 Correctness of the Proposed Scheme

In the section, we shall prove that the proposed scheme can work correctly by the
following theorems.

Theorem 1. In the registration phase, the user iU can verify the validity of its private

and public key pair),(ii yx by Equation (6).

Proof. From Equations (4) and (5), we have nIDthxIDyhzx iiCAixiii mod),(),)((++= .

By raising both sides of the above equation by multiplying them by the base point G,
we have

GIDthGxIDyhGzGx iiCAixiii),(),)((++= .

From Equations (2) and (3), we have GIDthyGz iiii),(−= . Then, we have

GxIDyhyGIDthGxIDyhGIDthyGx CAixiiiiCAixiiiii),)((),(),)((),(+=++−=

From Equation (1), the above equation can be rewritten as

 GxyIDyhy iiixiCA =+),)((

Theorem 2. If the proxy share is constructed correctly, it will pass the verification of
Equation (9).

Proof. By raising both sides of Equation (8) by multiplying them by the base point G,
we have

GKmhxGKkG xowoxooo))(,()(+=σ

According to Equations (6) and (7), the above equation can be rewritten as

]),)(()[)(,()(ooxoCAxowoxoo yIDyhyKmhKKG ++=σ

Theorem 3. In the proxy signature generation phase, the clerk C can verify any
individual proxy signature is sent from

iPU by Equation (13).

64 Q. Xue et al.

Proof. By raising both sides of Equation (12) by multiplying them by the base point
G, we have

),()'()(1 ASIDmhGxGtGKkGs
iPoxii ++= −σ

According to Equations (6), (9) and (10), the above equation can be rewritten as

),(]}),)(([

)]),)((())(,()[('{)(1

ASIDmhyIDyhy

yIDyhyKmhKKtKKGs

PiPixPiCA

ooxoCAxowoxoxii

+
++⋅++= −

Theorem 4. If the threshold proxy signature is constructed correctly, it will pass the
verification of Equation (15).

Proof. From Equations (12) and (14), we have

))(mod,(),()(

))](mod,()'()([

'

1

'

1

'

1

1

nASIDmhxASIDmhKk

nASIDmhxtKkS

t

i
Po

t

i
xi

t

i
Poxi

i

i

∑∑

∑

==

=

−

++=

++=

σ

σ

By raising both sides of the above equation by multiplying them by the base point G,
we have

),(),()(
'

1

'

1

ASIDmhGxASIDmGhKGkSG
t

i
Po

t

i
xi i∑∑

==

++= σ

According to Equations (6), (9), (10) and (11), the above equation can be rewritten as

}]),)(([

)]),)((())(,()){[(,()(
'

1
∑

=

+

++⋅++=
t

i
PiPixPiCA

ooxoCAxowoxox

yIDyhy

yIDyhyKmhKKASIDmhKKSG

4 Security Analysis

In the section, we will propose several theorems about the security below and prove
that they are right.

Theorem 5. The user can’t forge his/her private key without interaction with the CA
and the CA can forge the user’s public key without the interaction with the user
neither.

Proof. From Equation (4), we know that although the user can select a random integer

*
qi Zz ∈ and compute Gzvy iii += , because having no the knowledge of the CA’s

private key CAx , he/she can’t get a valid value of ie to construct his self-certified
private key. Obviously, the user can forge a valid private key with the probability of

n/1 . That’s, the user’s private key has to be set up by the interaction with the CA.

 An ECDLP-Based Threshold Proxy Signature Scheme 65

Similarly, if the CA wants to forge the user’s new public key which satisfies Equation
(6), he/she has to solve the difficult discrete logarithm problem and the secure hash
function, as we know it is impossible. Thus the CA can’t forge a new public key of
the user. To generate the user’s public key, the CA has to interact with the user.

Theorem 6. The user can’t forge his public key by its private key without the
interaction with the CA and the CA can’t get the user’s private key from the
interaction with the user either.

Proof. If the user wants to forge his/her new public key which satisfies Equation (6),
he/she has to solve the difficult discrete logarithm problem and secure hash functions,
as we know it is impossible. Thus the user can’t forge a new public key of the user
without the interaction with the CA. From Equation (5), we know that because the

CA has no the knowledge of *
qi Zt ∈ selected by the user, the CA can’t obtain the

user’s private key ix . In addition, from the verification equation (6), the CA is unable
to get the user’s private key ix since he/she is faced with the difficulty of solving
discrete logarithms and secure hash functions. Therefore, we can draw the above
conclusion.

Theorem 7. Any tt <'' proxy signers can’t generate a valid threshold proxy signature
on a new message 'm .

Proof. From Equations (12) and (14), we have

))(mod,(),()(
'

1

'

1

nASIDmhxASIDmhKkS
t

i
Po

t

i
xi i∑∑

==

++= σ (16)

Because any tt <'' proxy signers have no the knowledge of ik or ∑ ik , and
jPx or

∑ jPx of other ''tt − proxy signers, any tt <'' proxy signers are unable to cooperate

to generate the valid proxy signature on a new message 'm . Although any tt <''
proxy signers can generate),,,',,(ASIDSKmKm ow and it can pass the verification

Equation (15), the number of actual proxy signers is less than t, as makes it can’t pass
the verification step 1. Thus the forged proxy signature),,,',,(ASIDSKmKm ow by

tt <'' proxy signers is invalid.
From the Equation (16), any tt <'' proxy signers are unable to get the values of ik

or ∑ ik , and
jPx or ∑ jPx of other ''tt − proxy signers, if the message m is

replaced with 'm , any tt <'' proxy signers can’t get the new value of 'S . Also, from
the verification Equation (15), when m is replaced with 'm , given fixed some
variables of the set },,,,{ ASIDSKKm ow , the values of the other variables in the set

},,,,{ ASIDSKKm ow will be unable to be gotten because of the difficult discrete

logarithm and secure hash function. That is, from a known proxy signature
),,,,,(ASIDSKmKm ow , any tt <'' proxy signers can’t generate valid threshold

proxy signature on a new message 'm . So the theorem is proved to be true.

66 Q. Xue et al.

Theorem 8. Any tt <'' proxy signers can’t forge another valid threshold proxy
signature on the original message m from the proxy signature

),,,,,(ASIDSKmKm ow .

Proof. On one hand, from Equation (16), any tt <'' proxy signers can’t get the

knowledge of ik or ∑ ik , and
jPx or ∑ jPx of other ''tt − proxy signers. Thus, the

values of some variables in set },,{ ASIDSK can’t be changed by changing the values

of the other variables in set },,{ ASIDSK . Here note that as far as any tt <'' proxy

signers are concerned, the values of wm and OK can’t be changed, as can be
guaranteed by Equation (9). On the other hand, from the verification Equation (15),
by fixing some variables of the set },,,,{ ASIDSKKm ow , the values of the other

variables in the set },,,,{ ASIDSKKm ow will not be able to be gotten because of the

difficult discrete logarithm and secure hash functions. Therefore, the theorem is
proved true.

Theorem 9. The original signer and any tt <'' proxy signers can’t cooperatively
generate a valid threshold proxy signature on a new message 'm .

Proof. The case is similar with Theorem 7. The difference is that the original signer is
one of the forgers. First, if the original signer does not change the values of wm and

OK , the difficulty of forging a valid proxy signature on 'm is equivalent to that of

Theorem 7 since the original signer also has no the knowledge of
jPx or ∑ jPx of

other ''tt − proxy signers. Second, if the original signer changes the values of wm

and oK , correspondingly, the proxy share oσ is also changed, however, the values of

t and n should not be changed, as is obvious in the case. Thus the condition is similar
with that of the first case. Therefore, the original signer and any tt <'' proxy signers
can’t cooperatively generate a valid threshold proxy signature on a new message 'm .

Theorem 10. The original signer and any tt <'' proxy signers can’t cooperatively
forge another valid threshold proxy signature on the original message m from the
proxy signature),,,,,(ASIDSKmKm ow .

Proof. The theorem is similar with Theorem 8. The first condition is similar with that
of the proof of Theorem 8. Here the kind of proof is omitted. Let us see the second
condition. From the verification Equation (15), by fixing some variables of the set

},,,,{ ASIDSKKm ow , the values of the other variables in the set },,,,{ ASIDSKKm ow

will not be able to be obtained because of the difficult discrete logarithm and secure
hash function, although the original signer is easy to change the values of wm and

oK . Thus the theorem holds.

Theorem 11. Any third party, the original signer and any tt <'' proxy signers can’t
cooperatively generate a valid threshold proxy signature on a new message 'm .

 An ECDLP-Based Threshold Proxy Signature Scheme 67

Proof. The theorem is the same as Theorem 9 since the third party knows less
information than the original signer. The proof is the same as that of the Theorem 9.

Theorem 12. Any third party, the original signer and any tt <'' proxy signers can’t
cooperatively forge another valid threshold proxy signature on the original message
m from the proxy signature),,,,,(ASIDSKmKm ow .

Proof. The theorem is the same as Theorem 10 since the third party knows less
information than the original signer. The proof is the same as that of the Theorem 10.

Theorem 13. Any can be convinced of the original signer’s agreement on the signed
message from the proxy signature),,,,,(ASIDSKmKm ow .

Proof. From the proxy signature verification equation (15), the warrant wm , the
identities and public keys of the original and actual proxy signers are used. In this
case, any can be convinced of the original signer’s agreement on the signed message
from the proxy signature),,,,,(ASIDSKmKm ow .

Theorem 14. Any can identify the actual proxy signers from the proxy signature
),,,,,(ASIDSKmKm ow .

Proof. From the proxy signature verification Equation (15), it can be seen that all
actual proxy signers’ identities and public keys are used. Therefore, any can identify
the actual proxy signers from the proxy signature),,,,,(ASIDSKmKm ow .

Theorem 15. Any can distinguish proxy signatures from normal signatures.

Proof. In the proxy signature verification Equation (15), not only the original signer’s
public key, but also the actual proxy signers’ public keys are used. In normal
signature verification equation, only signers’ public keys are used. So, any can
distinguish proxy signatures from normal signatures.

Theorem 16. The proxy signers can’t repudiate having produced the proxy signature
which has ever been signed to any one.

Proof. As seen in proxy signature verification Equation (15), the actual proxy signers’
identities and public keys are used. Thus he can’t deny having produced the proxy
signature which has ever been signed to any one.

From the above several theorems, we know that the proposed scheme can fulfill the
securities of verifiability, strong identifiability, distinguishability, strong unforgeability,
strong nonrepudiation, proxy protection and prevention of misuse of proxy signing
power. In other words, the proposed scheme can resist equation attacks, collaboration
attacks, public key substitution attacks, internal attacks and external attacks. In
addition, the certificates of users are not needed in the proposed scheme. If users want
to change his private key or the CA wants to change users’ public key, both have to
interact to finish it, or else neither of the two parties can succeed. The verifier only
needs to obtain the public keys of the original signer and the proxy signers and
needn’t verify their validity as the verification of their public keys and the proxy

68 Q. Xue et al.

signature is executed together. Thus, the self-certification of public keys can be
realized.

5 Performance Evaluation

To facilitate the performance evaluation, we denote the following notations:
hT : The time for performing a one-way hash function h ; mulT : The time for

performing a modular multiplication computation; addT : The time for performing a

modular addition computation; invT : The time for performing a modular inverse
computation; paT : The time for performing a point addition computation; smT : The

time for performing a scalar multiplication computation; || x : The bit-length of an

integer x or a point x. The computational overhead and communication cost of the
proposed scheme are stated in Table 1 and 2, respectively.

Table 1. Computational overhead of the proposed scheme

Phases Computational overheads
Registration User: haddsmpa TTTT 23 +++

The CA: haddmulsmpa TTTTT ++++

Proxy share generation The original signer: haddmulsm TTTT +++ 2
Each proxy signer: haddmulsmpa TTTTT 22 ++++

Proxy signature issuing Each proxy signer:

hinvaddmulsmpa TTTTTTt +++++− 23)1'(

The clerk: hinvaddsmpa TtTtTtTtTt '4')1'('7'5 ++−++

Proxy signature verification hsmpa TtTtTt)2'()3'()3'(+++++

Table 2. Communication cost of the proposed scheme

Phases Communication cost
Registration ||||||2 iIDnG ++

Proxy share generation |||||| wmnG ++

Proxy signature issuing ||'||' ntGt +

Proxy signature verification ||||||||||2 ASIDmmnG w ++++

Total a ||||||2||)2'(||)3'(ASIDmmntGt w ++++++
a The total communication cost excludes the registration phase.

6 Conclusions

In the paper, based on Hsu et al’s self-certified public key system and Hwang et al’s
proxy signature scheme, one ECDLP-based threshold proxy signature scheme with

 An ECDLP-Based Threshold Proxy Signature Scheme 69

self-certified public key system and non Shamir’s secret share protocol has been
proposed. As far as we know, it is the first scheme based on ECDLP using self-certified
public key system. The proposed scheme can provide needed security properties. In the
proxy signature verification phase, the authentication of the original and the proxy
signers’ public keys and the verification of the threshold proxy signature are executed
together. In addition, the computation overhead and communication cost of the
proposed scheme are analyzed as well.

References

1. Mambo, M., Usuda, K., Okamoto, E.: Proxy Signature for Delegating Signing Operation.
In: Proceedings of the 3th ACM Conference on Computer and Communications Security,
pp. 48–57. ACM Press, New York (1996)

2. Li, J.G., Cao, Z.F.: Improvement of a Threshold Proxy Signature Scheme. J. of Computer
Research and Development 39(11), 515–518 (2002)

3. Li, J.G., Cao, Z.F., Zhang, Y.C.: Improvement of M-U-O and K-P-W Proxy Signature
Schemes. J. of Harbin Institute of Technology (New Series) 9(2), 145–148 (2002)

4. Li, J.G., Cao, Z.F., Zhang, Y.C.: Nonrepudiable Proxy Multi-signature Scheme. J. of
Computer Science and Technology 18(3), 399–402 (2003)

5. Li, J.G., Cao, Z.F., Zhang, Y.C., Li, J.Z.: Cryptographic Analysis and Modification of
Proxy Multi-signature Scheme. High Technology Letters 13(4), 1–5 (2003)

6. Hsu, C.L., Wu, T.S., Wu, T.C.: New Nonrepudiable Threshold Proxy Signature Scheme
with Known Signers. The J. of Systems and Software 58, 119–124 (2001)

7. Hwang, M.S., Lin, I.C., Lu Eric, J.L.: A Secure Nonrepudiable Threshold Proxy Signature
Scheme with Known Signers. International J. of Informatica 11(2), 1–8 (2000)

8. Hwang, S.J., Chen, C.C.: Cryptanalysis of Nonrepudiable Threshold Proxy Signature
Scheme with Known Signers. Informatica 14(2), 205–212 (2003)

9. Sun, H.M.: An Efficient Nonrepudiable Threshold Proxy Signature Scheme with Known
Signers. Computer Communications 22(8), 717–722 (1999)

10. Sun, H.M., Lee, N.Y., Hwang, T.: Threshold Proxy Signature. In: IEEE Proceedings on
Ccomputers & Digital Techniques, pp. 259–263. IEEE Press, New York (1999)

11. Zhang, K.: Threshold Proxy Signature Schemes. In: Information Security Workshop, pp.
191–197 (1997)

12. Hsu, C.L., Wu, T.S., Wu, T.C.: Improvement of Threshold Proxy Signature Scheme.
Applied Mathematics and Computation 136, 315–321 (2003)

13. Tsai, C.S., Tzeng, S.F., Hwang, M.S.: Improved Nonrepudiable Threshold Proxy Signature
Scheme with Known Signers. Informatica 14(3), 393–402 (2003)

14. Hwang, S.J., Shi, C.H.: A Simple Multi-Proxy Signature Scheme. In: Proceeding of the
Tenth National Conference on Information Security, Taiwan, pp. 134–138 (2000)

15. Denning, D.E.R.: Cryptography and Data Security. Addison-Wesley, Reading (1983)
16. Pedersen, T.: Distributed Provers with Applications to Undeniable Signatures, p. 547.

Springer, New York (1991)
17. Li, L.H., Tzeng, S.F., Hwang, M.S.: Generalization of proxy signature-based on discrete

logarithms. Computers & Security 22(3), 245–255 (2003)
18. Hsu, C.L., Wu, T.S.: Efficient proxy signature schemes using self-certified public keys.

Applied Mathematics and Computation. In: Press, Corrected Proof, Available online July 9
(2003)

70 Q. Xue et al.

19. Hwang, M.S., Tzeng, S.F., Tsai, C.S.: Generalization of proxy signature based on elliptic
curves. Computer Standards & Interfaces 26(2), 73–84 (2004)

20. Girault, M.: Self-certified public keys. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS,
vol. 547, pp. 490–497. Springer, Heidelberg (1991)

21. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO
1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

22. National Institute of Standards and Technology (NIST), The digital signature standard
proposed by NIST. Communication of the ACM 35(7), 36–40 (1992)

23. Chang, C.C., Hwang, M.S.: Parallel computation of the generating keys for RSA
cryptosystems. IEE Electronics Letters 32(15), 1365–1366 (1996)

	An ECDLP-Based Threshold Proxy Signature Scheme Using Self-Certified Public Key System
	Introduction
	The Proposed Scheme
	Registration
	Proxy Share Generation
	Proxy Signature Issuing without Revealing Proxy Shares
	Proxy Signature Verification

	Correctness of the Proposed Scheme
	Security Analysis
	Performance Evaluation
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

