
LoPSiL: A Location-Based Policy-Specification

Language

Jay Ligatti, Billy Rickey�, and Nalin Saigal

Department of Computer Science and Engineering
University of South Florida

{ligatti,brickey,nsaigal}@cse.usf.edu

Abstract. This paper describes the design of LoPSiL, a language for
specifying location-dependent security and privacy policies. Policy-
specification languages like LoPSiL are domain-specific programming
languages intended to simplify the tasks of specifying and enforcing sound
security policies on untrusted (i.e., potentially insecure) software. As far
as we are aware, LoPSiL is the first imperative policy-specification lan-
guage to provide abstractions specifically tailored to location-dependent
policies for mobile-device applications. We have implemented a proof-of-
concept compiler that inputs a LoPSiL policy P and a mobile-device ap-
plication program A and outputs a new application program A′ equivalent
to A, except that A′ contains inlined enforcement code that ensures that
A′ satisfies P at runtime. We report our experiences using this compiler
to design and implement several policies for mobile-device applications.

Keywords: Policy-specification languages, location-dependent policies,
mobile devices, security and privacy.

1 Introduction

Policy-specification languages are domain-specific programming languages in-
tended to simplify the tasks of specifying and enforcing sound security policies
on untrusted (i.e., potentially insecure) software. There are two common moti-
vations for using policy-specification languages:

1. Users often wish to download and execute third-party software applications
but do not (and should not) trust that those applications will behave securely
or respect their privacy. Therefore, users (or other parties working on behalf
of the users, such as vendors or system administrators) may utilize policy-
specification languages to create and enforce customized, flexible constraints
(i.e., policies) on the untrusted software. For example, a policy-specification
language may be used to specify and enforce that applications downloaded
from third-party providers do not delete particular files or read particular
regions of memory.

� Rickey participated on this project as an NSF-REU (National Science Foundation
Research Experience for Undergraduates) student at USF in the summer of 2007.

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 265–277, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

266 J. Ligatti, B. Rickey, and N. Saigal

2. Application developers often wish to enforce security policies on their own
code. Typically, application developers implement security and privacy con-
siderations by scattering security checks throughout their code. Policy-
specification languages and compilers enable those developers to refactor
their code by moving all the scattered security checks from the application
implementation and into a separate, isolated policy module (written in a
language designed to make it easy to specify the desired policy). Separat-
ing the security policy from the core application code provides application
developers all the standard software-engineering benefits one would expect
from modularization: it makes the centralized policy easier to create, locate,
analyze, and maintain.

A rich variety of expressive (i.e., imperative and Turing-complete) policy-
specification languages and systems has been implemented [16,10,9,11,12,21,5,13].
All of these languages enable users to centrally specify security and privacy poli-
cies to be enforced on untrusted software at runtime. All of the cited languages
have also been implemented as compilers that convert untrusted into trustworthy
applications by inputting a policy P and an application programA and outputting
a new application program A′ equivalent to A, except that A′ contains inlined en-
forcement code that ensures that A′ satisfies P at runtime.

However, as far as we are aware, no imperative policy-specification languages
have yet targeted location-dependent policies for securing applications on mo-
bile devices (e.g., roaming laptops, cell phones, robots, PDAs, etc)—though re-
searchers have previously developed declarative (i.e., Turing-incomplete) policy-
specification languages limited to location-based access-control policies [7,2,1].

The lack of expressive policy-specification languages for mobile-device appli-
cations presents a problem—and an opportunity—because:

– The two motivations for policy-specification languages given above are be-
coming more relevant for mobile-device applications as mobile devices be-
come more powerful, open, and flexible and allow users to download and
execute third-party software.

– Security and privacy policies for applications on mobile devices often have to
reason about different machine states—locations in particular—than policies
for applications on immobile devices.

Hence, it is important to consider how to create a convenient policy-specification
language specifically for mobile-device applications. This paper proposes such a
language, called LoPSiL, whose primary novelty is to provide several abstrac-
tions for conveniently accessing and manipulating location information in policy
specifications.

Roadmap. We proceed as follows. Section 2 describes the design of LoPSiL, its
core constructs for simplifying the specification of location-dependent policies in
Section 2.1 and several examples highlighting its ease of use in Section 2.2. Sec-
tion 3 discusses our proof-of-concept implementation of a LoPSiL compiler and
experiences we have had designing and implementing LoPSiL policies. Section 4
concludes and describes possible future work.

LoPSiL: A Location-Based Policy-Specification Language 267

2 LoPSiL

Due to the popularity of Java, particularly Java ME, as an application program-
ming language for mobile devices [15], we have chosen to design and implement
LoPSiL constructs in Java source code. Also, to make it easy for security engi-
neers to learn and use LoPSiL, and to simplify the implementation of a LoPSiL
compiler, we have packaged LoPSiL as a Java library, to which LoPSiL policies
may refer (e.g., a LoPSiL policy may refer to the Location class in the LoPSiL
library). Although we treat LoPSiL in a Java context in this paper, we have built
LoPSiL on six core abstractions that are application-language independent, so
we expect LoPSiL to be portable to other languages and platforms.

2.1 Core Linguistic Constructs

LoPSiL is built on six core abstractions; we describe each in turn.

Locations. In LoPSiL, Locations are (possibly abstract) places. They may
refer to rooms, chairs, floors, buildings, campuses, GPS coordinates, regions of a
network topology, etc. All Locations have an identity (e.g., a room or building
name, or coordinates in GPS). LoPSiL provides many built-in utility methods
for manipulating GPS locations (e.g., to calculate distances between them), as
the examples in Section 2.2 demonstrate. However, LoPSiL users are always
free to implement custom methods for manipulating locations (e.g., to define a
containment relation over locations, useful for testing whether a room is in a
building, a building is on a campus, etc).

LocationDevices. A LocationDevice is LoPSiL’s interface to real-time lo-
cation information. Concrete LocationDevices must implement two abstract
methods. The first simply informs policies of the device’s current location, which
could be determined using GPS or by inputting location information from a user,
a file, another (networked) host, a TLTA device [22], etc. The second abstract
method LocationDevices must implement informs LoPSiL policies of the de-
vice’s granularity, that is, with what precision is the device’s location information
accurate (e.g., accurate within 1 meter, 1 room, 1 road, 1 building, 1 kilometer,
etc). LoPSiL policies can require devices to provide location information with
particular granularity thresholds.

Our LoPSiL implementation includes concrete implementations of two
LocationDevices, but users are always free to implement others. The first
LocationDevice provided with LoPSiL represents and connects to a Garmin
GPS device using Java’s communication API and the GPSLib4J library [14];
the second LocationDevice represents and connects to a simple GUI with which
users can manually select their current location from a list of known locations.

PolicyAssumptions. LoPSiL policies may make two important assumptions
about LocationDevices. First, as mentioned above, a policy may require lo-
cation information with a particular granularity (e.g., accurate within 15m).
Second, a policy may require that location updates arrive with a particular

268 J. Ligatti, B. Rickey, and N. Saigal

frequency (e.g., a new update must arrive within 10s of the previous update).
LoPSiL policies encapsulate these assumptions, along with the LocationDevices
whose location data they trust, in a PolicyAssumptions object. A LoPSiL pol-
icy gets notified automatically whenever a LocationDevice violates the policy’s
granularity or frequency-of-updates assumptions.

Actions. An Action encapsulates information about a security-relevant method
(i.e., any Java application or library method of relevance to a LoPSiL policy).
LoPSiL policies can interpose before and after any security-relevant action ex-
ecutes; the policy specification then determines whether that action is allowed
to execute. Policies may analyze Action objects to determine which security-
relevant method the action represents, that method’s signature, run-time argu-
ments, and calling object (if one exists), whether the method is about to execute
or has just finished executing, and the return value of the action if it has finished
executing.

Reactions. LoPSiL policies convey decisions about whether to allow security-
relevant Actions to execute by returning, for every Action object, a Reaction
object. An OK reaction indicates that the action is safe to execute; an exception
reaction indicates that the action is unsafe, so an exception should be raised
(which the application may catch) instead of allowing the method to execute;
a replace reaction indicates that the action is unsafe, so a precomputed return
value should be returned to the application in place of executing the unsafe
action; and a halt reaction indicates that the action is unsafe, so the application
program should be halted.

Policies. LoPSiL policies incorporate all of the previously described language
constructs. There are five parts to a LoPSiL Policy object:

1. A policy may declare PolicyAssumptions upon which it relies.
2. A policy may define a handleGranularityViolationmethod, which will be

invoked whenever all LocationDevices upon which the policy relies violate
the policy’s location-granularity assumption.

3. A policy may define a handleFrequencyViolation method, which will be
invoked whenever all LocationDevices upon which the policy relies violate
the policy’s frequency-of-update assumption. LoPSiL’s PolicyAssumptions
class implements the multithreading needed to test for frequency-of-update
violations.

4. A policy may define an onLocationUpdate method, which will be exe-
cuted any time any LocationDevice associated with the policy updates its
Location information. This method enables a policy to update its security
state and take other actions as location updates occur in real time.

5. A policy must define a reactmethod to indicate how to react to any security-
relevant method. LoPSiL requires every policy to contain a react method,
rather than providing a default allow-all reactmethod; hence, policy authors
wanting to allow all security-relevant methods to execute unconditionally
must explicitly specify their policy to do so.

LoPSiL: A Location-Based Policy-Specification Language 269

public class AllowAll extends Policy {

public LocationDevice[] devices = {new LopsilGPS(LopsilGPS.GARMIN)};

public LocationGranularityAssumption lga =

new LocationGranularityAssumption(15, Units.METERS);

public FrequencyOfUpdatesAssumption foua =

new FrequencyOfUpdatesAssumption(10, Units.SECONDS);

public PolicyAssumptions pa =

new PolicyAssumptions(this, devices, lga, foua);

public void handleGranularityViolation() {System.exit(1);}

public void handleFrequencyViolation() {System.exit(1);}

public synchronized void onLocationUpdate() {

System.out.println("new location = " + devices[0].getLocation());

}

public synchronized Reaction react(Action a) {

return new Reaction("ok");

}

}

Fig. 1. Simple LoPSiL policy that prints location information as it is updated and
allows all security-relevant methods to execute as long as its location-granularity and
frequency-of-update assumptions are not violated

Figure 1 contains a simple LoPSiL policy with all five of these components.
Existing policy-specification languages, such as Naccio [12], PSLang [11], and

Polymer [5,4], provide constructs similar to our Actions, Reactions, and Policy
modules with react-style methods. LoPSiL’s novelty is its addition of optional
location-related policy components: Locations, LocationDevices, granularity
and frequency-of-update assumptions, and methods to handle granularity and
frequency-of-update violations and to take action when location state gets up-
dated (with the onLocationUpdate method).

2.2 Example Policies

We next survey four location-dependent runtime policies and show how to specify
them in LoPSiL. The first is an example of the sort of policy a user might
wish to enforce on untrusted third-party software, while the other three are
examples of policies that application developers might wish to enforce on their
own software. We have enforced and tested versions of all these example policies
on Java applications executing on a roaming laptop.

Access-Control Policy. 1 Our first example is a privacy-based access-control
policy that constrains an application’s ability to read location data at particular
times. The policy, shown in Figure 2, requires that monitored applications can
only access the device’s GPS data from 08:00 (8am) to 18:00 (6pm) on workdays.

1 We thank Sean Barbeau at USF’s Center for Urban Transportation Research for
suggesting this policy.

270 J. Ligatti, B. Rickey, and N. Saigal

public class NoGpsOutsideWorkTime extends Policy {

public synchronized Reaction react(Action a) {

if(ActionPatterns.matchesGpsRead(a) && !TimeUtils.isWorkTime())

//return a null location to the application

return new Reaction("replace", null);

else return new Reaction("ok");

}

}

Fig. 2. LoPSiL policy preventing an application from reading GPS data outside of
work hours

public class ShowNavigation extends Policy {

public LocationDevice[] devices = {new LopsilGPS(LopsilGPS.GARMIN)};

public PolicyAssumptions pa =

...

public synchronized void onLocationUpdate() {

if(devices[0].getLocation().

distance(getExpectedCurrentLocation(), Units.METERS)>10)

AppGUI.displayNavigationalAid();

}

}

Fig. 3. Abbreviated LoPSiL policy requiring that navigational aid appear when the
device’s current location deviates from its expected path

A user might want to enforce such a policy to prevent an employer-provided
application from learning the device’s location when the employee is not at work
(e.g., so the employer does not know where the employee shops, or how much
time the employee spends in certain places during the employee’s off hours). In
fact, providing for the enforcement of such a policy might be the only way the
employer could convince the employee to run a work-related application on the
employee’s mobile device.

Deviation-from-pathPolicy. Our second example policy requires navigational
aid to appear when the device’s location deviates more than 10m off its expected
path. The policy code, shown in Figure 3, invokes a method called
getExpectedCurrentLocation to determine where the policy currently expects
the device to be. Method getExpectedCurrentLocation could return a location
based on the route being displayed to the user (as in dashboard-mounted GPS sys-
tems), on traffic conditions, on the path the user normally travels in this area, etc.

Safe-region Policy.2 Another interesting sort of policy expressible in LoPSiL is
shown in Figure 4. This policy, intended to monitor software on a robot, requires

2 We thank Robin Murphy at Texas A&M University for suggesting this policy.

LoPSiL: A Location-Based Policy-Specification Language 271

public class SafeRegion extends Policy {

private Location[] safeRegionEndpoints;

private boolean inRegion;

public SafeRegion() {

safeRegionEndpoints = getSafeRegionLocs();

inRegion=devices[0].getLocation().inRegion(safeRegionEndpoints);

}

public PolicyAssumptions pa = ...

public synchronized void onLocationUpdate() {

inRegion=devices[0].getLocation().inRegion(safeRegionEndpoints);

}

public synchronized Reaction react(Action a) {

if(!inRegion && ActionPatterns.matchesPlainWrite(a)) {

String encMsg = encrypt(a.getArgs()[0].toString());

try { //to replace the unencrypted send with an encrypted send

((BufferedWriter)(a.getCaller())).write(encMsg);

} catch(IOException e) {...}

return new Reaction("replace", null);

} else return new Reaction("ok");

}

}

Fig. 4. Abbreviated LoPSiL policy requiring robot-control software to encrypt outgoing
messages when the robot is outside a secure-region perimeter

the robot to encrypt all outgoing communications when the robot’s location is
outside a secure-region perimeter.

Social-networking Policy. Our final example is a social-networking policy in
which the user’s friends get invited to rendezvous when the user travels to a new
area. Specifically, the policy requires that if:

– the device has traveled more than 100km over the past 2 hours (i.e., average
speed has been more than 50km/hr),

– the device has traveled less than 2km over the past 20 minutes (implying
that the user’s travels have at least temporarily ended), and

– the policy enforcer has not sent invitations to friends in the past hour,

then the policy enforcer must:

– broadcast a “Where are you?” message to all friends in the user’s address
book,

– collect responses from the friends, and
– send invitations to meet to those friends now within 20km of the user.

An abbreviated LoPSiL policy specifying such constraints appears in Figure 5.

272 J. Ligatti, B. Rickey, and N. Saigal

public class InviteFriendsInNewArea extends Policy {

//maintain a buffer of two hours’ worth of location data

private LocBuffer longBuf = new LocBuffer(2, Units.HOURS);

//maintain another buffer of twenty minutes’ worth of location data

private LocBuffer shortBuf = new LocBuffer(20, Units.MINUTES);

private Time timeLastInvited = Time.NEVER;

public PolicyAssumptions pa = ...

public synchronized void onLocationUpdate() {

Location currentLoc = devices[0].getLocation();

longBuf.add(currentLoc);

shortBuf.add(currentLoc);

if(longBuf.earliest().distance(currentLoc, Units.KILOMETERS)>100

&& shortBuf.earliest().distance(currentLoc, Units.KILOMETERS)<2

&& timeLastInvited.elapsed(Time.getCurrentTime(),Units.HOURS)>1)

{

Location[] friendLocs = getFriendLocations();

inviteLocalFriends(friendLocs,currentLoc,20,Units.KILOMETERS);

timeLastInvited = Time.getCurrentTime();

}

}

}

Fig. 5. A location-dependent social-networking policy specified in LoPSiL

3 A LoPSiL Compiler

This section describes our implementation of LoPSiL and briefly reports on
our experiences designing and implementing LoPSiL policies. The implemen-
tations of LoPSiL’s basic Location, LocationDevice, Action, Reaction, and
Policy modules occupy 1588 lines of Java code, while the implementations of
our GarminGpsDevice and LopsilWindowDevice respectively occupy 847 and
107 lines of Java code. Our implementation is available online [20].

3.1 Compiler Architecture

A LoPSiL compiler needs to input a LoPSiL policy and an untrusted application,
build a trustworthy application by inserting code into the untrusted application
to enforce the input policy, and then output the trustworthy application. The
standard technique for implementing such a compiler involves inlining policy
code into the untrusted application. Several tools exist for inlining code into
an application; a convenient tool for our purposes is an AspectJ compiler [3].
AspectJ compilers inline calls to advice at control-flow points specified by point
cuts [17]. In the domain of runtime policy enforcement, advice refers to policy-
enforcement code and point cuts to the set of security-relevant methods. We wish
to interpose and allow policy-enforcement code to execute before and after any
security-relevant method invoked by the untrusted application.

LoPSiL: A Location-Based Policy-Specification Language 273

void java.io.PrintStream.println(..)

* javax.swing.JOptionPane.*(..)

java.util.Date.new()

Fig. 6. Example .srm file indicating that the accompanying LoPSiL policy consid-
ers security relevant all void-returning java.io.PrintStream.println methods, all
methods in the javax.swing.JOptionPane class, and the parameterless constructor
for java.util.Dates

LoPSiL users convert an untrusted application into a trustworthy application
as follows.

1. The user creates a specification of the desired policy in a .lopsil file.
2. The user also creates a listing of all the methods the desired LoPSiL pol-

icy considers security relevant. This listing indicates to the compiler which
application and library methods it needs to insert policy-enforcement code
around. Policies get to interpose and decide whether (and how) all security-
relevant methods may execute. The listing of security-relevant methods goes
into a .srm file, one method signature per line. Figure 6 contains an example
and illustrates how wildcards can be used in .srm files.

3. The LoPSiL compiler inputs the policy (.lopsil) and security-relevant-
methods (.srm) into a lopsil2aj converter, which converts LoPSiL code
into AspectJ code. The converter, implemented in 201 lines of Java, begins
by converting the LoPSiL policy to Java source (in a .java file) by simply
inserting three lines of code to import LoPSiL-library classes into the policy.
The converter then creates an AspectJ-code file (.aj) that defines two things.
First, the AspectJ code defines a point cut based on the declared security-
relevant methods. Second, the AspectJ code defines advice to be executed
whenever the point cut gets triggered (i.e., before and after any security-
relevant method executes). This advice builds an Action object to represent
the invoked security-relevant method, passes that Action to the LoPSiL
policy (now in a .java file), obtains the policy’s Reaction to the Action,
and guides execution appropriately based on that Reaction.

4. Finally, the LoPSiL compiler inputs the untrusted mobile-device application
(comprised of a set of .class files) and the .java and .aj files created in
Step 3 into a standard AspectJ compiler [3]. The AspectJ compiler inlines
the advice into the application before and after all security-relevant methods,
thus producing an application that is secure with respect to the original
LoPSiL policy.

Figure 7 presents an overview of this architecture.
Because LoPSiL uses AspectJ as its application rewriter, LoPSiL inherits

AspectJ’s limitations. Most importantly, the AspectJ compiler cannot rewrite
(i.e., inline code into) methods in standard Java libraries; it can only rewrite
application files. Therefore, our LoPSiL compiler can only ensure that policy-
enforcement code executes before and after security-relevant methods invoked

274 J. Ligatti, B. Rickey, and N. Saigal

Fig. 7. Overview of the LoPSiL compiler. The compiler inputs .lopsil, .srm, and
.class files and outputs the same .class files but with policy-enforcement code inlined
before and after all security-relevant methods.

by the application being monitored. The important consequence is that our im-
plementation does not allow enforcement mechanisms to interpose and make de-
cisions about the execution of library methods invoked by other library methods.
We could circumvent this limitation by writing our own LoPSiL enforcement-
code inliner (e.g., using tools like the Bytecode Engineering Library [8]), as
previous work has done [11,5,4], but at the price of significantly increased im-
plementation complexity.

3.2 Experiential Observations

Having implemented the example policies described in Section 2.2, we believe
that the six core constructs underlying LoPSiL serve as good abstractions for
specifying location-dependent runtime security policies. This belief stems from
the fact that LoPSiL was sufficiently expressive for us to specify every location-
dependent policy we considered enforcing. In addition, after implementing
LoPSiL, none of the example policies from Section 2.2 took us more than 2
hours to design, specify, and test. Although these results are encouraging, we
need more experience with LoPSiL, and feedback from other users, before we
can more completely and objectively evaluate its expressiveness and ease of use.

Another interesting outcome of designing the example policies from Sec-
tion 2.2 is that we have observed some common, recurring uses of location
information in security and privacy policies. Our location-dependent policies
consistently based policy decisions on:

– The current absolute location of the device (e.g., whether the device is in
the user’s office)

– The geographic relationship of the device’s current location with another
location (e.g., whether the device is north of or within 1km of another loca-
tion)

– The geographic relationship of the device’s current location with a region of
locations (e.g., whether the device is in an area of trusted terrain or within
10m of an expected path)

– The velocity or acceleration of the device

LoPSiL: A Location-Based Policy-Specification Language 275

Because location-dependent policies consistently use location information in
these ways, we provide several utility methods in LoPSiL for calculating dis-
tances, boundaries, velocities, and accelerations between locations. All policies
can access these utility methods (cf. Figures 3–5) and can define custom opera-
tors on locations when the built-in methods are insufficient.

We have focused our efforts to date on LoPSiL’s design, rather than the
performance of our proof-of-concept compiler. Although we have not measured
the performance overhead induced by LoPSiL-policy enforcement, we refer to
previous work to argue that this performance concern is minor in practice when
the application code runs on general-purpose, high-power, mobile machines (e.g.,
laptops), unless the policy itself specifies expensive computations or considers
frequently invoked methods to be security relevant [12,11,5]. In the future, we
would like to explore the performance impact of enforcement systems like LoPSiL
on smaller and less powerful mobile devices.

4 Conclusions and Future Work

We have presented LoPSiL, a language for specifying location-dependent run-
time security policies. LoPSiL’s novelties are its abstractions for accessing and
reasoning about location information in imperative policy specifications. In our
preliminary experiments specifying policies for applications on a mobile laptop,
we found these abstractions expressive and convenient. Given the increasing
ubiquity of mobile devices, and the unique abstractions needed to conveniently
deal with location information in security policies, we believe the research area
of location-based policy-specification languages will for some time be an impor-
tant topic of consideration for the programming-languages, computer-security,
and mobile-device-applications research communities.

There are many opportunities for future work. One unresolved question is: how
tolerable are the performance degradations that result from enforcing application-
level runtime policies on weakly powered, inexpensive, and/or computationally
constrained mobile devices? As Section 3.2 mentioned, for simplicity we have
only enforced LoPSiL policies on a powerful roaming laptop. In the future we
would like to perform a larger case study on less powerful mobile devices, such
as cell phones; this would provide a more realistic measurement of enforcement
overhead and give us more experience programming in LoPSiL.

It would also be interesting to investigate how to incorporate technologies,
such as sophisticated static analyses [6] or policy structures [5], to simplify the
task of specifying complex policies in LoPSiL. Such an investigation might lead
to technologies for specifying complex location-dependent policies more conve-
niently as compositions of simpler subpolicy modules.

Finally, previous work has shown that policy-specification languages like
LoPSiL, which allow monitoring mechanisms to store a complete trace of the
application-program execution being monitored, enable specification and en-
forcement of all safety policies (such as the access-control policy in Figure 2) and
some liveness policies (such as the social-networking policy in Figure 5) [18,19].

276 J. Ligatti, B. Rickey, and N. Saigal

In the future we would like to include location information, mobile applications,
and mobile monitoring mechanisms in formal models of policy enforcement, in
order to better understand the precise space of policies enforceable with LoPSiL.

Acknowledgments. This research was supported in part by ARI grant
W74V8H-05-C-0052 and by National Science Foundation Grants IIS-0453463,
CNS-0831785, CNS-0742736, and CNS-0716343. Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

References

1. Anisetti, M., Ardagna, C., Bellandi, V., Damiani, E.: Openambient: A Pervasive
Access Control Architecture. In: Schmidt, A., Kreutzer, M., Accorsi, R. (eds.)
Long-Term and Dynamical Aspects of Information Security: Emerging Trends in
Information and Communication Security. Nova Science Publisher, Bombay (2007)

2. Ardagna, C., Cremonini, M., Damiani, E., di Vimercati, S., Samarati, P.: Sup-
porting Location-based Conditions in Access Control Policies. In: Symposium on
Information, Computer and Communications Security (2006)

3. The AspectJ Project, http://www.eclipse.org/aspectj/
4. Bauer, L., Ligatti, J., Walker, D.: Composing Expressive Run-time Security Poli-

cies. ACM Transactions on Software Engineering and Methodology (to appear)
5. Bauer, L., Ligatti, J., Walker, D.: Composing Security Policies with Polymer. In:

ACM Conference on Programming Language Design and Implementation (2005)
6. Bauer, L., Ligatti, J., Walker, D.: Types and Effects for Non-interfering Program

Monitors. In: Okada, M., Pierce, B., Scedrov, A., Tokuda, H., Yonezawa, A. (eds.)
Software Security—Theories and Systems. Springer, Heidelberg (2003)

7. Bhatti, R., Damiani, M., Bettis, D., Bertino, E.: Policy Mapper: Administering
Location-based Access-control Policies. IEEE Internet Computing 12(2), 38–45
(2008)

8. Byte Code Engineering Library, http://jakarta.apache.org/bcel/
9. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification

Language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS,
vol. 1995, pp. 18–39. Springer, Heidelberg (2001)

10. Edjlali, G., Acharya, A., Chaudhary, V.: History-based Access Control for Mobile
Code. In: ACM Conference on Computer and Communications Security (1998)

11. Erlingsson, Ú., Schneider, F.: IRM Enforcement of Java Stack Inspection. In: IEEE
Symposium on Security and Privacy (2000)

12. Evans, D., Twyman, A.: Flexible Policy-directed Code Safety. In: IEEE Symposium
on Security and Privacy (1999)

13. eXtensible Access Control Markup Language (XACML) version 2.0, http://docs.
oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

14. GPSLib4J v0.1, http://gpslib4j.sourceforge.net/
15. The Java ME Platform - the Most Ubiquitous Application Platform for Mobile

Devices, http://java.sun.com/javame/index.jsp
16. Jeffery, C., Zhou, W., Templer, K., Brazell, M.: A Lightweight Architecture for

Program Execution Monitoring. In: Program Analysis for Software Tools and En-
gineering (PASTE), pp. 67–74. ACM Press, New York (1998)

http://www.eclipse.org/aspectj/
http://jakarta.apache.org/bcel/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://gpslib4j.sourceforge.net/
http://java.sun.com/javame/index.jsp

LoPSiL: A Location-Based Policy-Specification Language 277

17. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.: An
Overview of AspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, p.
327. Springer, Heidelberg (2001)

18. Ligatti, J., Bauer, L., Walker, D.: Enforcing Non-safety Security Policies with Pro-
gram Monitors. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ES-
ORICS 2005. LNCS, vol. 3679, pp. 355–373. Springer, Heidelberg (2005)

19. Ligatti, J., Bauer, L., Walker, D.: Run-time Enforcement of Nonsafety Policies.
ACM Transactions on Information and System Security 12(3), 1–41 (2009)

20. LoPSiL Implementation,
http://www.cse.usf.edu/~ligatti/projects/runtime/LoPSiL.zip

21. Robinson, W.: Monitoring Software Requirements Using Instrumented Code. In:
Proceedings of the 35th Annual Hawaii International Conference on System Sci-
ences, p. 276.2 (2002)

22. Schmidt, A., Kuntze, N., Abendroth, J.: Trust for Location-based Authorisation.
In: Wireless Communications and Networking Conference, pp. 3163–3168 (2008)

http://www.cse.usf.edu/~ligatti/projects/runtime/LoPSiL.zip

	LoPSiL: A Location-Based Policy-Specification Language
	Introduction
	LoPSiL
	Core Linguistic Constructs
	Example Policies

	A LoPSiL Compiler
	Compiler Architecture
	Experiential Observations

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

