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Abstract. In our paper we study practical aspects of random and pseu-
dorandom number generation in mobile environments. We examine and
analyze several sources of randomness available in current mobile phones
and other mobile devices at the application level. We identify good phys-
ical sources of randomness that are capable of generating data with high
entropy in reasonable time and we investigate some relevant aspects (such
as security, energy requirements, performance) of integrating selected
pseudorandom number generators in the Symbian OS environment. The
main contribution of this paper is the identification and analysis of ran-
domness sources in mobile devices and a practical proposal for their
post-processing, including a prototype implementation.
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1 Introduction

Unpredictable cryptographic keys, padding values or per-message secrets are
critical to securing communication by modern cryptographic techniques. Their
generation typically requires an unpredictable physical source of random num-
bers and secure mechanism for their digital postprocessing.

Most common generation techniques involve truly random and pseudorandom
number generators. The former are typically based on a nondeterministic phys-
ical phenomena (e.g., radioactive decay or thermal noise), while the latter are
only deterministic algorithms where all randomness of the output is dependent
on the randomness of one or several inputs (often called seed). Generation of
pseudorandom data is typically (in most environments) faster and truly random
data is used in this process only as the initial input.

Our paper deals with issues related to the generation of truly random and
pseudorandom data (i.e., bits, numbers, and sequences) in mobile computing
environments. Mobile devices are different from general purpose computers, and
are now commonly used for security-critical applications like mobile banking, se-
cure voice and data communication, etc. However, current mobile platforms do
not provide a suitable built-in entropy source for seeding a pseudorandom gen-
erator. We consider the camera and the microphone noise as the most promising
candidates for good sources of randomness. They provide a considerable amount

A.U. Schmidt and S. Lian (Eds.): MobiSec 2009, LNICST 17, pp. 122–133, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009



Generating Random and Pseudorandom Sequences in Mobile Devices 123

of randomness (entropy) in a given time period and can be easily (with minimal
postprocessing) used as a reliable true random number generator (TRNG).

In order to use random data for cryptographical purposes we need to ob-
tain a sequence of unpredictable random bits (i.e., with a sufficient amount of
entropy) distributed according to the uniform distribution. Since almost all ex-
ternal physical sources of randomness can be observed or influenced (gamma
rays, temperature, etc.) resulting in non-random or even constant values, we
postprocess resulting data with a pseudorandom number generator (PRNG)1.

We implemented ANSI X9.31 (former X9.17) and Fortuna PRNGs for mobile
devices with Symbian OS 9.x. Both these PRNGs are based on classical cryp-
tographic primitives (e.g., AES) and use available randomness sources during
the whole generation process. This property implies robust and secure design
with capability of recovering from internal state compromise. Both our imple-
mentations are a proof of concept that demonstrates the feasibility of generating
high-quality pseudorandom data in mobile phones at the application level.

A detailed discussion regarding identification, testing, evaluation of physical
sources of randomness, and entropy estimation can be found in [6]. Some issues
described in this paper were discussed at the conceptual level also in [7].

2 Requirements on Random Data

Let us begin with a basic description of requirements on random data for cryp-
tographic purposes. We can distinguish between qualitative and quantitative
requirements for random data. The former cover good statistical properties of
generated random data and unpredictability of such data, while the latter deal
with measuring of randomness and also cover demands of used cryptographic
techniques and the performance issues of cryptographic generators.

2.1 Qualitative Requirements

Random data generated directly from a randomness source often contains sta-
tistical defects and dependencies causing parts of the random data to be easily
predictable. These statistical defects are typically inducted by hardware gener-
ators during the sampling of the analogue randomness source or by influencing
the sampled physical randomness source (e.g., by an active adversary).

The first step towards unpredictability lies in ensuring (at least to certain
level) good statistical properties of generated random data. This can be par-
tially solved by using digital postprocessing and/or statistical testing. Digital
postprocessing is the deterministic procedure capable to reduce statistical rela-
tions and dependencies (including bias and correlation of adjacent bits). Statis-
tical testing allows to (manually) detect some design flaws of a generator or to
(automatically) avoid breaking or influencing the generator during its lifecycle.

1 Note that an ideal PRNG for cryptographic purposes produces sequences that is
unpredictable and computationally indistinguishable from the truly random data.
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Typical techniques of digital postprocessing involve use of deterministic pseu-
dorandom number generators or randomness extractors. The former serve only
for spreading simple statistical defects into a longer sequence of bits. The latter
allow to condense available input randomness to the most compact form that
has uniformly distributed bits without statistical defects. Pseudorandom number
generators as well as randomness extractors can be based on cryptographic prim-
itives (e.g., hash functions) or simple mathematical functions. However, none of
deterministic digital postprocessing methods can be used for improving initial
randomness from the physical source.

The advantage of randomness extractors lies in good theoretical and mathe-
matical background – more sophisticated randomness extractors can even pro-
vide some provable guarantees of the quality (resulting distribution) and quantity
(in terms of extracted so-called min-entropy) of its output. We can distinguish
deterministic or non-deterministic randomness extractors. The former work only
on limited classes of randomness sources. The latter do not have this restriction,
but they need an additional truly random input. Unfortunately, probability dis-
tributions of randomness sources must be in both cases precisely defined, oth-
erwise it is not possible to construct appropriate and well working randomness
extractor. In addition to that, the usage of an randomness extractor makes the
generation of random numbers even slower. More details can be found in [11].

There are several commonly used statistical test suites or batteries (e.g.,
CRYPT-X, DIEHARD, and NIST) for verification of the statistical quality of
random data by detecting deviations from true randomness (for details see [10]).
However, no finite set of statistical tests can be viewed as complete and the re-
sults of statistical testing must be always interpreted with some care and caution
to avoid wrong conclusions about a specific randomness source or generator.

2.2 Quantitative Requirements

A precise comparison of several sources of randomness requires also some mea-
sure of randomness. Basic measure is in information theory often called uncer-
tainty or entropy and referred as Shannon entropy or alternatively information
entropy. The well-known Shannon formula computes the entropy according to
all observed probabilities of values in the probability distribution. This results
only in average case entropy that is inappropriate for cryptography purposes.
To (partially) cope with this situation the worst case min-entropy measure is
often used. Min-entropy formula computes the entropy according to the most
probable value in probability distribution.

Unfortunately, both entropy formulas have one serious drawback: they work
only for exactly defined (and fixed) randomness distribution. In our case we
cannot make any assumptions about distributions dynamically formed by used
sources of randomness (e.g., they can be under ongoing attack) and this can
always imply biased results in terms of entropy. This is a fundamental problem
that can be seen also in the theory of randomness extractors. To partially cope
with this problem, we perform all our experiments and entropy estimations in the
worst conditions – i.e., under simulated attack on physical randomness source.
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3 Randomness in Mobile Devices

Mobile devices are considerably different from general purpose computers and
this also influences the process of generating random and pseudorandom data.
The possibility to change the environment where a mobile device operates is
definitely a great advantage given by the mobility nature of the device. The
existence of several embedded input devices such as microphone, radio receiver,
video camera, or touchable display is another advantage2.

On the other hand, mobility and small physical size of devices bring also a
higher possibility of theft or (temporary) loss with a potential compromise of
the generator state. The important assumption of secure generator design is thus
the impossibility of deducing the (previous/future) inner state of the generator
and fast recovery of its entropy level (after a time-limited compromise).

Well-designed and robust generator must always have a sufficient amount of
entropy – shortly after turning the device on, after letting the device out of sight,
and after an intensive generation of random data. This non-trivial task may
require employment of energetically costly sources of randomness (e.g., video
camera) and/or the user contribution. Utilization of these sources may also be
required to assure higher security – e.g., for mobile banking purposes.

3.1 Sources of Randomness in Mobile Devices

This part of the paper deals with practical experiments performed on two smart-
phones Nokia N73 with the Symbian OS and two similar PDA phones E-Ten
X500 and E-Ten M700 with the Windows Mobile OS. The goal of our experi-
ments was to assess the quality of selected sources of randomness in these mobile
devices and to estimate the amount of randomness (entropy) in these sources.
We used two identical Nokia N73 devices since we wanted to verify the correct-
ness of our results or to detect unexpected behavior of the smartphone – in a
case when one device suffers, e.g., by some manufacturing defect. Some issues
described in this section were discussed and described in more detail in [6].

Due to the API restrictions in the Symbian OS, we were forced to drop sources
of randomness like the battery level, signal strength or GPS position as mea-
surements over these sources do not provide output (at the API level) with a
sufficient precision (e.g., battery and signal values are available in the form of
an integer between 0 and 10) or frequency (e.g., external GPS provides only one
measurement per second).

On the contrary, microphone and digital camera perform a high-rate sampling
of physical sources, yielding high volumes of data. Since we can never guarantee
the quality of a physical source, our analysis is concentrated on the microphone
and the camera noise that arises, e.g., in the CCD/CMOS chip or A/D converter,
and is always present in the output data.
2 We are aware that in general purpose computers use of audio/video data for gen-

erating random numbers is not a novel idea (see, e.g., [2]), but mobile devices with
embedded cameras and microphones have a clear advantage with respect to fitness
and practical applications of such techniques.
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Microphone input: We wanted to evaluate all microphones in the worst pos-
sible conditions, therefore the first idea of our test settings involved recording
of: some music sample, audio feedback, noise in an extremely quiet room. After
several basic experiments with the built-in notebook microphone we saw that an
audio feedback (i.e., sound loop between an audio input and an audio output)
brings even more entropy than the music sample recording. Since the recorded
noise is also present in music or other audio samples, the worst conditions for
the microphone input arise from recording of noise in an extremely quiet envi-
ronment (which was in our case a closed quiet room in the night).

We analyzed several microphones that have obviously different characteristic,
e.g., due to different solidity of membrane or other manufacturing differences.
204 800 captured noise samples3 were used to form a histogram of values. Fur-
thermore, we used min-entropy (worst case) formula for quantitative analysis
and for estimation of entropy in the generated data. Our min-entropy estima-
tions, with the assumption of independency within the samples, are: 0.5 bits of
entropy per sample for Nokia N73 hands-free microphone; 0.016 bits of entropy
per sample for E-Ten M700 embedded microphone; 0.023 bits of entropy per
sample for the E-Ten X500 embedded microphone.

As the next step we tested statistical quality and independency of captured
noise samples. We used the Fast Fourier Transform for analyzing the basic fre-
quency components present in the noise – ideal noise is expected to have all
frequencies uniformly present. Several harmonic frequencies (narrow peaks in
spectrogram) were revealed in spectrum of E-Ten devices and the best result
(i.e., smoothest frequency spectrum) belongs to the Nokia N73 hands-free mi-
crophone with only few harmonic frequencies (see Figure 1).

Fig. 1. Microphone frequency spectrum Fig. 2. Overexposure by a halogen lamp

We performed also several correlation tests that found a correlation in the
recorded samples of noise. This correlation decreased as we took only every
second/third value from our samples. Sequence created from every fourth value
was without any statistically significant correlations. We therefore recommended

3 We set 16-bit pulse coded modulation (a signed PCM) at the frequency 8000 Hz for
sampling a sound wave.
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to lower the estimated entropy at least 5 times with respect to the amount
calculated for each sample value.

Camera input: Digital cameras for mobile devices can be based on several
different silicon optical sensors, typically CCD or CMOS. All of them use an
array of semiconductor photo-sensors to transfer an accumulated electric charge
to a voltage. Low-quality sensors are typically used in mobile devices, and these
sensors have a higher noise level than sensors used in standard digital cameras.

The worst conditions for these sensors involve recording of a static image
(white or black background). The input source is often available even when the
camera cover is closed or covered. This is both convenient and useful – it serves
as a defense against an active attacker that illuminates the sensors and forces
them to produce biased values. Illumination of the Nokia N73 CCD sensor by a
halogen lamp is depicted in Figure 2 – in this case the central area of a sensor
is forced to produce maximum values (225) and all noise is effectively removed.

Several components of the noise arising from optical sensors can be distin-
guished (shot noise, read-out noise, etc.), but we are interested in the overall
noise. It is a well-known fact that the predominant component of this noise
is the thermal noise and its actual level may depend on physical conditions –
namely the temperature (for details see [1]). Therefore, we performed all practi-
cal experiments with the camera set at two temperature levels: 5 ◦C and 45 ◦C.
We detected an inside decrease of the noise towards lower temperature, but the
noise is still significantly present to provide enough entropy.

We captured all the test data from the viewfinder4 rather than from a high-
resolution picture. We are aware that the viewfinder image is downsampled
from a full resolution of the optical sensor, but our primary intent was to over-
come other software post-processing techniques (noise reduction, compression,
etc.). However, performed experiments confirmed the presence of low level post-
processing (details are not provided by the manufactures, similarly as for the
downsampling algorithm) as, for example, correcting of light intensity towards
the border of lens or automatic ISO level correction. All these proprietary tech-
niques make the analysis and entropy estimation much harder.

At least 2000 noise samples (at temperatures 5–8 ◦C) have been always used to
create a histogram of values for a particular color pixel. Our analysis confirmed
that all three tested devices have clearly different camera chips and noise pat-
terns. Our min-entropy estimates, with the assumption of independency within
the pixels and frames, are: 3.2/3.3/3.9 bits of entropy per R/G/B color pixel for
Nokia N73; 3.0/2.9/3.7 bits of entropy per R/G/B color pixel for E-Ten M700;
1.3/2.2/0.8 bits of entropy per R/G/B color pixel for E-Ten X500.

For statistical testing of the quality of noise samples we used the NIST test
battery, auto- and cross-correlation functions in Matlab, and Fast Fourier Trans-
formation. Our experiments revealed no statistically significant dependencies
(significance level was set to 0.01) between neighboring pixels, rows, or even
successive pixels in frames.
4 The used resolution is at least 180×240 pixels and recording speed is within 10–15

frames per second.



128 J. Krhovjak, V. Matyas, and J. Zizkovsky

Full description of all our experiments with Nokia N73 and E-TEN X500/M700
devices and other related technical details can be found in [6].

3.2 Secure Pseudorandom Numbers

The advantage of pseudorandom number generators lies in secure masking
(smoothing) of statistical deviations caused by temporarily corrupted or influ-
enced sources of randomness. If these generators behave correctly (in a secure
computing environment), the resulting sequences have their statistical quality
assured and the only critical point remains resistance to cryptanalysis.

The majority of multi-user and mobile computing environments cannot be
considered as a secure computing environment (due to malicious admins/users,
malware, possibility of device temporary loss). A careful generator design must
thus take into account both forward and backward security after a compromise
of its internal secret state. Forward/backward security means that an attacker
with the knowledge of internal state of a generator is not able to learn anything
about previous/future states and outputs of the generator. Forward security
can be guaranteed by using one-way functions and backward security requires
periodical refreshing of the internal state with additional truly random data.

The consequence of periodical refreshing is utilizing all available random sam-
ples – with the possibility of their gathering and accumulation (so-called pooling)
even in the time when no generation is required. Such hybrid generators behave
deterministically only between two successive reseedings.

We selected ANSI X9.31 and Fortuna pseudorandom number generators for
our reference implementation – their basic properties are described below.

ANSI X9.31 PRNG: The ANSI X9.31 (former X9.17) PRNG uses in our
setting only one cryptographic primitive, a block cipher. The NIST specifica-
tion [8] suggests two implementations using the algorithm 3DES or AES. The
main difference between these two block ciphers is the supported length of a
block (3DES uses 64-bit blocks, AES operates on 128-bit blocks).

Let K be a 128-bit AES secret key, which is reserved only for the generation
of pseudorandom numbers. EK denote AES encryption (ECB) under the key
K, V is a 128-bit seed value, and DT is a 128-bit date/time vector. I is an
intermediate value, and the symbol ⊕ is the exclusive-or (XOR) operator.

Then a pseudorandom output R is in each iteration generated as follows:

I = EK(DT ), (1)
R = EK(I ⊕ V ), (2)
V = EK(R ⊕ I). (3)

The generator has no embedded pooling mechanism and the entropy gathering
is performed on the fly. The critical part of generator’s inner state is the secret
key K that is expected to be stored securely – otherwise the forward security can
be no longer guaranteed. Another part of inner state, the value R, is produced
directly as an output5. Moreover, the DT vector is based solely on low-entropy
5 The generator was originally designed for generation of single DES keys, therefore

the output was expected to be secret.
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date/time – this implies slow recovery after a state compromise and therefore
weak backward security.

Fortuna PRNG: Fortuna [3] currently represents one of the most sophisticated
generator designs with an improved and automated mechanism of pooling and
extremely simplified (almost removed) process of entropy estimation.

Fortuna PRNG consists of three components. The first part is the generator
itself, it takes a fixed-size seed and outputs an arbitrary amount (often restricted
to 1 MB per single request) of pseudorandom data. The generator is the most
primitive component of the Fortuna – a block cipher in the counter mode with
some refinements. It is recommended to use AES with a 256-bit key and a 128-bit
counter. The key and the counter form a secret internal state of the generator.

After every request another 256 bits of pseudorandom data are generated for a
new encryption key. Periodical rekeying ensures not only backward security, but
also forward security of the generator as it is infeasible to get previous output
data after the key change even when the attacker knows the secret internal state
of the generator. There is no reset of the counter and this property prevents
short cycles that could occur due to repeating key values.

The second component is called accumulator and its main purpose is to collect
and pool entropy from various sources of randomness. There are 32 pools, which
are filled with data from one or several randomness sources in a cyclical fashion.
This design ensures that random events from a single source are distributed
evenly over the pools and an attacker controlling only some randomness sources
cannot control all these pools. The accumulator is also responsible for periodical
reseeding of the generator. Reseeds are numbered (1, 2, 3, etc.) and the pool Pi

is used if and only if 2i is a divisor of the reseed counter. Thus P0 is used every
reseed, P1 every second reseed, P2 every fourth reseed, etc. The only entropy
estimate that must be done sets the minimal pool size necessary for reseeding –
but it can be quite optimistic, e.g., 64 bytes for required 128 bits of entropy.

The seed file is last component of the Fortuna PRNG that serves as the
storage of high-entropy data. It preserves the PRNG internal state and ensures
that even after rebooting the generator can produce good pseudorandom data.
Quite a simple concept in theory, but practical implementation is very difficult
and depends extremely on the environment and platform (for details see [3]).

4 Integration into Symbian OS

In this section we summarize details of our implementation and integration of
ANSI X9.31 and Fortuna PRNGs into the Symbian OS 9.x. We used the smart-
phone Nokia N73 for our practical experiments and performance tests.

4.1 ANSI X9.31 PRNG

We implemented the ANSI X9.31 PRNG as a simple GUI application6 that is
based on the AES encryption function and the SHA-1 hash function. SHA-1 is
6 The source code is available at: http://sourceforge.net/projects/ansix931prng/.
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an internal Symbian library function and the AES is implemented as a reference
code provided by the IAIK Krypto Group AES Lounge ported to the Symbian
OS by Philipp Henkel [5]. The generator itself is implemented in one class.

There are object attributes that preserve the generator secret state and that
are necessary for the generator initialization – the most important is a disposable
320-bit entropy pool. It is implemented as two SHA-1 contexts and the initial
entropy comes from 5 samples from the camera viewfinder, 20 audio samples from
the microphone and the timing of each keystroke. Construction and initialization
of the camera and microphone objects run asynchronously and the speed of
data acquisition from these sources is 1495 KB/s. Since the estimated amount
of entropy from these samples radically exceeds 320-bit, we can expect that the
pool contains 320-bit of entropy. The pool is used only for following operations:
first 128 bits are used as AES key material, next 128 bits fill in the seed and
remaining 64 bits initialize first half of the date/time vector. As the generator
is not reseeded during its runtime, it never recovers from a compromised state.

We improved the original X9.31 generator by initializing the first half of
date/time vector by truly random data that remains fixed during whole gen-
eration process, while the second half is updated in every iteration by 64-bit of
date/time. This is obviously a tradeoff between security and energy efficiency
– better backward security can be achieved by using purely truly random data
instead of low-entropy date/time, but the continuously running camera and mi-
crophone will drain the battery very soon. Another disadvantage is that the
running camera is not accessible for other applications.

This implementation can be used in applications that require some random
data at the start, but we do not recommend its continuous usage. The generator
has in fact poor forward and backward security. In case of forward security, it is
very easy to get previously generated random bits, if an attacker gets the secret
state of the generator. We also implemented another version of ANSI X9.31
based solely on a one-way hash function (in our case SHA-256), which provides
a better forward security for the mobile environment, as there are no problems
with key management and secure key storage [4].

Backward security depends crucially on the entropy of the date/time vector.
However, after a state compromise the length of DT is in fact reduced to 64
bits and we must expect that the attacker can predict a significant amount of
DT vector bits. An optimistic assumption is that the attacker knows the time
of the data request with a minute precision. Theoretical precision of the time
in Symbian is in order of microseconds, but the analysis has proved that the
time value is always divisible by 125. It reduces the number of possibilities to
480 000, and so approximately 18.87 bits of entropy. If the attacker can predict
the time with second precision, then he has only 8000 possibilities, i.e., 12.96
bits of entropy. Cryptanalytic attacks on ANSI X9.17/X9.31 are discussed in [9].

The actual speed of our implementation is only 2.44 KB/s with the reference
non-optimized AES implementation of encryption speed 75 KB/s. The average
speed of implementation based on SHA-256 is 3.9 KB/s. The above informal
security analysis and slow performance in mobile phones clearly suggests that
practical usage of the ANSI X9.31 PRNG is not advisable.
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4.2 Fortuna PRNG

In this subsection we describe the implementation of Fortuna PRNG on Nokia
Series60 mobile devices with the Symbian OS 9.x7. As compatibility is not as
straightforward as claimed by the vendors, it is worth noting we used the Nokia
N73 smartphone, as there can be some differences when using other models.

Fortuna PRNG is designed to run continually, gathering entropy and servicing
user requests for pseudorandom data. Therefore we decided to implement For-
tuna by means of the Symbian OS Client-Server Framework. The server compo-
nent is the application without a graphical user interface, implementing whole
functionality of the Fortuna PRNG. The client component is the interface to
the Fortuna PRNG, implemented as a dynamic-link library. This library with
four exported functions allows to start Fortuna server, create new session with
the running server, and perform several operations with an established sessions
(e.g., requests the Fortuna server for pseudorandom data). The Fortuna server
is a crucial part of the Fortuna PRNG, implementing all the functionality. It is a
common Symbian OS application without a GUI, running on the background as
a separate process, collecting entropy and servicing user requests. The generator
component class consists of 256 bits long AES key, 128 bits long counter and two
objects representing the cipher context and its key. The accumulator component
of the Fortuna PRNG consists of the array of 32 objects – each object represents
one pool containing entropy from random events. While the pools are parsable
strings of unbounded length, it is more practical to implement the pools just as
hash contexts.

The seed file component does not have its own implementing class. It tries
to open the seed file in the /Private folder of the application. This folder is
accessible only to this application and to processes with the capability AllFiles.
When the seed file exists and contains at least 64 bytes of data, the generator is
seeded with this data and the seed file is updated with the newly generated 64
bytes of pseudorandom data. If the seed file is not found (or is not long enough),
the generator will not be seeded and user data requests will have to wait until
the pools accumulate enough entropy to initialize the generator properly. The
Fortuna class contains two object attributes dedicated to reseeding. A new 64-
bit counter incremented at each reseeding and the time when the last reseeding
was done. At least 100 ms delay is required between two successive reseedings.

We implemented 3 randomness sources: the keyboard (CFKeyRandSrc), the
microphone (CFAudioRandSrc) and the camera (CFCamRandSrc). The first source
gathers entropy from keyboard events. The randomness source starts waiting for
the key events and when the key is pressed, the window server8 generates the
key event and sends it to our application. The key event data itself does not
contain much entropy, therefore it is not used at all. Only the time (12.96 bits
of entropy) of key event arising is sent to the appropriate pool. The second
randomness source gathers entropy from the microphone device. According to
our entropy estimation 1 KB sample contains 51 bits of entropy. The period and
7 The source code is available at: http://sourceforge.net/projects/fortunaprng/.
8 A server which manages screen, keyboard and pointer on behalf of client applications.
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the exact amount of data taken should be precisely tuned to fulfill the goals of
the target application. In our case the audio sample is taken every minute.

The last implemented randomness source gathers entropy from the camera
device. As one frame from the viewfinder yields almost 100 KB, the data is
spread over all pools. Strictly speaking, 3180 bytes of data is added to each pool.
According to our estimations, this represents 11 080 bits of entropy for each pool.
Although in theory it is possible to capture the viewfinder frames continually,
it would limit the device user considerably. The camera has a significant power
consumption and moreover it would be reserved for the Fortuna server only.
Therefore, we capture only one viewfinder frame every minute.

We performed five battery life tests9 with continuous utilization of different
sources of randomness. Keyboard events have been monitored at all times, but
no keys were pressed during measurements. The lowest speed of our implemen-
tation in the continuous capturing mode is 13.85 KB/s. The detailed results are
summarized in Table 1 – the first column presents the average time of battery
life and the second column then standard deviation of our measurements. Our

Table 1. Fortuna energy requirements – battery life

Sources of randomness Avg. time Std. deviation
(continuous sampling) [hh:mm] [mm:ss]

Keyboard, microphone 17:27 8:34
Keyboard, camera 3:48 2:24
Keyb., cam., micr. 3:24 3:36

current Fortuna implementation captures both audio and video periodically just
once a minute. In this case the battery is exhausted approximately after 3 days,
18 hours and 13 minutes. This is a non-trivial battery stress in comparison to
10 days, 11 hours and 1 minute of producing pure pseudorandom data without
any entropy pooling. Energy requirements of our current reference Fortuna im-
plementation are 2.78 times higher then energy requirements of implementation
without any entropy pooling. For non-critical applications we thus recommend
to capture data only once per 5 minutes – the battery is then exhausted approx-
imately after 7 days, 11 hours and 34 minutes.

5 Conclusions and Future Work

In this paper we show a practical approach to random data generation for the mo-
bile environment, providing a clear path to developers of many security-critical
applications for the mobile environment. We investigated several possible ways
of generating both random and pseudorandom data in mobile devices with Sym-
bian OS. We start with the identification of available sources of randomness and
assessment of their quality and performance. Our analysis showed that mobile
devices have several good sources of randomness – we confirmed that at least the
9 All measurements were performed with a Li-Pol battery type BP-6M (970 mAh).
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microphone and camera noise contain a sufficient amount of entropy and thus
can be reliably used as a good sources of truly random data.

Our work then lead to the investigation of the truly random data postpro-
cessing with the use of pseudorandom number generators that are able to utilize
all accessible sources of randomness in the generation process. We selected ANSI
X9.31 and Fortuna pseudorandom number generators that we then successfully
implemented and integrated into the Symbian-based smartphone Nokia N73.

We also want to point out that on top of the truly random data sources that
we examined further, other sources like battery and signal level (and in some
specific situations also GPS position tracking) are worth investigating. This can
be done, for example, on the completely open-source Linux-based OpenMoko
cellphone or at a higher granularity by using external devices (such as a cellular
modem or GPS unit). Work with Symbian OS phones, however, can also be
addressed by teams that have a lower-level (API) access to the devices than
that available to us and other ordinary developers.
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