
M. Ulieru, P. Palensky, and R. Doursat (Eds.): IT Revolutions 2008, LNICST 11, pp. 32–43, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

Measuring Cognition Levels in Collaborative Processes
for Software Engineering Code Inspections

David A. McMeekin, Brian R. von Konsky, Elizabeth Chang, and David J.A Cooper

Digital Ecosystems and Business Intelligence Institute, Curtin University of Technology,

Enterprise Uni 4, De’ Laeter Way, Technology Park, Bentley WA 6102, Australia
{d.mcmeekin,b.vonkonsky,e.chang,david.cooper}@curtin.edu.au

Abstract. This paper demonstrates that different software code inspection tech-
niques have the potential to improve developer understanding of code being in-
spected to varying extents. This suggests that some code inspection techniques
may be superior to others with respect to improving the efficacy of future in-
spections, harnessing collective wisdom, and extending team knowledge and
networked intelligence. In particular, this paper reports results from a study of
novice developers’ cognitive development during a software inspection training
exercise. We found that developers who performed a code inspection prior to
modification tended to operate at higher cognitive levels beginning very early in
the modification exercise. Those who had not performed an inspection tended
to operate at lower cognitive levels for longer periods of time. Results highlight
the importance of code inspections in increasing developers’ understanding of a
software system. We believe collaboration between academia and industry in
studies such as these would benefit the three major stakeholders: academia, in-
dustry and graduates.

Keywords: Collaboration, Collective effort, Software inspections, Bloom’s
taxonomy, Programmer comprehension, Cognition development.

1 Introduction

Industry-based software inspection processes are normally used to detect software
defects. However, they can also have an impact on a developer’s understanding of the
system being inspected, with the potential to improve team cognition levels and the
effectiveness of future collaborative inspection exercises.

A software inspection was used as a training exercise prior to developers adding
functionality to code. During both the training and coding exercises, the software de-
velopers’ cognitive levels were measured using the Context-Aware Analysis Schema
[15]. One group of developers had not seen the code prior to adding functionality. The
other group of developers had inspected the code immediately prior to adding the
functionality using one of three inspection-reading techniques: Ad hoc reading, Ab-
straction Driven Reading or Checklist-Based Reading.

 Measuring Cognition Levels in Collaborative Processes for Software Engineering 33

2 Industry Practice

Software Inspections are a practical methodology widely used in the ICT industry.
They are a tried, tested, and effective method for the removal of defects from software
early in the development life cycle [11]. Additionally, software inspections assist in-
spectors in developing greater insight and understanding into the artefact being in-
spected [16]. IDE’s such as Netbeans, Eclipse, Xcode and Visual Studio, with their
auto completion functions for example, has meant developers are warned of many
potential errors before finishing writing the line of code. For example, when calling a
function, the auto completion will display the method signature. This assists the de-
veloper to order the parameters correctly.

Reading software artefacts is an essential practice for producing high-quality soft-
ware during a product’s development and maintenance life cycle [2]. Inspection tech-
niques/reading strategies are usually linked with verification and validation of software
artefacts. Applying inspections to raise cognition levels and reading skills is an area that
has not been well researched as an additional possible benefit of software inspections.

Traditionally software inspections are a collaborative task, typically comprising
four inspectors. The first person is the moderator, who presides over and manages the
team inspection process. The second is the designer responsible for the design of the
code in question. The third is the implementer who translated the design document
into code. The final participant is the tester who was responsible for writing and exe-
cuting the test cases.

2.1 Practical Software Inspection Methods

Software inspections are implemented early in the development process to detect de-
fects in the inspected artefact [11], and offer developers a structured method to exam-
ine software artefacts for defects [9]. Software inspections and their success in detect-
ing defects is a well-researched area in software engineering [23].

Performing a code inspection prior to modifying the code has been shown to im-
prove a developer’s ability to carry out the required changes [19]. The inspection
techniques tested in this study were: ad hoc, Abstraction-Driven Reading (ADR), and
Checklist-Based Reading (CBR).

The ad hoc technique is understood to be the simplest inspection technique to use.
No formal methodology is used when applying this method. The inspector is expected
to thoroughly inspect the artefact using his/her personal experience as the guide [16].

This method’s strength lies in giving the greatest freedom to the inspector as to how
they execute the inspection [9]. Its greatest weakness, correspondingly, is uncovered
by novice developers, who lack the necessary experience to effectively apply it [16].

The Abstraction-Driven Reading (ADR) technique was created in response to the
delocalisation challenge Object-Orientation introduced to traditional inspections [8]
[9]. The inspector reads code in a systematic way, writing natural language abstract
specifications about each method and class. While reading each method, calls to delo-
calised code are followed and the invoked code is also inspected. As the inspector
systematically executes these tasks they also compile a list of detected defects.

34 D.A. McMeekin et al.

A strength of this technique is the requirement for inspectors to develop reusable
natural language descriptions of the inspected code. However, this comes with con-
comitant costs in time, and can be overwhelming for the inspector to attempt to grasp
an understanding of the whole program.

Checklist-Based Reading inspections were formally introduced by Fagan [11] and
are considered the standard inspection method used by software organisations today
[16]. The inspector has a series of questions that guide their reading. The questions
should be derived from historical data from within the organisation identifying defects
detected in previous systems [12][13].

Each question on the list requires a yes or no answer. A yes answer implies no de-
fect in the code at that location. A no answer indicates the possibility of a defect there
and necessitates a closer examination of the code.

A strength of this technique is that the checklist is a product of prior inspections
and captures organizational history with respect to the cause of prior defects. A weak-
ness is that it is a highly structured process that can restrict inspectors from reading
the code in a more natural manner.

3 Bloom’s Taxonomy for Educational Objectives

3.1 Bloom’s Cognitive Development

Bloom’s taxonomy is a well-established categorisation of six different cognitive lev-
els potentially demonstrated during learning [1] [4]. The categories range from the
lowest to the highest level of cognitive learning. The classification is widely used in
education systems throughout the world.

Each category, cited from [1], is listed and briefly described below, with an exam-
ple of how each might be translated in a programmer’s context:

Knowledge: “retrieving relevant knowledge from long-term memory.” For the
programmer this may be the specific recalling of an if-then-else statement.

Comprehension: “construct meaning from instructional messages, including oral,
written, and graphic communication.” For the programmer, summarising a method or
code fragment.

Application: “carry out or use a procedure in the given situation.” Demonstrated
when the programmer makes a change in the code.

Analysis: “break material into constituent parts.” Where the programmer describes
a method or field’s operation and role within the wider system.

Evaluation: “make judgements on criteria and standards.” Here the programmer
makes a judgement on the correctness or incorrectness of a part of the program.

Synthesis: “re-organise elements into a new pattern or structure.” The programmer
creates a new class, successfully integrating it into the wider system.

3.2 Industry-Based Context-Aware Schema Using Bloom’s Taxonomy

Bloom’s taxonomy has been used in many software engineering studies to examine
developers’ comprehension levels during different tasks [6][15][25][26][27]. Kelly

 Measuring Cognition Levels in Collaborative Processes for Software Engineering 35

and Buckley [15] developed a Context-Aware Schema for use with the taxonomy.
The schema requires developers to “think-aloud” as they perform the different tasks
required of them. Think-aloud is a process in which the participant verbalises
thoughts and actions while carrying out the task [10].

The think-aloud data is recorded, transcribed and broken down into sentences or
utterances. Each sentence or utterance is then categorised into a level within the tax-
onomy to identify the cognitive level at which the developer was operating. Each
utterance is categorised upon both its content and the previous two utterances. This
enables the utterance to be categorised within its applied context.

The original Context-Aware Schema [15] omitted the synthesis level, as their study
was carried out in a maintenance environment. In our study we have introduced the
synthesis category. This was because developers were required to add new functional-
ity to the code. This new functionality was not fixing defects but rather extending the
program to perform a new task.

4 Methodology for Collective Academic and Industry Learning

To investigate understanding arising as a result of the various code inspection strate-
gies, a study was conducted in which novice developers were required to add new
functionality to an existing software system. During this process their cognition levels
were measured using the Context-Aware Schema [15].

The software system was the game of Battleship. It was a text-based implementa-
tion written in Java and contained seven classes in total. The Board.java class required
new functionality; the ability to place ships in a diagonal down to the right manner.
Participants were given 30 minutes to add this new functionality, and were required to
think-aloud for the task’s duration. When their time was up, participants stopped re-
gardless of whether they had completed the task or not.

The study was advertised on the university campus and participants took part in
their own time. No compensation was paid to participants and they were informed
that participation had no influence whatsoever on their marks/grades in courses they
were currently undertaking. Participants were required to be final year undergraduate
studying Software Engineering, Computer Science or Information Technology.

Participants were provided with the following artefacts for the modification task:

• a natural language description of the system,
• a class diagram,
• the Board.java file (without defects),
• access to the other Java code in the system,
• a natural language modification request, and
• access to the Java APIs. All artefacts were online.

Prior to adding the functionality, four participant groups were established and indi-
vidual members from three of the groups performed a 30-minute code inspection on
the Board.java class, searching for defects. The think-aloud data was also collected
from the inspection task. Group One performed an ad hoc inspection, Group Two

36 D.A. McMeekin et al.

performed an ADR inspection, Group Three performed a CBR inspection, and Group
Four did not perform an inspection. Participants performed two small training exer-
cises prior to participating in the study. The first exercise involved using the assigned
inspection technique. The second exercise detailed how to think-aloud.

Participants were informed that the defects seeded in the code were not syntax–
related, as the code compiled and executed. They were searching for defects that
would cause the system either to fail or produce incorrect output.

Research of this nature, based on empirical studies, is subject to internal and exter-
nal validity threats. The first internal threat to this study was the selection threat. Se-
lection threat is where participants are stacked to produce favourable results. To limit
this threat, the study was advertised on campus, all final year students who asked to
participate were admitted to the study, and all participants were randomly assigned to
the different inspection technique groups.

The second internal threat, as with many software engineering studies, was varia-
tion in participant experience. In considering this threat, demographics were collected
from participants in order to monitor discrepancies that may have arisen within the
results from this.

The external validity threat in this study was the sample size. There is significant
overhead involved when using the think-aloud method. The data must be collected,
collated, transcribed, broken into utterances, and analysed. The sample size was kept
to 20 as the research was attempting to identify any emerging trends within the data
that could be pursued with larger data sets in the future. It must be noted that even
with small sample sizes, although difficult to generalise to a larger body, significant
differences may still be identified [20] warranting continued research.

5 Results on Effective Bloom’s Cognition Development and
Software Skill Training

Table 1 displays an utterance example from each of the 6 different categories of
Bloom’s taxonomy. The seventh category (Graph Number 0) shown in Table 1 is Un-
coded, and is not part of the taxonomy. Utterances in this category were either unin-
telligible or unrelated to the task at hand, such as talking on the mobile phone during
the study.

Table 1. Example of utterances

Graph Number Bloom’s level Utterance Example
1 Knowledge “while ship not sunk”
2 Comprehension “this is a one to many relationship”
3 Application “we need to cater for a new direction”
4 Analysis “this is externally controlled”
5 Evaluation “the call here is incorrect”
6 Creation “creating a new method”
0 Uncoded “what food will we need for tonight”

 Measuring Cognition Levels in Collaborative Processes for Software Engineering 37

Figures 1, 2, 3 and 4 graph four different participants’ utterances in order of their
occurrence, categorised into the appropriate cognitive level using the Context-Aware
Schema. The X-axis shows the order of the utterances and the Y-axis represents utter-
ance’s cognitive level.

Fig. 1. Participant 15's modification utterances. Performed no inspection.

Fig. 2. Participant 5's modification utterances. Performed a CBR inspection.

38 D.A. McMeekin et al.

Fig. 3. Participant 1's modification utterances. Performed an ad hoc inspection.

Fig. 4. Participant 17's modification utterances. Performed an ADR inspection.

Figures 5 and 6 are graphed in a similar manner, but the utterances are from the in-
spection each participant performed. Due to the large number of graphs, only samples
of the participants have been displayed in this paper.

Figure 1 demonstrates almost 50% of participant 15’s modification utterances were
in the lowest cognitive level, Knowledge. The participant was unfamiliar with the
code prior to receiving the modification request. Hence, in the 30 minutes given for

 Measuring Cognition Levels in Collaborative Processes for Software Engineering 39

Fig. 5. Participant 5's utterances during inspection. Performed a CBR inspection.

Fig. 6. Participant 1's inspection utterances. Performed an ad hoc inspection.

the task, they needed to familiarise themselves with the code and then perform the
modification. This low cognition level is indicative of the participant reading the code
in an attempt to understand what task the code performed. Once this was sufficiently
understood, the modification could then be attempted. After that point they began to
operate at higher cognitive levels. This pattern was similarly repeated with all partici-
pants who did not perform a code inspection prior to modifying task.

40 D.A. McMeekin et al.

Figure 2 graphs participant 5’s modification utterances. It shows that participant 5
started with a small number of utterances in the low cognitive levels and then moved
into the higher cognitive levels: synthesis, application and evaluation, remaining there
for a large portion of the modification time.

Prior to performing the modification task, participant 5 had performed a CBR in-
spection. Figure 5 graphs participant 5’s utterances from the CBR inspection. The
graph shows participant 5 started the inspection with a small number of utterances in
the lowest cognitive levels and then moved into the higher cognitive levels: Analysis
and Evaluation.

Figure 3 shows participant 1 started with very few low-level utterances and then
moved into the higher categories within the taxonomy. Before carrying out the code
modification, participant 1 had performed an ad hoc inspection on the class. The par-
ticipant also had a vast number of Uncoded utterances while performing the modifica-
tion. The recording indicates this participant talked about unrelated things while
performing the code changes.

In Figure 4, participant 17’s utterances during the modification reflect a very similar
story to those already described. Having performed, in this case, an ADR code inspection
prior to the modification, the participant started with a small number of low-level cogni-
tive utterances and then moved into the higher cognitive levels.

Figure 6 displays participant 1’s utterances from an ad hoc code inspection. The ad
hoc inspection technique is without structure and the inspector operates mostly in the
lowest cognition levels. Comparing this to participant 15’s modification utterances,
Figure 1, both start at the very low cognitive levels. The two graphs appear very simi-
lar in the way their utterances are spread through the different categories, and yet one
is from an inspection, Figure 6, and the other is from a modification, Figure 1. During
the inspection, participant 1 is working to understand the code while participant 15 is
working to add functionality to the code. As they are attempting to understand the
code they operate at similar cognitive levels. One participant is looking for defects,
the other looking to add functionality yet the cognitive levels are very similar.

6 Discussion

These results demonstrate that performing a code inspection prior to adding function-
ality impacts novice developers’ cognitive levels. Moreover, the various inspection
techniques used affects developers cognitive levels differently.

Figure 6 shows that participant 1 consistently operated in the lower cognitive levels
during the inspection. They were attempting to understand what the code does. When
comparing it to what the code should have done, they moved into the higher cognition
levels.

Figure 1 shows participant 15, who did not perform an inspection prior to modifying
the code, largely operated at the lower cognitive levels. This was similar to participant
1’s utterances shown in Figure 6. Notably, both participants operated at similar cogni-
tive levels yet were performing very different tasks: participant 1 was performing an ad
hoc code inspection and participant 15 was attempting to add functionality. The ad hoc
inspection technique, used by participant 1, is unstructured; the inspectors must use
their own experience to successfully execute the inspection. The cognitive levels

 Measuring Cognition Levels in Collaborative Processes for Software Engineering 41

experienced when performing an ad hoc inspection are similar to those experienced
when adding functionality to unfamiliar code. In the case of the ad hoc inspection, no
direction is given and in the case of the functionality being added, the code is unknown
and must first be understood in order for it to be modified. However, when participant
1 moved into the modification task, they operated at the higher cognitive levels, appli-
cation and synthesis, from very early unlike participant 15 when they were performing
th0065 same task (as noted earlier, participant 1 also talked about unrelated things
while performing the tasks).

Participant 5, shown in Figure 5, commenced their code inspection with a small
number of utterances in the low cognitive levels and then moved into the higher lev-
els. At the higher cognitive levels, as with participant one, they were judging the code
for correctness. However, participant five operated more consistently and for a longer
time period at these higher cognitive levels than participant 1 did.

Participants using the CBR inspection technique operated at higher cognitive levels
and when they moved to add new functionality they continued to operate at the higher
cognitive levels: application, synthesis and evaluation more consistently and for
longer time periods. The CBR inspection technique facilitated higher cognitive levels
within the inspection and the inspector, when making modifications, appeared to con-
tinue to function at these higher levels.

We found that in our study of novice developers’ cognitive development, during
the practical-based skill training exercise, the developers who performed the inspec-
tion prior to modification tended to operate at higher cognitive levels from very early
on while those who had not performed the inspection tended to operate at lower cog-
nitive levels for longer periods of time.

The results highlight the important role software inspections can play in increasing
developer comprehension of a system. They also support the notion that when intro-
duced to a new program or code, one must first go through an initial stage of low
cognition levels to gain a basic fundamental understanding of the code, its operands
and operations. For the novice developer, the less structured the process for working
through this stage, the longer they operate at the lower cognitive levels of the taxon-
omy. Conversely, the more structured the technique used to familiarise themselves
with the code they are working with, the faster they move into the higher cognitive
levels of the taxonomy.

The CBR inspection structure facilitates inspectors to function within the highest cogni-
tive levels, above that of both the ad hoc and ADR. This is due to the question and answer
nature of the checklist, which requires the inspector to judge the code for correctness.

As software systems continue to simplify the user experience while increasing the
complexity for developers, it is important that effective methods are developed to
assist novice developers joining these teams to understand the code-bases they are
working on as quickly as possible. This will service quality education with skilled
graduates that meet the ICT industry needs.

7 Conclusions

This study, and ultimately the three major stakeholders, academia, industry and
students, could all benefit from collaborating on future research investigating the

42 D.A. McMeekin et al.

benefits of inspections to improve collaborative design cognition and extending
team knowledge.

Industry’s benefit from collaboration with academia would be in assisting to produce
higher quality graduate developers. These graduates’ skills would have already been
tried and tested in the environment of with industry-based code. This could aid in reduc-
ing costs related to graduate training and also reduce the amount of productive time sen-
ior developers lose when answering rudimentary questions from new developers.

Collaboration between academia and industry would result in students also benefit-
ting. Prior to moving into the work force, students will have seen and worked on in-
dustry based code. Novice developers’ exposure to this type of code would create an
awareness of the complexities of the code they will be working with when they move
from academia into industry. Their education would have covered both the theoretical
side and the industry side of issues faced by developers.

The call must be made for increased collaboration between industry and academia.
The use of ICT continues to become more and more ubiquitous and the underlying
complexities of ICT continue to increase. Collaborative research between academia
and industry into effective reading strategies to improve developer comprehension is
essential in raising the quality of software being produced by increasing the quality of
software development graduates.

The disconnect between academia, their ICT graduates and ICT industries is as
common as the gap between business objectives and IT solutions. Despite the strong
shortage of ICT skilled professionals in all industries, academia has a hard time creating
ICT graduates that meet industry needs. Currently, existing ICT education and the rest
of the ICT industry throughout the world are out of sync. For example, the evolution
cycle of Technology is 6 months, but in academia, most curriculums change approxi-
mately every 3-5 years. Without a collective academic industry learning effort, students
will study outdated technology and practices that will be even more outdated in 3 years
time, when they graduate. Therefore, the collective effort will help to keep pace between
ICT revolutions and state-of-the-art education, enabling global knowledge, networked
intelligence, and extended knowledge to penetrate the educational sector.

References

1. Anderson, L.W., Krathwohl, D.R., Airasian, P.W., Cruikshank, K.A., Mayer, R.E., Pin-
trich, P.R., Raths, J., Wittrock, M.C.: A Taxonomy for Learning, Teaching, and Assessing:
A Revision of Bloom’s Taxonomy of Educational Objectives. Longman, New York (2001)

2. Basili, V.R.: Evolving and packaging reading technologies. Journal of Systems Soft-
ware 38(1), 3–12 (1997)

3. Bergantz, D., Hassell, J.: Information relationships in prolog programs: how do program-
mers comprehend functionality? Int. J. Man-Mach. Stud. 35(3), 313–328 (1991)

4. Bloom, B.: Taxonomy of Educational Objectives Cognitive Domain. David McKay Com-
pany, Inc. (1956)

5. Brooks, R.: Towards a theory of the comprehension of computer programs. International
Journal of Man–Machine Studies 18(6), 543–554 (1983)

6. Cooper, D., von Konsky, B., Robey, M., McMeekin, D.A.: Obstacles to comprehension in
usage based reading. In: Proc. 18th Australian Conference on Software Engineering
(ASWEC 2007), pp. 233–244 (2007)

 Measuring Cognition Levels in Collaborative Processes for Software Engineering 43

7. Dunsmore, A.: Investigating effective inspection of object-oriented code, PhD thesis,
Strathclyde University, U.K (2002)

8. Dunsmore, A., Roper, M., Wood, M.: Systematic object-oriented inspection - an empirical
study. In: ICSE 2001: Proceedings of the 23rd International Conference on Software Engi-
neering, pp. 135–144 (2001)

9. Dunsmore, A., Roper, M., Wood, M.: The development and evaluation of three diverse
techniques for object-orientated code inspection. IEEE Transactions on Software Engineer-
ing 29(8), 677–686 (2003)

10. Ericsson, K.A., Simon, H.A.: Protocol Analysis. The MIT Press, Cambridge (1993)
11. Fagan, M.E.: Design and code inspections to reduce errors in program development. IBM

Systems Journal 15(3), 182–211 (1976)
12. Fisher, C.: Advancing the study of programming with computer-aided protocol analysis,

pp. 198–216 (1987)
13. Gilb, T., Graham, D.: Software Inspection. Addison–Wesley, Wokingham (1993)
14. Humphrey, W.: A Discipline for Software Engineering. Addison–Wesley, Boston (1995)
15. Kelly, T., Buckley, J.: A context-aware analysis scheme for Bloom’s Taxonomy. In: ICPC

2006, Proceedings of 14th IEEE International Conference on Program Comprehension, pp.
275–284 (2006)

16. Laitenberger, O., DeBaud, J.: An encompassing life cycle centric survey of software in-
spection. Journal of Systems and Software 50(1), 5–31 (2000)

17. Littman, D., Pinto, J., Letovsky, S., Soloway, E.: Mental models and software mainte-
nance. Journal of Systems Software 7(4), 341–355 (1987)

18. von Mayrhauser, A., Vans, A.: Identification of dynamic comprehension processes during
large scale maintenance. Transactions on Software Engineering 22(6), 424–437 (1996)

19. McMeekin, D.A., von Konsky, B.R., Chang, E., Cooper, D.J.A.: Checklist Based Read-
ing’s Influence on a Developer’s Understanding. In: Proc. 19th Australian Conference on
Software Engineering (ASWEC 2008), pp. 489–496 (2008)

20. Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics, 4th edn. W.H. Free-
man, New York (2002)

21. Shull, F., Rus, I., Basili, V.: Improving software inspections by using reading techniques.
In: ICSE 2001: Proceedings of the 23rd International Conference on Software Engineering,
pp. 726–727 (2001)

22. Siy, H., Votta, L.: Does the modern code inspection have value? In: Proceedings of IEEE
International Conference on Software Maintenance, pp. 281–289 (2001)

23. Sjoberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V.B., Karahasanovic, A., Liborg,
N., Rekdal, A.C.: A Survey of Controlled Experiments in Software Engineering. IEEE
Transactions on Software Engineering 31(9), 733–753 (2005)

24. Tyran, C.K., George, J.F.: Improving software inspections with group process support.
Communications of the ACM 45(9), 87–92 (2002)

25. Xu, S., Rajlich, V.: Cognitive process during program debugging. In: Proc. Third IEEE In-
ternational Conference on Cognitive Informatics, pp. 176–182 (2004)

26. Xu, S., Rajlich, V.: Dialog-based protocol: an empirical research method for cognitive ac-
tivities in software engineering. In: Proc. of International Symposium on Empirical Soft-
ware Engineering (2005)

27. Xu, S., Rajlich, V., Marcus, A.: An empirical study of programmer learning during incre-
mental software development. In: Proc. Fourth IEEE Conference on Cognitive Informatics
(ICCI 2005), pp. 340–349 (2005)

	Measuring Cognition Levels in Collaborative Processes for Software Engineering Code Inspections
	Introduction
	Industry Practice
	Practical Software Inspection Methods

	Bloom’s Taxonomy for Educational Objectives
	Bloom’s Cognitive Development
	Industry-Based Context-Aware Schema Using Bloom’s Taxonomy

	Methodology for Collective Academic and Industry Learning
	Results on Effective Bloom’s Cognition Development and Software Skill Training
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

