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Abstract. We investigate tradeoffs among expressiveness, operational cost, and
economic efficiency for a class of multiattribute double-auction markets. To en-
able polynomial-time clearing and information feedback operations, we restrict
the bidding language to a form of multiattribute OR-of-XOR expressions. We
then consider implications of this restriction in environments where bidders’ pref-
erences lie within a strictly larger class, that of complement-free valuations. Us-
ing valuations derived from a supply chain scenario, we show that an iterative
bidding protocol can overcome the limitations of this language restriction. We
further introduce a metric characterizing the degree to which valuations violate
the substitutes condition, theoretically known to guarantee efficiency, and present
experimental evidence that the actual efficiency loss is proportional to this metric.

1 Introduction

Multiattribute auctions mediate the trade of goods defined by a set of underlying fea-
tures, or attributes. Bids express offers to buy or sell configurations defined by specific
attribute vectors, and the auction process dynamically determines both the transaction
prices and the configurations of the resulting trades. Most research on multiattribute
auctions addresses the single-good procurement setting, in which a single buyer nego-
tiates with a group of candidate suppliers [3,5,8,13]. Extending to the two-sided case
offers the potential for enhanced efficiency, price dissemination, and trade liquidity.

In mediating the trade of multiple goods, it is often beneficial to consider preferences
for bundles of goods. The exponentially sized offer specifications induced by such com-
binatorial valuations present difficulties, both for expression of agent valuations [15] and
computation of optimal allocations [14]. For certain subclasses of multi-unit valuations,
however, these problems may be tractable. Notably, for valuations satisfying the gross
substitutes condition, it is well known that a price equilibrium exists, and such equi-
libria support efficient allocations. Furthermore, market-based algorithms—distributed
iterative procedures that search over a space of linear prices—reliably converge to equi-
librium under gross substitutes. Market-based algorithms that rely exclusively on offers
for individual goods in effect provide a polynomial scheme for approximate computa-
tion of efficient allocations. In Section 3, we review gross substitutes and its relation to
syntactically defined bidder valuation classes.
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Since a configuration in multiattribute negotiation corresponds to a unique type of
good, the class of multi-unit valuations for multiattribute goods is equivalent to the
class of combinatorial valuations. The problem of multi-unit multiattribute allocation
therefore inherits the hardness results derived for combinatorial auctions, but moreover
applied to a cardinality of goods that is itself exponential in the number of attributes.

In Section 4, we present a two-sided multiattribute auction admitting polynomial-
time clearing given a restricted bidding language. We extend a previously developed
clearing algorithm [9] with a polynomial-time information feedback algorithm, en-
abling the implementation of market-based algorithms. Our mechanism thus extends
some of the efficiency results of combinatorial auctions to multiattribute domains. We
provide evidence that the inclusion of information feedback to our auction design suc-
cessfully compensates for the lack of expressive power of our bidding language.

Theoretical work is largely silent on the efficiency of market-based algorithms given
valuations violating gross substitutes. In Section 5, we present natural ways in which
complement-free valuations may violate the gross substitutes condition, invalidating
the efficiency guarantee of market-based approaches. In an effort to quantify the ex-
pected performance limits of our mechanism against a larger class of valuations, we
introduce a new metric on bidder valuations, based on the severity by which valuations
violate gross substitutes. We apply this metric to a family of valuations, derived from
a supply chain manufacturing scenario, and present simulation results demonstrating a
correlation between our metric and expected market efficiency.

2 Auction Preliminaries

Auctions mediate the trade of goods among a set of self-interested participants, or
agents, as a function of agent messages, or bids. In a multiattribute auction, goods are
defined by vectors of attributes, a = (a1, . . . , am), aj ∈ Aj . A configuration, x ∈ X ,
is a particular attribute vector. Each configuration can be thought of as a unique type of
good. An allocation, g ∈ G, is a multiset of such goods, that is, a set possibly containing
more than one instance of a given configuration.

Bids define one or more offers to buy or sell goods. An offer pairs an allocation and
a reserve price, (g, p), where g ∈ G and p ∈ �+. For a buy offer, the reserve price
indicates the maximum payment a buyer is willing to make in exchange for the set of
goods comprising allocation g. Similarly, the reserve price of a sell offer defines the
minimum payment a seller is willing to receive to provide allocation g.

A bid, b ∈ B, defines a set of offers (often implicitly) which collectively define
an agent’s reserve price over the space of allocations. We use the term valuation to
designate any mapping from the space of allocations to the positive real numbers: v :
G �→ �+, hence a bid defines a valuation. For ease of explication, we use the function
r : G × B �→ �+ to indicate the reserve price of a bid for a given allocation. The
bidding language of an auction defines the space B of expressible bids.

Each bidder maintains a single active bid: bi for buyer i and bj for seller j. To clear
the market, the auction computes a global allocation comprising an assignment of in-
dividual allocations and associated payments. The computed allocation must be
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1. feasible: the set of goods allocated to buyers is contained in the set of goods sup-
plied by sellers, and the net payments are nonnegative, and

2. acceptable: individual payments meet the reserve price constraints expressed in the
bids of buyers and sellers.

We assume agents have quasilinear preferences over alternative allocation and payment
outcomes. Buyer i has quasilinear utility function ui(g, p) = vi(g)+p, where valuation
vi defines the net change in buyer utility when supplied with a given allocation, and p
denotes the net payments made to the buyer. Similarly, seller j has utility function
uj(g, p) = −vj(g)+p, where valuation vj is interpreted as a cost function for supplying
allocations.

The allocations and payments determine the realized utilities of all agents. To the
extent that bids accurately reflect valuations, an auction can use bids as proxies for un-
derlying valuations, and maximize the objective function for the valuations expressed
through bids. The extent to which bids do not accurately reflect agent valuations may
induce inefficient (suboptimal) global allocations, as the maximization employs an in-
accurate objective function. A bidding language which is syntactically unable to fully
convey agent valuations may therefore impede efficiency. Since the complexity of opti-
mizing global allocation increases with the expressiveness of the bidding language, we
face a general tradeoff between computational and allocational efficiency.

In a direct revelation mechanism, each agent submits at most a single bid, in the
form of a valuation, without receiving any information about the bids of other agents.
In iterative auctions, agents revise their bids over time based on summary information
provided by the auction about the current auction state. Summary information is typ-
ically derived from the clearing algorithm given the current auction state, informing
agents of their current hypothetical allocations as well as price quotes indicating the
minimum or maximum prices to buy or sell allocations [16].

3 Allocation with Complement-Free Valuations

We start by revisiting complexity results for combinatorial allocation, focusing on
complement-free bidder valuations. Non-complementarity assumptions are commonly
invoked in economic models, including diminishing marginal utilities for consumers
and decreasing returns to scale for producers, and the substitutes condition for Wal-
rasian equilibria [12]. The class of complement-free buyer valuations contains all valu-
ations which are never superadditive over configurations.

Definition 1. A buyer valuation is complement-free (CF) if for any ga and gb,

v(ga) + v(gb) ≥ v(ga ∪ gb).

A seller valuation (cost function) is complement-free it is not subadditive over configu-
rations, that is, the direction of the above inequality is reversed for sellers.

It is known that no polynomial clearing algorithm can guarantee better than a 2-
approximation for the general class CF [7]. In the sequel, we present subclasses of
CF of increasing complexity, borrowing both terminology and complexity results from
Lehmann et al. [10], with notation amended slightly for multiattribute domains (where
unique goods correspond to the configurations).
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3.1 Syntactic Valuation Classes

Syntactic valuations are built from atomic valuations and operators on those valuations.

Definition 2. The atomic valuation (x, p) gives the value p to any allocation containing
a unit of configuration x, and value zero to all other allocations.

Definition 3. Let v1 and v2 be two valuations defined on the space G of allocations.
The valuations v1 + v2 (OR) and v1 ⊕ v2 (XOR) are defined by:

(v1 + v2)(g) = max
g′⊆g

(v1(g′) + v2(g \ g′)),

(v1 ⊕ v2)(g) = max(v1(g), v2(g)).

Informally, the valuation (v1 + v2)(g) divides up allocation g among valuations v1 and
v2 such that the sum of the resulting valuations is maximized. The valuation (v1⊕v2)(g)
gives the entire allocation to v1 or v2, depending on which values g higher.

Subclasses of complement-free valuations are derived by placing restrictions on how
the OR and XOR operators may be combined. Class OS valuations use only the OR
operator over atomic valuations, thereby expressing additive valuations. Class XS valu-
ations apply XOR over atomic valuations, thereby expressing substitute valuations. Any
valuation composed of OR and XOR (applied in arbitrary order) falls into class XOS.
The best approximation factor that can be guaranteed for XOS valuations in polynomial
time is bounded above by 2, and below by 4

3 [7].

3.2 OXS Valuations

Definition 4. Applying ORs over XS valuations yields a valuation in class OXS.

For example, as a buy bid, the valuation (x1, p1) + [(x2, p2) ⊕ (x3, p3)] expresses a
willingness to buy x1 at a price of p1, and independently expresses a willingness to buy
either x2 at a price of p2, or x3 at a price of p3 (but not both), giving the following
acceptable allocations:

{(x1, p1), (x2, p2), (x3, p3), ({x1, x3}, p1 + p3), ({x1, x2}, p1 + p2)}.
If all bids express OXS valuations, the clearing problem can be formulated as a
polynomial-time bipartite matching problem [9].

3.3 Gross Substitutes

To define valuations exhibiting gross substitutability, we must first introduce the concept
of a demand correspondence. The following definitions are with respect to buyers.

Definition 5. Given valuation v and configuration prices p = (px1 , . . . , pxn), demand
correspondence d(v | p) denotes the set of allocations that maximize v(g) − ∑

x∈g px.

Definition 6. A valuation v is of class GS if for any price vectors p and q with pi ≤
qi ∀i and g1 ∈ d(v | p), there exists g2 ∈ d(v | q) such that {x ∈ g1 | px = qx} ⊂ g2.
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Informally, GS requires that the demand for a given configuration be nondecreasing in
the price of any other configuration. For sellers, the supply of a given configuration must
be nonincreasing in the price of others.

Valuations satisfying the gross substitutes condition admit efficiency through market-
based algorithms. Such algorithms operate by iteratively providing agents with price
quotes, requiring that agents express demand sets reflecting their optimal consumption
or production choices at the given prices. Demand sets are expressible in any bidding
language of complexity equal to or greater than class OS. Prices are adjusted at each
iteration based on the relative supply and demand of each type of good, until the market
reaches equilibrium. Computationally, market-based algorithms provide a fully poly-
nomial approximation scheme, with complexity that is polynomial in the number of
bidders, goods, and the inverse of the approximation factor [10].

4 Call Market Implementation

In this section, we present the bidding language and algorithms supporting our
multiattribute call market implementation. Though we focus here on the discrete
configuration-based bidding language employed in our experimental study, both the
clearing and information feedback algorithms admit more general bid forms [9,11].

4.1 Bidding Language

As discussed, multiattribute goods are defined in terms of possible configurations as-
signing values to attributes. The simplest multiattribute bidding unit expresses a maxi-
mum/minimum price at which to trade a given quantity of a single configuration.

Definition 7 (Multiattribute Point). A multiattribute point of the form (x, p, q) indi-
cates a willingness to buy up to total quantity q of configuration x at a unit price no
greater than p (for q > 0). A negative quantity (q < 0) indicates a willingness to sell
up to q units at a price no less than p.

Participants in multiattribute auctions often wish to express flexibility over alternative
configurations. For example, a computer buyer may be willing to accept various pos-
sibilities for processor type/speed, memory type/size/speed, etc., but at configuration-
dependent reserve prices.

Definition 8 (Multiattribute XR Unit). A multiattribute XR unit is a triple of the form
((x1, . . . , xN ), (p1, . . . , pN ), q), indicating a willingness to trade any combination of
configurations (x1, . . . , xN ) at unit prices (p1, . . . , pN ) up to total quantity |q|, where
q > 0 indicates a buy offer, q < 0 a sell offer.

For example, given XR unit ((x1, x2, x3), (p1, p2, p3), 4), the allocation {x1, x1, x2}
would be acceptable at total payment not greater than p1 + p1 + p2.

In a slight abuse of notation, let r(XR, x) = p select the unit reserve price for con-
figuration x in the specified XR unit. Note that a multiattribute point is equivalent to
an XR unit with single configurations and prices. To simplify our examples, we use the
multiattribute point notation when an XR unit includes exactly one configuration.

Our final language construct is an OR extension of the XR unit.
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Definition 9 (Multiattribute OXR Bid). A multiattribute OXR bid, {XR1, . . . , XRM},
indicates a willingness to trade any combination of configurations such that the aggre-
gate allocation and payments to the bidder can be divided among the XR units such that
each (g, p) pair is consistent with its respective XR unit.

The bidding language constructs presented here can be classified within the syntactic
framework presented above. A multiattribute point (x, p, q) expresses the valuation

(x, p) + (x, p) + · · ·
︸ ︷︷ ︸
total of |q| atomic elements

.

The additional quantity designation in a multiattribute point provides compactness over
the equivalent OR expression when valuations are linear in quantity. A multiattribute
XR unit with quantity q defines the valuation

[(x1, p1) ⊕ · · · ⊕ (xN , pN )] + [(x1, p1) ⊕ · · · ⊕ (xN , pN)] + · · ·
︸ ︷︷ ︸

total of |q| XOR elements

.

The multiattribute XR unit is less expressive than the general class OXS because it de-
fines an OR over a set of identical XOR expressions, thus imposing a constraint that
valuations be linear in quantity, and configuration parity, that is, the quantity offered
by a bid is configuration-independent [9]. The OXR class is equivalent in expressive-
ness to OXS, though multiattribute OXR bids can be more compact and computationally
convenient to the extent that valuations are linear in quantity.

4.2 Clearing

Previous work [9] explored the connection between bidding languages and clearing
algorithms for this domain. Here we provide the main results but present them for only
the OXR bidding language employed in the current study. The result holds for more
general conditions on the bidding language as described in the earlier paper.1

Clearing the market requires finding the global allocation that maximizes the total
trade surplus, which is the Global Multiattribute Allocation Problem (GMAP). For a
certain class of bids, which includes OXR bids, GMAP can be divided into two discrete
steps: identifying optimal bilateral trades (the Multiattribute Matching Problem, MMP),
then maximizing total surplus as a function of those trades.

In the case of OXR bids, the multiattribute matching problem determines the optimal
configuration x to trade between each pair of buy and sell XR units. For buy XR unit
XRb = (configsb, pricesb, qb) and sell XR unit XRs = (configss, pricess, qs),

MMPx(XRb, XRs) = argmax
x∈X

[r(XRb, x) − r(XRs, x)]. (1)

The value achieved by the multiattribute matching solution (1) is called the MMP sur-
plus, MMPs(XRb, XRs).

1 The earlier paper [9] characterized bidding languages in terms of allocation constraints, rather
than the complement-free hierarchy employed in the present work.



32 K.M. Lochner and M.P. Wellman

Define BX as the set of all XR units contained in the buyers’ OXR bids, and SX the
set of all XR units in the sellers’ OXR bids. We start by solving MMP (1) for each
pair in BX × SX. GMAP is then formulated as a network flow problem, specifically
the transportation problem, with source nodes SX, sink nodes BX, and link surplus
(equivalently, negative link costs) equal to the values of MMPs on BX×SX. The optimal
solution flow along a given link designates a quantity traded between the traders whose
bids contain the respective XR units, and the configuration to be traded is the solution
to MMPx between the XR units.

4.3 Information Feedback

The decomposition of GMAP into MMP and subsequent network optimization can also
be exploited for computing price quotes. To calculate quotes, we first find the required
surplus (i.e., solution to MMPs) for a new trade with a particular trader to be included
in the efficient set. We can then determine the required price offer to that trader for
any available configuration as a function of that required surplus. The computed price
will be the quote for a (configuration, trader) pair; taking the min/max over all sell-
ers/buyers yields the ask/bid quote for a configuration.

This process is best described through example. Figure 1 depicts the GMAP formu-
lation for a set of three sell offers (shown at left) and three buy offers (shown at right),
all expressed as XR units. For example, XR1 is an offer to sell a unit of either x1 or x2

at a price of 11. The solutions to MMPs are indicated on the links connecting pairs of
offers. The solution to GMAP is indicated by the bold links, in this case XR5 and XR2

trading one unit of x2, and XR3 and XR6 trading one unit of x2.

Fig. 1. GMAP formulation with three sell offers (left) and three buy offers (right). The optimal
solution is indicated in bold. XRD is a dummy node added for computing a link quote.

We now calculate the bid quote for x2. As depicted in Figure 1, we first connect a
dummy node (XRD) to one of the existing buy nodes (node XR6). We now calculate
the minimum link surplus on the new edge that would increase the value of the optimal
network flow. The computed link quote, LQ6, is the trade surplus (MMPs(XR6, XRD))
required for a new bid to trade with node XR6. The link quote for each buy node must
be calculated, producing a link quote for each XRk ∈ BX.
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The bid quote for a given configuration x is then:

max
k

(r(XRk, x) − LQk).

Continuing with the example, Figure 2 depicts the computed link quotes. In this in-
stance, the bid quote for configuration x2 with XR6 would be the offered price of 10,
less the required link surplus of 4, producing a quote of 6 to transact with that unit. The
bid quote for the configuration is the maximum over all the units, which is also 6. An
offer price of 6 for x2 would be sufficient to trade with either XR6 or XR5, as the quoted
price for XR5 would also be 6 (with a reserve price of 8 and required link surplus of 2).

Fig. 2. Link quotes computed for a bid quote given the GMAP formulation of Figure 1

Finally, as confirmation that this process has produced a valid quote, we can consider
the outcome of a new sell offer for a unit of x2 at the quoted price. Figure 3 depicts this
situation for the case that the new bid transacts with XR5 (the algorithm will break the
tie randomly) and shows that inclusion of the new bid has increased the trade surplus
by 1 to a total of 7.

Fig. 3. GMAP solution for Figure 1 with a new sell offer at the quoted price

It is apparent from this formulation that once all link quotes have been determined,
computing configuration quotes is proportional to the number of XR units. This im-
plies that the complexity of a single configuration quote is invariant to the size of at-
tribute space when the GMAP-MMP decomposition is applicable. Although computing
quotes for all configurations entails complexity linear in the number of configurations,
a bidder-driven query process for configuration quotes may still support market-based
algorithm efficiency in large or continuous attribute domains.
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Computing link quotes on the network flow graph is also achievable in polynomial
time, using a specialization of the cycle-canceling algorithm [1]. Given that computa-
tion of a link quote requires perturbing the optimal network flow by quantity of only a
single unit, the cycle-canceling algorithm can be adapted to a shortest-path algorithm,
where an all-pairs shortest-path algorithm computes all required link quotes with com-
plexity polynomial in the number of XR units. In practice, we require two iterations of
the shortest-path algorithm, one iteration each for bid quotes and ask quotes.

5 Multiattribute Valuations

Our call market supports the direct expression of OXS valuations. However, many val-
uations natural for multiattribute domains fall outside of class OXS. For example, it is
commonly desirable to ensure homogeneity, where all configurations in an allocation
share values on one or more attributes [4]. Valuations placing higher values on homo-
geneous allocations are expressible with an XOS bidding language but not OXS.

The following example, inspired by a supply chain trading scenario [2], illustrates
another situation where seller valuations fall outside of class OXS, and may violate GS.

Example 1. PCs are built from two components: cpu and memory. Assume that a man-
ufacturer has one unit of cpu = fast , one unit of cpu = slow , one unit each for
memory ∈ {large,medium, small}, with the following allowable configurations:

1. configuration x1: {fast , large}
2. configuration x2: {fast ,medium}
3. configuration x3: {slow , small}
4. configuration x4: {slow ,medium}

The production possibilities are then {x1, x4}, {x1, x3}, and {x2, x3}. The induced
seller valuation is not expressible using an OXS language. The nearest OXR bid approx-
imations require the seller to either overstate (bid B1) or understate (bids B2 and B3)
his production capabilities:

(((x1, x2), (p1, p2),−1), ((x3, x4), (p3, p4),−1)) (B1)

((x1, p1,−1), ((x3, x4), (p3, p4),−1)) (B2)

(((x1, x2), (p1, p2),−1), (x3, p3,−1)) (B3)

Assume that within the above production possibilities, the seller has a unit cost of 3 for
all configurations, with total cost additive in unit cost. The exact XOS valuation would
be

((x1, 3) + (x4, 3)) ⊕ ((x1, 3) + (x3, 3)) ⊕ ((x2, 3) + (x3, 3)).

This valuation is also not in class GS. Assume the prices of x1 and x4 are 5, and x2

and x3 are priced at 4. At these prices, the optimal production bundle is (x1, x4) which
yields a surplus of 4. If the price of x1 drops to zero, the optimal production bundle
becomes (x2, x3), yielding a surplus of 2. Hence, the supply of x4 decreases with a
decrease in the price of x1, which violates the gross substitutes condition for sellers.
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6 A New Valuation Metric

Despite the limited expressive power of OXS bidding, we expect the iterative (market-
based) version of our multiattribute auction to allocate effectively as long as valuations
satisfy GS, or nearly do. To better characterize these situations, we introduce a measure
of the degree to which a valuation violates the GS conditions.

6.1 Gross Substitutes Revisited

As defined above, GS requires that the demand for goods be nondecreasing in the prices
of other goods. Intuitively, a price adjustment process will ultimately reach equilib-
rium if a price perturbation intended to reduce (increase) the demand of over(under)-
demanded goods does not reduce (increase) the demand for other goods.

For valuation v satisfying GS, the demand correspondence condition holds for all
price vectors and perturbations. Formally, given d(v | p), the set of allocations maxi-
mizing v(g) − ∑

x∈g px, for all vectors of configuration prices p = (px1 , . . . , pxn) ∈
�n

+, and all single price perturbations dp ∈ �n
+, for any g1 ∈ d(v | p) there exists

g2 ∈ d(v | p + dp) such that {x ∈ g1 | dpx = 0} ⊂ g2.

6.2 Gross Substitutes Violation

Let p, dp ∈ �n
+, with gi ∈ d(v | p). The gross substitutes violation is given by:

GSV(v, p, dp, gi) = min
g∈d(v|p+dp)

|{x ∈ gi | dpx = 0} \ {x ∈ g | dpx = 0}|.

Intuitively, this measure counts the number of violations of the GS condition for a spe-
cific initial price vector and price change. Valuations satisfying GS have a violation
count of zero for all initial prices, demand sets, and perturbations. Valuations that do not
satisfy GS will have positive values of GSV for one or more combinations of (p, dp, g).

To simplify the exposition hereon, we assume d(v | p) maps to a single g for any
p, and use x ∈ d(v | p) to indicate a good from that demand set. We next define the
gross substitutes violation for a valuation and a price vector as the average GSV over
all minimal single-price perturbations that ensure a new demand set.

GSV(v, p) =
1
n

n∑

i=1

GSV(v, p, dpi, d(v | p)),

where dpi = (0, . . . , 0, dpi, 0, . . . , 0), and

dpi = min
dp

dp s.t. d(v | p) �= d(v | (p1, . . . , pi + dp, . . . , pn)).

Next, define the expected gross substitutes violation for a valuation as the expected
value of GSV for random p (pi ∼ U [0, p̄]),

EGSV(v) = E[GSV(v, p)].

The intuition behind using the expected GSV of a valuation (the average, rather than the
maximum or minimum) is that any given run of a market-based algorithm traces a par-
ticular trajectory in price space, and the average violation is a proxy for the probability
of seeing any specific violation.
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7 Testing the EGSV-Efficiency Relationship

When GS holds, EGSV is zero, and market-based algorithms achieve full efficiency.
Our hypothesis is that when the condition fails, realized efficiency will be decreasing
in EGSV, all else equal. To evaluate this hypothesis, we employed a component-based
model of configurations, as in Example 1. In this model, valuation complexity is deter-
mined by the configuration structure, as well as by the respective inventory levels and
component costs of sellers.

For example, a valuation defined over configurations {x1, x2, x3} will violate GS to
the extent that swapping production from one configuration to another requires addi-
tional components that are allocated to the third. Treating configurations {x1, x2, x3}
as sets of components, assume that switching production from x1 to x2 requires addi-
tional components x2 \ x1. If an agent has no additional inventory of the components
(x2 \ x1) ∩ x3 then the induced valuation will have a GSV of 1 for some price levels.
In this way, variation both in the composition of configurations and the inventory levels
of agents induces different levels of substitutability in agent valuations.

In the example above, if x2 \ x1 included two distinct components used by two
different configurations, then the bidder valuation would have GSV = 2 for some price
vectors, and thus a nonzero EGSV value. Conversely, if an agent had excess inventory
of x2 \x1, then the induced valuation would have GSV = 0 for all prices, and therefore
the valuation would have an EGSV value of zero.

7.1 Valuation Generation

We generate a configuration structure by constructing random configurations until we
have 20 distinct instances. For each configuration, we probabilistically include any one
of eight unique components in the configuration (i.e., configurations may have vari-
able numbers of components), while additionally requiring that any single configura-
tion have at least three components. Given this structure, we randomly sample costs
and inventory to generate a seller valuation. Seller inventories for each component are
drawn independently from the discrete uniform distribution [0, 3], while seller costs per
component are drawn from the discrete uniform distribution [30, 80].

We then evaluate EGSV for the induced valuation with respect to the price distribu-
tion from which agent valuations are drawn. For each price sample p,

1. determine the optimal production set g∗ = d(v | p),
2. identify all minimal single-price changes sufficient to change g∗, and
3. sum the GS valuations over these perturbations.

We iterate this process with random price samples until the standard error of EGSV
is below .05. We generated a set of 100 valuations for each configuration structure,
recording the costs and inventory, along with the EGSV value for each such valuation.
We generated and evaluated seller valuations for 277 configuration structures, yielding
a total of 27700 seller valuations.

7.2 Market Simulation

Each problem instance comprises 10 buyers and 10 sellers. For each configuration struc-
ture, we first sort the set of 100 generated seller valuations by EGSV. We define a unique
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problem instance for each contiguous set of 10 seller valuations, using the previously
generated inventories and costs for each valuation, and taking the average EGSV value
(denoted aGSV) of the 10 sellers to classify the problem instance. We thus generate 90
problem instances for each configuration structure.

We randomly generate buyer valuations for each problem instance. Each buyer has
demand for two units, with full substitutability (i.e., will accept any combination of two
goods at their reserve prices). Buyer reserve prices are drawn from the discrete uniform
distribution [400, 500] for each configuration.

For each problem instance, we first solve the allocation problem to determine the
maximum achievable surplus. We then simulate bidding until quiescence, computing
the fraction of efficiency achieved. To quantify the benefit of information feedback, we
take the first iteration of bidding as the direct-revelation outcome. To evaluate the benefit
of direct expression of substitutes—as in the OXS class supported by the OXR bidding
language—we repeated the simulation with a class OS bidding language. Each problem
instance thus produces four data points: one for each of (direct , iterative)×(OS, OXR).

Agents employ myopic best-response bidding, offering their true values at each iter-
ation for a profit-maximizing set of goods. Given that the bidding language cannot fully
express seller valuations, sellers are forced to approximate. To generate an OS bid, sell-
ers find the feasible production bundle that maximizes profit at current prices (assuming
a default price when quotes are not available). To generate an optimal OXR bid, sellers
start with the optimal OS bid, and expand this to a feasible OXR bid.

7.3 Simulation Results

We aggregated the simulation results over all configuration structures and sorted the
data by aGSV value into 10 bins. Figure 4 plots the average achieved fraction of

Fig. 4. Mean efficiency for average realized EGSV
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maximal surplus as a function of aGSV value, for both direct-revelation and iterative
mechanisms, for both the OS and OXR bidding languages.

For aGSV values close to zero, the substitutes condition is nearly satisfied for all
valuations. Figure 4 confirms that iterative mechanisms perform well in this situation,
averaging more than 97% efficiency for both OXR and OS bidding languages. The direct
OXR mechanism (but not direct OS) also achieves this level of efficiency for low aGSV
values. We conjecture that the majority of low EGSV valuations were also in class OXS,
and therefore the ability to express substitutability through OXR bids is sufficient to
achieve effective allocations without iteration.

Notable in Figure 4 is that the iterative mechanisms outperform the direct OXR mech-
anism by a margin that increases in aGSV value. We suspect this reflects valuations
deviating further from class OXS with higher EGSV values. Despite increasing valu-
ation complexity, the iterative mechanisms maintain a high level of efficiency, falling
only to 95% as aGSV values reach 1. In this setting, information feedback is able to
compensate for the lack of expressive power of a class OXS bidding language.

Finally, we observe that the iterative OXR mechanism outperforms the OS mecha-
nism over all aGSV values. We hypothesize that the direct expression of substitutes
allows the market-based algorithm to escape local maxima, as our mechanism does not
implement a provably convergent market-based algorithm for OS bids.

8 Conclusions

We have introduced an implemented multiattribute call market with polynomial-time
clearing and information feedback operations for a bidding language supporting a re-
stricted class of combinatorial valuations. To our knowledge, this is the first call market
of its kind presented in literature.

We analyzed the expected efficiency of our mechanism from the perspective of
known hardness results derived for combinatorial auction settings, given complement-
free bidder valuations. Using information feedback, iterative market-based algorithms
can achieve efficient allocations given valuations satisfying the gross substitutes con-
dition. Moreover, in some cases, iterative bidding can successfully compensate for ex-
pressive deficiencies imposed by a restricted bidding language.

Finally, we presented a new metric on bidder valuations, derived from the ways in
which valuations violate GS. Experimental trials produce evidence that this metric cor-
relates with the expected efficiency of market-based algorithms. The results suggest
that measuring the degree of GS violation may provide a useful guide for predicting the
performance of iterative bidding mechanisms, beyond the scope of environments for
which theoretical guarantees apply.
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