
A Market-Based Approach to Multi-factory Scheduling

Perukrishnen Vytelingum1, Alex Rogers1, Douglas K. Macbeth2, Partha Dutta3,
Armin Stranjak3, and Nicholas R. Jennings1

1 School of Electronics and Computer Science, University of Southampton, UK
{pv,acr,nrj}@ecs.soton.ac.uk

2 School of Management, University of Southampton, UK
D.K.Macbeth@soton.ac.uk

3 Strategic Research Centre, Rolls Royce, UK
{Partha.Dutta,Armin.Stranjak}@Rolls-Royce.com

Abstract. In this paper, we report on the design of a novel market-based ap-
proach for decentralised scheduling across multiple factories. Specifically, be-
cause of the limitations of scheduling in a centralised manner – which requires
a center to have complete and perfect information for optimality and the truth-
ful revelation of potentially commercially private preferences to that center – we
advocate an informationally decentralised approach that is both agile and dy-
namic. In particular, this work adopts a market-based approach for decentralised
scheduling by considering the different stakeholders representing different fac-
tories as self-interested, profit-motivated economic agents that trade resources
for the scheduling of jobs. The overall schedule of these jobs is then an emer-
gent behaviour of the strategic interaction of these trading agents bidding for
resources in a market based on limited information and their own preferences.
Using a simple (zero-intelligence) bidding strategy, we empirically demonstrate
that our market-based approach achieves a lower bound efficiency of 84%. This
represents a trade-off between a reasonable level of efficiency (compared to a
centralised approach) and the desirable benefits of a decentralised solution.

1 Introduction

Job-shop scheduling is an important and challenging problem that has long been the
subject of extensive research in Artificial Intelligence [2]. Specifically, it is the problem
of allocating resources for the completion of customers’ jobs within specific deadlines
in a single or a number of factories. Such a problem is usually solved optimally as a
combinatorial optimisation problem (that maximises the utility of all stakeholders, i.e.
both customers and factories) by a center that has complete information of the system.
However, this centralised approach can be problematic in a number of ways. First, a
completely new solution often needs to be recomputed from scratch with every change
in the system (e.g. new stakeholders entering the system or existing ones updating their
job requirements). Second, stakeholders, which usually represent competing organisa-
tions in the real world, are often reluctant to share their private and sensitive information
with a center that would then have complete knowledge of the whole system, since this
may shade their competitive edge. Finally, and perhaps most importantly, the solution

S. Das et al. (Eds.): Amma 2009, LNICST 14, pp. 74–86, 2009.
c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

A Market-Based Approach to Multi-factory Scheduling 75

quickly becomes intractable with increasing problem size, because of the combinatorial
nature of the task at hand.

For these reasons, there is an increasing trend towards solving these scheduling prob-
lems in a decentralised manner. Such approaches are inherently more robust because
they don’t have a single point of failure and they also do not require the divulging of
commercially valuable information to a third party. Moreover, the distributed nature of
the computation also means a more scaleable solution is possible, with the system being
more dynamic in adapting to changes in the system.

Against this background, this paper reports on the development of a market-based
approach for scheduling across multiple factories. Our work is principally motivated
by the need for more robust and scaleable solutions in the Aero Repair and Overhaul
(AR&O) context where customers (typically airlines) in the system require that their
engines be scheduled for routine maintenance in overhaul bases (OHBs). In addition,
engines may require more urgent inspection due to some damage (e.g. through bird-
strike or icing) or mechanical failure. These disruptions introduce uncertainties in the
system which increase the complexity of the scheduling process since it requires us
to dynamically construct schedules capable of effectively coping with such unforeseen
events in real time. The challenge is to dynamically schedule repairs and routine main-
tenance subject to these constraints. To date, the state of the art consists of a pragmatic
scheduling solution [8] that consists of a center that computes the engine repair sched-
ules based on the capacity and capability of the multiple factories and the engine repair
severity. However, this is a centralised solution that suffers from all the aforementioned
problems.

In more detail, the AR&O scheduling problem, as described above, is an impor-
tant class of problems in its own right (being worth over $25B worldwide in 2008). It
also has characteristics that are found in many other applications as diverse as classic
job-shop scheduling, production planning and manufacturing scheduling [2,6]. Thus,
in addition to its immediate goals of addressing the AR&O problem, this research en-
deavour has further applications within many adaptive decision processes where there
is an extended and dynamic network of interdependent customer and supplier business
entities. As such, it has the potential to provide utility to many other supply network set-
tings where again traditional approaches have tended to a static representation unable
to respond quickly to the rate of change in the environment.

To address the challenge of developing an agile and decentralised scheduling system,
a number of researchers have advocated the use of economic metaphors by adopting a
market-based approach where customers and factories are self-interested agents1 that
compete, through offers to buy and sell resources, in order to maximise their utility.
Markets are a particularly suitable approach in this context, because of their ability to fa-
cilitate resource allocation often with public information exchange and their distributed
nature with the resource allocation emergent from the competition among buyers and
sellers. Because of their distributed nature, no single agent computes the resource allo-
cation, markets are robust against failure and, furthermore, markets have been shown to
dynamically and efficiently react to changes in the system [3]. Now, there has been

1 Self-interested agents are reluctant to share private information and are driven by the objective
of maximising their own profit.

76 P. Vytelingum et al.

previous work that adopted a market-based approach in this domain. Specifically,
Baker’s work looked at a market-driven contract net mechanism to schedule a factory
[1], and Rassenti et al. developed a sealed-bid combinatorial auction mechanism for
scheduling flight landing and take-off [7]. However, while these mechanisms reduce
the complexity of the particular problems they are tackling, they still need a center
that collects all offers (which are not made public) to match them for scheduling. In
contrast, Wellman et al. examine a number of auction mechanisms for decentralised
scheduling [12], including multiple simultaneous ascending auctions. Here, while the
latter approach circumvents the need for an auctioneer (as all offers are made public in
the market), it considers only scheduling for a single factory, and this solution does not
easily generalise to the multi-factory case considered here because they consider fun-
damentally different auction mechanisms, namely single-sided ones where only buyers
compete for resources.

As a consequence of the fundamental issues discussed above, the aforementioned
market mechanisms fail to solve our motivating problem for decentralised AR&O
scheduling. Thus, we address these issues by proposing a variant of one of today’s
most prominent auction formats, namely the Continuous Double Auction (CDA) [3],
which allows multiple customers and multiple factories to compete in a market. In so
doing, we extend the single-factory job-shop scheduling problem proposed by Wellman
et al. to a more general one that allows multiple factories (OHBs in the AR&O context)
to compete. Second, we design a variant of the traditional CDA that also considers the
time factor of the scheduling problem. Thus, in more detail, this work extends the state
of the art in the following ways:

– First, we develop a variant of the Continuous Double Auction for multi-factory
scheduling. Our market-based approach is novel in being the first auction mecha-
nism that allows multiple customers and multiple factories to compete in a market
for scheduling jobs without the need for a center and without the need to reveal
private and often sensitive information to a center.

– Second, we demonstrate the effectiveness of our approach by evaluating our market
mechanism. Specifically, we provide a lower bound efficiency of 84%, with our
market-based approach sacrificing at most 16% for the added benefits of a more
robust, dynamic and transparent solution.

The remainder of this paper is structured as follows. We begin in Section 2 by formal-
ising the multi-factory scheduling problem. In Section 3, we describe our mechanism
which we empirically evaluate in Section 4. Section 5 concludes.

2 The Multi-factory Scheduling Problem

In this section, we describe the general scheduling problem that this work focuses on.
Although motivated by our specific AR&O problem, we believe this applies to a broad
class of domains. We first extend Wellman et al.’s scheduling model to deal with the
problem of multi-factory scheduling, rather than the restrictive single-factory case that
they consider. To this end, we consider several factories, potentially owned by different

A Market-Based Approach to Multi-factory Scheduling 77

organisations, with the same number of one-hour unscheduled time-slots2, denoted as
T = {Tstart, ..., Tend}. These time-slots can be allocated for customers’ jobs, with
each one having a limit price3 representing the minimum price the factory will accept
in exchange for that time-slot.

Next, we assume that each customer i, requires a single job of a certain length qi (i.e.
a number of time-slots), value �i (i.e the utility for all the qi time-slots required) and
deadline tideadline (i.e. completion is no later than a time-slot at tideadline) scheduled in
a single factory to follow up from Wellman et al.’s model. The customer is willing to
spend no more than its value to have its job scheduled within its deadline. Furthermore,
we assume that the customer has an inelastic demand4. That is, its utility is 0 if it cannot
acquire sufficient time-slots to complete its job within its deadline.

The problem at hand is then to allocate a set of jobs in the available time-slots of a
set of factories, subject to the length, value and deadline constraints of the jobs and the
limit price constraint of the time-slots. In this context, given a set Scus of customers
and a set Sfac of factories, we have the demand, demandi ∀i ∈ Scus and the supply,
supplyj,a ∀j ∈ Sfac, ∀a ∈ Aj , where Aj groups time-slots with same limit prices
given by:

demand i = (id i
cus , �

i , q i , t ideadline) ∀i ∈ Scus , t ideadline ∈ T (1)

supply j ,a = (id j
fac , c

j ,a , f j ,a
Tstart

, ..., f j ,a
Tend

) (2)

where

f j,a
t ∈ {0, 1} ∀a ∈ Aj , ∀j ∈ Sfac, cj

t =
∑

a∈Aj

cj,af j,a
t

and idcus and idfac are unique identifiers for customers and factories respectively,∑
a∈Aj f j,a

t defines if time-slot t in factory j is allocated or not, cj,a is the limit price

for a group of time-slots and cj
t is the limit price of a time-slot t in factory j. Note that

Aj can be defined over the space between a single set with all time-slots having the
same limit prices and |T | sets of single-time-slots in the case of different limit prices
for all the time-slots of the factory5.

We can now formalise the scheduling problem as a maximisation of profits of all
stakeholders (to conform to the literature on the classic job-shop scheduling). We first
define the following terms:

2 Our choice of one-hour time-slots is not crucial to this work and, indeed, can be changed
to represent time at arbitrary levels of granularities. In addition, there is no requirement that
each factory has the same number of time-slots. We simply make these choices to simplify the
simulations that follow later.

3 The limit price corresponds to the production cost within that time-slot. A factory would allow
usage of its time-slot only if a customer pays more than the associated production cost such
that it does not make a loss.

4 Note that the assumption of inelastic demand does not constrain our work. A customer with
elastic demand would simply split its job into a set of qi single-time-slot jobs.

5 Here,
∑

a∈Aj

∑
t∈T f j,a

t = |T | and
∑

a∈Aj f j,a
t ≤ 1 ∀t ∈ T, ∀j ∈ Sfac. See Figure 1 for

an example, with |A1| = 2, |A2| = 4 and |A3| = 2).

78 P. Vytelingum et al.

– A(i, j) ∈ {0, 1} ∀j ∈ Sfac, i ∈ Scus specifies which customer is allocated to
which factory.

– T S(i, j, t) ∈ {0, 1} ∀j ∈ Sfac, i ∈ Scus specifies which factory’s time-slot is
allocated to which customer.

The system is optimally scheduled when the following objective (profits of all stake-
holders) is maximised, as we assume that stakeholders are self-interested, profit-
motivated economic agents in the system. To this end, we must find:

max
∑

j∈Sfac

∑

i∈Scus

[
A(i, j)�i −

∑

t∈T

(T S(i, j, t)cj
t)

]
(3)

subject to the following constraints:

1. Job deadline constraint (i.e. jobs are allocated within their deadline):

∑

j∈Sfac

ti
deadline∑

t=Tstart

T S(i, j, t) =
∑

j∈Sfac

A(i, j)qi, ∀i ∈ Scus

2. Factory’s limit price constraint (i.e. all accepted jobs have value equal to at least the limit
price for all time-slots):

ti
deadline∑

t=Tstart

T S(i, j, t)cj
t ≤ A(i, j)�i, ∀i ∈ Scus, ∀j ∈ Sfac

3. Factory’s time-slot scheduled to a single customer (i.e. no time-slots can be shared for more
than one job):

∑

i∈Scus

T S(i, j, t) ≤ 1, ∀t ∈ T, ∀j ∈ Sfac

4. Job scheduled to a single factory (i.e. factories cannot share jobs6):
∑

j∈Sfac

A(i, j) ≤ 1, ∀i ∈ Scus

5. Customer’s inelastic demand (i.e. jobs cannot be partially allocated):
∑

j∈Sfac

∑

t∈T

T S(i, j, t) =
∑

j∈Sfac

A(i, j)qi, ∀i ∈ Scus

Given complete and perfect information (with all agents truthfully revealing their pref-
erences to a center), the center can optimally compute the solution to this problem (e.g.
using the ILOG CPLEX optimisation tool). To this end, Figure 1 gives the demand and
supply in the system along with the optimal solution (i.e. the allocated customers in
each factory) to an example of such a scheduling problem with 3 factories and 8 cus-
tomers. In particular, Customers 2, 6 and 8 are scheduled in Factory 1, Customers 4 and
5 in Factory 2 and Customer 1 in Factory 3.

6 Note that this is certainly the case within the AR&O domain since engines are always serviced
solely at one overhaul base. However, this might not generally be true, and depending on the
specific setting, it is possible to relax this constraint.

A Market-Based Approach to Multi-factory Scheduling 79

Fig. 1. Multi-factory Scheduling Problem with 8 customers (with their limit price �i, length qi

and deadline ti
deadline ∀i ∈ Scus = {1, ..., 8}) and 3 factories (with their limit prices cj

t ∀t ∈
T = {9, .., 16}, ∀j ∈ Sfac = {1, ..., 3} for each time-slot) with the optimal solution (allocated
customer for each time-slot). The maximum profit extracted here is $35.

Having formally described the problem, we now reconsider the original contex con-
text of AR&O scheduling discussed earlier on, and note that within this domain, Stranjak
et al. have previously provided a greedy, non-optimal solution to a similar scheduling
problem across multiple factories [8]. As with the ILOG CPLEX solution described
above, their solution is centralised in nature and, thus, its computationally complexity
increasing exponentially, making the solution intractable for large problems. In the next
section, we propose a market-based approach to solving such a problem in a decen-
tralised manner with a linearly increasing computational complexity. We evaluate the
efficiency of such a mechanism as the ratio of profit of all stakeholders extracted in the
mechanism to the profit extracted in the optimal allocation given in Equation 3.

3 The Market-Based Solution

We now detail our market-based solution to the multi-factory scheduling problem de-
tailed in Section 2. Specifically, in this section, we describe our approach; an auction
mechanism that allows self-interested, profit-motivated buyers (bidding for customers)
and sellers (bidding for factories) to compete for time-slots. The scheduling is then
determined by transactions (when a set of bids match with a set of asks) among the
buyers and sellers which allocate time-slots to jobs subject to the constraints outlined in
Section 2 (and specifically those described by Equation 3). We now describe our market
protocol that determines how the agents strategically interact in the market.

3.1 The Market Protocol

The protocol we have developed is a variant of the CDA [9,3], designed to maximise
profits in the system. In particular, trading agents are allowed to submit multi-unit bids

80 P. Vytelingum et al.

BID ORDERBOOK

ID Total Price Quantity Deadline

Buyer8 $12 3 16

Buyer1 $14.5 4 12

Buyer3 $9.5 3 11

...

ASK ORDERBOOK

ID Unit Price Free Time Slots (9:00 to 16:00)

Seller1 $4.25 [1, 1, 1, 1, 0, 0, 0, 0]

Seller2 $4.5 [1, 1, 0, 0, 0, 0, 0, 0]

Seller1 $5.25 [0, 0, 0, 0, 1, 1, 1, 1]

Seller3 $6 [1, 1, 1, 1, 0, 0, 0, 0]

Seller3 $6 [0, 0, 0, 0, 1, 1, 1, 1]

Seller2 $6.25 [0, 0, 0, 0, 0, 0, 1, 1]

Seller2 $6.75 [0, 0, 1, 1, 1, 1, 0, 0]

...

(a) (b)

Fig. 2. (a) Orderbook with uncleared asks, first ordered by lowest bid price per unit and, sec-
ond, by the earliest time-slots for similar prices. (b) Uncleared bids are queued in an orderbook,
ordered by the highest bid price per unit.

and asks (i.e. offers to buy and sell a number of time-slots respectively) which are
queued in a bid orderbook (see Figure 2(a)) and an ask orderbook (see Figure 2(b))
respectively. These offers indicate a commitment from the buyers and sellers and cannot
be withdrawn. The multi-unit bids allows allow the customers to express the number of
time-slots required, and the order books effectively provide the mechanism by which
any matching bids and asks are cleared. In more detail, the protocol proceeds as follows:

1. Bid: Buyer i submits a multi-unit bid, bidi = (idi
cus, p

i
total, q

i, tideadline),
tideadline ∈ T to buy exactly q time-slots (given the inelastic demand) within its
deadline tdeadline for no more than a total price of p.

2. Ask: Seller j submits different multi-unit asks, aska
j = (idj

fac, p
j,a
unit, f j,a

Tstart
, ...,

f j,a
Tend

), ∀t ∈ T, a ∈ Aj
offered ⊂ Aj for (not necessarily all) the unscheduled

time-slots in its factory, with Aj
offered defining the set of multi-unit asks. Note that

the ask is defined over all the different time-slots to allow multi-unit asks in the
market, rather than single-unit asks over single unscheduled time-slots. This is to
simplify the bidding process by grouping similar asks.

3. Bid orderbook: Bids are queued in a bid orderbook, ordered by the highest price
per unit7 (see Figure 2(a)). Bids cannot be retracted once queued in the order book.
This is to ensure consistency in the orderbook such that a seller may accept a bid
without the risk of that bid being retracted. Thus, a bid may only be replaced by
improving the bid (i.e. submitting a higher price) which would allow buyers to
compete by shading their bids.

4. Ask orderbook: Asks are queued in an ask orderbook, ordered first by the lowest
unit price and second (given the same unit price) by the earliest time-slot (see Figure
2(b)). When we have asks with similar prices, our protocol prioritises the clearing

7 Highest unit-price ordering is necessary because a job’s value is defined for the whole job,
rather than over the different time-slots required.

A Market-Based Approach to Multi-factory Scheduling 81

of the earlier ones. This is because the later time-slots have a higher probability of
clearing future bids and, hence, a higher expected profit in the future than the earlier
ones. Thus, our mechanism clears earlier asks with the same price first to maximise
profit. As with buyers, sellers are not allowed to retract asks, but are allowed to
improve on them by submitting a lower ask price.

5. Clearing a new bid: Whenever a new bid is added in the bid orderbook, the market
attempts to clear by matching the new bid8 with the ask orderbook. Our mechanism
searches the ask orderbook for the set of lowest asks, Aj

matched ⊂ Aj from each
seller j that would completely clear the bid. The market then clears the matched
asks Aj∗

matched from the seller j∗, if any, with the lowest total price against the
new bid. If the market clears, the newly matched bid is removed from the bid or-
derbook while the parameters of the matched asks, f j∗

t ∀t ∈ T , are updated. If∑
t∈T f j∗,a

t = 0, where a ∈ Aj∗
matched, aska

j∗ is removed from the ask order-
book (because the ask has been completely cleared and all time-slots have been
scheduled).

6. Clearing a new ask: When a new ask is received, the market attempts to match the
seller (with now a better set of asks queued in the ask orderbook) which submitted
that ask with the bid orderbook. In particular, the mechanism runs down the bid
orderbook to find the highest bids that would be completely cleared by the seller’s
set of asks (stopping when all the asks from that seller are cleared or at the end of
the bid orderbook). The market then clears these highest bids, if any, against the
matched asks from the seller. All the cleared bids are then removed from the bid
orderbook, while the cleared asks are updated and removed from the orderbook if
completely allocated (as seen with the clearing of a new bid).

Given the structure of our market mechanism, we now consider its behaviour. In partic-
ular, we use a simple bidding strategy for such a market protocol in order to provide a
lower bound benchmark on the efficiency of the market mechanism.

3.2 The Bidding Strategy

One of the principal concerns in developing a market mechanism is to ensure that it
is efficient and that the system does not break down even with comparatively simple
bidding behaviour on behalf of the buyers and sellers. This is important because as
designers, we cannot dictate the specific strategies of the buyers and sellers and, so, we
want to ensure that the market performs well for whatever strategies are adopted. The
underlying intuition here is that by considering this simple behaviour, we are able to es-
tablish a lower bound on the efficiency credited principally to the market structure rather
than the behaviour (assuming that agents are motivated by profits and not malicious, e.g.
sellers bidding less and buyers more than their limit price to break down the market).
This approach has been advocated a number of researchers, most notably by Gode and
Sunder [5], and thus, to this end, we adopt Gode and Sunder’s Zero-Intelligence (ZI)

8 Our mechanism attempts to clear only the new bid (ask) because we are continuously clearing
the market which ensures that any queued bid (ask) cannot be cleared by the current ask (bid)
orderbook.

82 P. Vytelingum et al.

bidding strategy in our work because it simply submits a random bid or ask based solely
on its limit price, ignoring the state of the market or past market information [4]. The
Zero-Intelligence strategy works as follows9:

1. For buyer i ∈ Scus,

pi ∼ U(0, �i)

bidi = (idi
cus, p

i, qi, ti
deadline)

2. For seller j ∈ Sfac,

pj,a ∼ U(ca
i , pmax)

aska
j = (idj

fac, p
j,a, f j,a

Tstart
, ..., f j,a

Tend
) ∀a ∈ Aj

Thus, the buyer submits a multi-unit bid based on its limit price at random times.
Conversely, the seller j submits a set of multi-unit asks, Aj , over all the unsched-
uled time-slots in its factory also at random times. Given our market protocol and the
Zero-Intelligence strategy, we now empirically evaluate our market-based scheduling
mechanism.

4 Empirical Analysis

In this section, we empirically compare the market-based solution (see Section 3)
against the optimal solution (see Section 2). In our experimental setup, for every com-
bination of buyers and sellers, we consider 50 different sets of demand and supply (see
Equations 1 and 2). For each set of demand and supply, we consider a statistically sig-
nificant number of runs10, namely 100, and average the performance over these different
runs and sets of demand and supply. Based on standard experimental setup of the CDA
[9], we induce the demand and supply by drawing buyer i’s and seller j’s endowment
(of time-slots) from random distributions11 as follows:

Tstart = 9

Tend = 16

qi ∼ UI(1, 4),

ti
deadline ∼ UI(qi − 1, (Tend − Tstart)) + Tstart,

�i ∼ U(1.5, 4.5) × ti
deadline

cj,a ∼ U(1.5, 4.5), ∀a ∈ Aj

where Aj is a randomly generated set of sets grouping similar limit prices. Furthermore,
because of the informationally decentralised nature of the mechanism, it is not possible
to determine when the market reaches completion12. Thus, we impose a deadline to

9 X ∼ U(a, b) is a discrete uniform distribution between a and b with steps of 0.01.
10 We validated our results at the 95%-confidence interval by running the non-parametric

Wilcoxon rank-sum test.
11 X ∼ UI(a, b) is a uniform distribution of integers between a and b.
12 A market reaches completion when there can be no more transactions. This information is

unknown unless all private information is available.

A Market-Based Approach to Multi-factory Scheduling 83

(a) Efficiency Mean (b) Efficiency Variance

Fig. 3. The efficiency of the market mechanism for different numbers of buyers and sellers in
the market. Efficiency converges to an efficiency of 84%as the number of buyers and sellers
increases, while the variance decreases.

limit the duration of the auction13. In our experiments, we set this deadline to 5000
rounds.

The mean and variance of the efficiency (defined in Section 2) of the market-based
solution over different problem sizes is given in Figures 3(a) and 3(b) respectively.
As we can observe, the market efficiency averages 84% (ranging between 81% and
87%) with efficiencies converging to 84% as the number of factories and consumers
increases. We also observe that the variances of the efficiency decreases rapidly as the
size of the scheduling problem increases. Thus, our mechanism becomes more effective
in finding profitable allocations as the number of factories increases while its efficiency
is unaffected by increasing demand.

Now, because we impose a deadline (as it is unknown as to when no more resources
can be cleared in the market), it is insightful to analyse if we are closing the market too
early or too late. To this effect, in an example of a large problem with 15 factories and
15 customers14, we consider how the efficiency and the volume of allocation of time-
slots vary over the rounds (see Figure 4). In particular, we observe that the bulk of the
allocations are made within the first few hundreds rounds (with 85% allocated within
the first 500 rounds) even though the market reaches completion after 3000 rounds. This
validates our choice for a deadline at 5000 rounds as we effectively limit the duration
of the auction without compromising on efficiency. Furthermore, because time-slots
are gradually allocated, we can consider our market-based mechanism as an any-time
approach (which can be halted at any time for a solution). This contrasts with the cen-
tralised approach where time-slots are only allocated once a solution is computed. An
any-time solution would indeed be very useful in a problems with hard deadlines.

Furthermore, to examine the tractability of our market-based solution, we compare
the computational time of our market mechanism against that of a centralised, opti-
mal solution computed using ILOG CPLEX (as highlighted in Section 2). While the

13 If we consider an environment where agents are allowed to enter or leave the system or can
renew their endowment, we do not impose a deadline in our auction which possibly never runs
out of transactions.

14 Similar trends were observed for other numbers of factories and customers.

84 P. Vytelingum et al.

Fig. 4. For a problem of 15 factories and 15 customers, the market closes after 3000 rounds at
an efficiency of 84%. Note that 84% of the volume of transactions are completed within the first
500 rounds and 97% within 1000 rounds. The efficiency after 500 rounds is within 7% of its
maximum and within 0.9% after 1000 rounds.

(a) Computational time for optimal solution
(log-scale)

(b) Computational time for market-
based solution

Fig. 5. Computational times of the centralised (a) and decentralised (b) approaches. Note that the
former increases exponentially while the latter scales linearly. For a problem with 15 factories
and 15 customers, the computational time for the optimal solution is around 5400ms compared
to 320ms for the market-based one.

computational time of the centralised, optimal solution increases exponentially, that of
the decentralised market-based approach increases linearly. This is because the com-
putational complexity of the latter approach is due principally to the clearing process,
with the size of the orderbooks to be cleared also increasing linearly. Thus, our market-
based approach is indeed tractable as one of the desirable properties for a decentralised
mechanism in the motivating AR&O setting.

5 Conclusions and Future Work

In this paper, we proposed a novel decentralised mechanism for multi-factory schedul-
ing based on a variant of the Continuous Double Auction, that does not require the

A Market-Based Approach to Multi-factory Scheduling 85

revelation of private preferences to a third-party agent. We empirically demonstrated
a lower bound efficiency of 84% in our auction mechanism using a Zero-Intelligence
bidding strategy. We thus showed that we sacrifice a reasonably small level of efficiency
for the benefits of a decentralised and transparent approach (through its public order-
books and the fact that there is no center) and scaleability (given the linearly increasing
complexity of our market-based solution).

Our future work in this area focuses on taking the solution that we have developed
here and applying it within a fine grained industrial simulation of the Aero Repair and
Overhaul domain (before ultimately deploying it within the operational system). As we
envisage increasingly larger scheduling problems in this context, the need for robust
and scaleable solutions of the kind that we have presented here, will become highly
desirable and indeed essential in the future. To further improve the performance of our
scheduling approach we would also like to explore more intelligent bidding strategies
that can strategise effectively on the additional time factor that we have in this domain.
In this respect, we believe that a considerably higher efficiency can be achieved, and
this belief is supported by the observation that within the standard CDA, state of the art
strategies can led to an improvement in efficiency from 97% (achieved with the Zero-
Intelligence bidding strategy) to 99.9% [11,10]. In addition, we intend to analyse the
efficiency of our system when agents enter and leave the system at any time. This is an
important issue within the Aero Repair and Overhaul domain, since damaged engines
must often be added to an existing schedule at short notice, and thus, we must evaluate
how well our auction-based mechanism reacts to sudden change in the demand and
supply.

References

1. Baker, A.D.: Metaphor or reality: A case study where agents bid with actual costs to schedule
a factory. In: Market-based Control, ed. Clearwater. World Scientific, New York (1992)

2. Blazewicz, J., Ecker, K.H., Pesch, E., Weglarz, J.: Scheduling Computer and Manufacturing
Processes. Springer, Berlin (1996)

3. Friedman, D., Rust, J.: The Double Auction Market: Institutions, Theories and Evidence.
Addison-Wesley, New York (1992)

4. Gode, D.K., Sunder, S.: Allocative efficiency of markets with zero-intelligence traders: Mar-
ket as a partial substitute for individual rationality. Journal of Political Economy 101(1),
119–137 (1993)

5. Gode, D.K., Sunder, S.: What Makes Markets Allocationally Efficient? The Quarterly Jour-
nal of Economics 35, 603–630 (1997)

6. Ichimi, N., Iima, H., Hara, T., Sannomiya, N.: Autonomous decentralized scheduling al-
gorithm for a job-shop scheduling problem with complicated constraints. In: Proceedings
the Fourth International Symposium on Autonomous Decentralized Systems, pp. 366–369
(1999)

7. Rassenti, S.J., Smith, V.L., Bulfin, R.L.: A combinatorial auction mechanism for airport time
slot allocation. The Bell Journal of Economics 13(2), 402–417 (1982)

8. Stranjak, A., Dutta, P.S., Ebden, M., Rogers, A., Vytelingum, P.: A multi-agent simulation
system for prediction and scheduling of aero engine overhaul. In: Proceedings of the sev-
enth International Conference on Autonomous Agents and Multi-Agent Systems (Industrial
Track), pp. 81–88 (2008)

86 P. Vytelingum et al.

9. Vytelingum, P.: The structure and behaviour of the Continuous Double Auction, Ph.D. dis-
sertation, School of Electronics and Computer Science, University of Southampton (2006)

10. Vytelingum, P., Cliff, D., Jennings, N.R.: Strategic bidding in continuous double auctions.
Artificial Intelligence Journal 172(14), 1700–1729 (2008)

11. Vytelingum, P., Dash, R.K., David, E., Jennings, N.R.: A risk-based bidding strategy for con-
tinuous double auctions. In: Proceedings of the Sixteenth European Conference on Artificial
Intelligence, pp. 79–83 (2004)

12. Wellman, M., Walsh, W., Wurman, P., MacKie-Mason, J.: Auction protocols for decentral-
ized scheduling. Games and Economic Behavior 35, 271–303 (2001)

	A Market-Based Approach to Multi-factory Scheduling
	Introduction
	The Multi-factory Scheduling Problem
	The Market-Based Solution
	The Market Protocol
	The Bidding Strategy

	Empirical Analysis
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

