

F. Granelli et al. (Eds.): MOBILIGHT 2009, LNICST 13, pp. 325–336, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunication Engineering 2009

Middleware Building Blocks for Architecting RFID
Systems

Nikos Kefalakis1, Nektarios Leontiadis1, John Soldatos1, and Didier Donsez2

1 Athens Information Technology
19.5 Km Markopoulou Ave. 19002 Peania, Greece

{nkef,nele,jsol}@ait.edu.gr
2 Université Joseph Fourier Grenoble

Avenue Centrale, Domaine Universitaire, 38041, Grenoble, France
Didier.Donsez@imag.fr

Abstract. RFID middleware is a cornerstone of non-trivial RFID deployments
in complex heterogeneous environments. In this paper we present the principal
middleware building blocks specified in the scope of the EPCglobal architec-
ture. Alternative protocols and implementation frameworks for realizing these
middleware blocks are also presented. At the same time we outline several mid-
dleware extensions to the EPCglobal architecture, towards meeting common re-
quirements of automatic identification applications. Furthermore, we classify
RFID applications into various categories based on their complexity, as well as
based on their closed or open loop nature. Accordingly, we highlight the mid-
dleware blocks that are most important to each application category.

Keywords: RFID, Middleware, Architecture, EPCglobal, Business Event
Generation.

1 Introduction

RFID middleware is gradually becoming the cornerstone of non-trivial RFID de-
ployments in complex heterogeneous environments (e.g., logistics, supply chain man-
agement) comprising multiple readers, applications instances, legacy ICT systems, as
well as sophisticated business processes and semantics. In such environments many
distributed readers and antennas (e.g., in factories, warehouses, and distribution cen-
ters) capture RFID data, which must accordingly be conveyed to a variety of applica-
tions (e.g., enterprise resource planning (ERP) systems, warehouse management
systems (WMS), corporate databases, process management systems).[1] Deployment
and integration complexity are directly associated with the flexibility and versatility
of the RFID middleware towards configuring and managing multiple heterogeneous
devices, filtering and disseminating RFID data, translating low-level RFID data to
high-level business semantics, as well as towards integrating RFID systems with
legacy ICT systems and applications [5].

326 N. Kefalakis et al.

The typical information flow within an RFID middleware system involves:

• Collecting RFID data from the physical readers, through reading the tagged items.
At this level middleware implementations insulate higher layers from knowing
what reader /models have been chosen. Moreover, they achieve virtualization of
tags, which allows RFID applications to support different tag formats.

• Filtering the RFID sensor streams according to application needs, and accordingly
emitting application level events. At this level middleware implementations insu-
late the higher layers from the physical design choices on how tags are sensed and
accumulated, and how the time boundaries of events are triggered.

• Mapping the filtered readings to business semantics as required by the target appli-
cations and business processes. At this level middleware implementations insulate
enterprise applications from understanding the details of how individual steps in a
business process are carried out.

Software that implements any combination of these information flows can be con-
ceived as an RFID middleware.

The above information flow is reflected in the EPCglobal architecture [2], where it
is implemented based on the EPC-RP (Reader protocol), EPC-LLRP (Low-Level
Reader Protocol), EPC-ALE (Application Level Events) and (EPC-IS) (Information
Sharing) protocols and specifications [15]. Hence, the EPCglobal architecture speci-
fies a middleware framework for a broad class of RFID applications. However it lacks
some features that are extremely handy for many automatic identification applica-
tions. In this paper we present both the EPCglobal middleware layers, as well as addi-
tional middleware features, which are not completely covered by EPCglobal.

In this paper we introduce a middleware architecture (devised in the scope of the
EC co-funded project ASPIRE [3]) which extends the EPCglobal architecture. To this
end, we use the ASPIRE architecture to illustrate the various middleware layers and
their possible implementations. Note that the proposed architectures have been de-
vised in order to cover large scale open loop fully fledged RFID applications in the
scope of inter-enterprise scenarios. Nevertheless, we are currently witnessing the
proliferation of less complex closed loop applications, which can be implemented
based on cut down versions of the proposed architectures. These applications require
subsets of the presented middleware blocks as discussed in later sections.

The rest of this paper has the following structure: Section 2 discusses briefly the
limitations of the EPCglobal architecture and introduces the ASPIRE architecture.
This architecture is decomposed to the middleware building blocks dealing with read-
ers and tags virtualization in Section 3, to filtering and collection blocks in Section 4
and Section 5 deals with the middleware blocks for addition of business context to
RFID sensor streams. Section 6 classifies RFID applications into various categories
and underlines the middleware building blocks that are relevant for each category.
Finally, section 7 draws basic conclusions.

2 RFID Systems Architecture

The EPCglobal along with associated middleware implementations (see [4] for a
comprehensive review) are subject to several limitations, some of which are inherent

 Middleware Building Blocks for Architecting RFID Systems 327

to the EPC architecture. Specifically, the most prominent of these limitations relate to
the following areas [4]:

• Configurable Business Events Generation: Current middleware implementations
do not provide support for configurable and automated translation of filtered data
(i.e. ECReports) to business events (i.e. EPCIS Events). RFID developers are
therefore still required to allocate programming effort in mapping ALE outputs to
information sharing constructs. We strongly believe the configurable interpretation
of RFID readings in a specific business context should be an essential functionality
of any RFID middleware suite.

• Support and integration for sensor data: In addition to identifying objects many
applications (e.g., cold chain management) need to detect and consume physical
measurements (e.g., temperature, humidity, weight, acceleration (for shock-
tracking), lighting). Hence, middleware frameworks must to provide the means to
integrate sensors and accordingly make their data accessible by the applications.
EPCglobal covers mainly the coding of things identifiers. While ALE reports can
include (as extensions) physical measurements acquired by RFID sensor tags or
sensors attached to the environment (e.g., RFID interrogator, container) at reading
time, current middleware frameworks do not provide support for the consumption
of these metrics. This is they do not cater for aligning the coding of these meas-
urements with main international units, quantities standards and specifications
(such as ISO 31-0, JSR 275, Open Geospatial Consortium GML, Google KML).
Middleware frameworks must therefore provide support for adapting and using
sensor readings in accordance to these coding schemes.

• Integration of Actuators: Experience with automatic identification applications
manifests that there is often a need to quickly interact with the physical world
based on a wide range of actuating functions such as locks, LEDs or mechanical
controllers. Hence, RFID middleware frameworks need to be enhanced with actua-
tor control frameworks.

• Reader Connectors and Virtualization: EPC-RP and EPC-LLRP prescribe reader
protocol standards aiming at achieving vendor independence. In the current reader
landscape however, there are still many readers that do not fully support these pro-
tocols. As a result there is still a need to provide an adaptation layer for non
EPC-RP or EPC-LLRP compliant readers, similar to the HAL (Hardware Abstrac-
tion Layer) implementation of the Accada project for EPC-RP [1],[6]. Most impor-
tant, a middleware suite should include a uniform interface for communicating
with upstream EPC layers (e.g., ALE).

• End-to-End Management: Non-trivial RFID solutions are supported by highly
heterogeneous infrastructures comprising multiple tags, readers, sensors, as well as
a host of middleware components and servers. Managing such an infrastructure
end-to-end is certainly asset towards facilitating the deployment and operation of
RFID solutions. The EPC architecture and related middleware products emphasize
on single reader management (e.g., based on the Reader Management Protocol)
and do not support complete end-to-end management of the RFID solutions.

• Programmability and (Visual) Integrated Development Environments: Integrated
development environments (IDEs) and visual tools are a key prerequisite to boost-
ing RFID implementation. Most OSS RFID platforms do not provide complete

328 N. Kefalakis et al.

integrated environments enabling visual development of RFID applications, which
only few exceptions that are still in their infancy [7], [8]. In order for RFID de-
ployment to go mainstream, complete IDEs enabling RFID consultants and busi-
ness users to configure standards based solutions through minimal programming
effort are urgently required.

Fig. 1. ASPIRE Middleware Architecture

Driven by the above requirements and EPC limitations, the FP7 ASPIRE project
has devised the middleware architecture depicted in Figure 1. It is based on the EPC
architecture, but augments it with support for sensor data, end-to-end management,
actuator control, as well as automated business context configuration functionality.
These functionalities have been implemented in the scope of the AspireRfid [9] OSS
project. Note that both the ASPIRE architecture and the AspireRfid project capitalize
on lightweight container technologies, notably Open Services Gateway Interface
(OSGi) (www.osgi.org) compliant for integrating and bundling the various middle-
ware components comprising the architecture. In addition to being lightweight, an
OSGi container constitutes a dynamic module system, which allows the deployment
of various middleware blocks (described in later sections) as modules that can be
flexibly (even at runtime) installed, started, stopped, activated, deactivated and up-
dated. As a result, an OSGi based deployment facilitates the end-to-end management
requirement, which is implemented based on JMX (Java Management Extensions)
technology.

 Middleware Building Blocks for Architecting RFID Systems 329

3 Readers and Tags Virtualization

3.1 Tags Virtualization

Tag virtualization capitalizes on a machine-readable version of the EPC Tag Data
Standards specification [15]. This machine-readable version can be used for virtualiz-
ing underlying RFID tags through bridging and mapping different representations.
Hence, a tag translation module is a (standalone or embedded) middleware compo-
nent that enables the interpretation of machine readable version of the tag. The inter-
pretation can be used in automated fashion. In addition the tag translation specifica-
tion can be used for validating machine readable formats of the EPC tags. The TDT
engine built in the scope of the AspireRfid [9] project supports the ISO15693,
ISO14443, ISO15961, ISO15962, ISO15963, various GS1 formats (EAN/UPC, GS1
DataBar, GS1-128, ITF-14, GS1 DataMatrix, and Composite Component), as well as
Bar Codes 1D and 2D: Note that barcode support is deemed particularly important
given the vast number of legacy barcode applications, which need to be interoperable
with emerging RFID applications.

Fig. 2. Reader Virtualization Concept

3.2 Readers Virtualization

The role of the reader virtualization layer is to unify the way we interact with the
miscellaneous hardware, by inserting a hardware abstraction layer and providing a
fixed instruction set to the higher layers which require information from the hardware.

Specifications exist that satisfy the need for a norm at this level; namely the EP-
Cglobal Reader Protocol (RP) and the EPCglobal Lower Level Reader Protocol
(LLRP). These protocols define the standard bindings through which an application
can send messages in a standardized format, as described in relevant standards [15].

330 N. Kefalakis et al.

Towards achieving reader virtualization a Hardware Abstraction Layer (HAL), en-
suring a graceful mapping of the standardized messages to the low-level vendor spe-
cific reader communication primitives is specified. The methods of communication
between the HAL and the hardware itself will vary, depending on the hardware ven-
dor and it may require a serial connection, an Ethernet connection, etc. The protocols
of communication may also vary from a raw TCP connection, to SSL and HTTP. The
same will apply for the command and message encodings, which may be text, XML
or binary.

The layers above the HAL exchange messages that conform to a well-defined for-
mat – XML or text – using a set of standard network interfaces – Serial, TCP and
HTTP. Any combination of the aforementioned is allowed. Figure 2 depicts the reader
virtualization concept.

4 Filtering and Collection (F&C)

RFID technology when used in a large scale deployment generates an enormous
number of object reads. Many of those reads represent non-actionable “noise.” To
balance the cost and performance of this with the need for clear accountability and
interoperability of the various parts, the design of the ASPIRE Architecture (Figure 1)
seeks to:

• Drive as much filtering and counting of reads as low in the architecture as possible.
• Minimize the amount of “business logic” embedded in the Tags.

The Filtering and Collection Middleware by applying EPC ALE (Application Level
Events) [15] is intended to facilitate these objectives by providing a flexible interface
to a standard set of accumulation, filtering, and counting operations that produce
“reports” in response to client “requests.” The client will be responsible for interpret-
ing and acting on the meaning of the report. The client of the ALE interface may be a
traditional “enterprise application,” or it may be new software designed expressly to
carry out an EPC-enabled business process but which operates at a higher level than
the “middleware” that implements the ALE interface. Section 6 later in this paper
elaborates on different deployment configurations depending on the application scale
and nature.

The ASPIRE filtering & collection middleware represents a single interface to the
potentially large number of readers that make up an RFID system deployment. This
allows applications to subscribe to a specific already defined specification, which is
then used along with the Logical Reader definition to configure the corresponding
reader devices using the EPC global reader protocol (RP) or low level reader protocol
(LLRP) (Figure 2).

Once the readers capture relevant tag data they notify the middleware which com-
bines the data arriving from different readers in a report that is sent according to a pre-
determined schedule to the subscribed applications. Since the middleware receives data
from multiple readers, it provides specific filtering functionality depending on the
already defined specifications. Redundant read events from different readers observing
the same location are not included to the dispatched report, which accomplishes the

 Middleware Building Blocks for Architecting RFID Systems 331

reduction of filtering and delivers the level of required aggregation to the registered
application(s) interpreting the captured RFID data.

The interfaces chosen to be used between the filtering & collection middleware and
host applications is TCP/HTTP for the notification channel transferring XML reports
and SOAP for the server operation programming (ECSpecifications defini-
tion/subscription, logical reader definition).

The primary data types associated with the ALE API (Application Programming
Interface) are the ECSpec, which specifies how an event cycle is to be calculated, and
the ECReports, which contains one or more reports generated from a single activation
of an ECSpec. ECReports instances are both returned from the poll and immediate
methods, and also sent to notification URIs when ECSpecs are subscribed to using the
“subscribe” method of the specification.

An ECSpec describes an event cycle and one or more reports that are to be gener-
ated from it. It contains a list of logical Readers whose read cycles are to be included
in the event cycle, a specification of how the boundaries of event cycles are to be
determined, and a list of specifications each of which describes a report to be gener-
ated from this event cycle. There are two ways to cause event cycles to occur. A
standing ECSpec may be posted using the define method. Subsequently, one or more
clients may subscribe to that ECSpec using the subscribe method. The ECSpec will
generate event cycles as long as there is at least one subscriber.

ECReports is the output from an event cycle. The essence of an ECReports in-
stance is the list of ECReport instances, each corresponding to an ECSpec instance in
the event cycle’s ECSpec. In addition to the reports themselves, ECReports contains a
number of “header” fields that provide useful information about the event cycle.

The ALE interface revolves around client requests and the corresponding reports
that are produced. Requests can either be: (1) immediate, in which information is
reported on a one-time basis at the time of the request; or (2) recurring, in which in-
formation is reported repeatedly whenever an event is detected or at a specified time
interval. The results reported in response to a request can be directed back to the re-
questing client or to a “third party” specified by the requestor.

5 Business Context and Information Sharing

Adding business semantics to the low-level sensor streams is a key prerequisite to
added-value deployments of RFID technology. For RFID to go mainstream compa-
nies must be offered tools and techniques for describing their RFID enabled business
processes, without engaging in the low-level implementation details. To this end, a
framework specification for describing business events must be provided. This
framework should enable the description of business processes based on high-level
semantics, which at the same time should be amendable by tools.

The EPC-IS framework [10] is standardized as an integral layer of the EPCglobal
architecture. Its main function is to insulate enterprise applications from understand-
ing the details of how individual steps in a business process are carried out at a de-
tailed level. EPC-IS defines a data model for events associated with the lifetime of
uniquely identified objects. As already outlined these events are industry and applica-
tion agnostic. In this sense EPC-IS is a cross industry framework, which allows for

332 N. Kefalakis et al.

industry specific vocabularies and extensions. Furthermore, the framework is a sup-
plement to (and not a replacement for) existing enterprise information systems. Spe-
cifically, EPC-IS events are used to push/pull events to/from other enterprise systems
such as ERP (Enterprise Resource Planning Systems), WMS (Warehouse Manage-
ment Systems) and corporate databases.

EPC-IS can operate in the scope of a layered service-oriented architecture, through
persisting supply chain events in a repository and accordingly sharing these events
with internal and external applications. The sharing is accomplished through inter-
faces for capture and query of event data. EPCIS data (i.e. events) are represented as
records of activity happening in real world. These events provide context (“What,
where, when, why”) and proliferate as more business is transacted. EPCIS events are
interpreted based on descriptive information (so called “master data”), which provides
context for the events such as descriptions of locations, products and business transac-
tions. Note that “mater data” grow at different timescales comparing to EPCIS events.
In particular, master data grow slowly as companies grow, not as more business is
conducted.

EPCIS events described within the specification can be classified as follows
(Figure 3):

• Object Events, which correspond to observations of a collection of EPCs during a
specific business step at a specified Location & Time.

• Aggregation Events, which reflect a physical association of a set of EPCs with a
parent EPC along with a business step at a Location & Time.

• Quantity Events, which correspond to statements about an object Class (not indi-
vidual objects), including a quantity, a Location & Time.

• Transaction Events, which records objects associated with a wider business
transaction.

Having these events at hand, consultants, researchers and engineers can use them to
describe RFID enabled business processes [11]. The starting point is the documenta-
tion of the business requirements, comprising the archetypical use cases. Accordingly,
it is important to break each use case into a series of discrete business steps. Each one
of these steps needs to be modeled as an EPCIS event, according to the above men-
tioned core EPCIS event types. In rare cases a new type could be defined i.e. when
existing types are not sufficient to describing a business step. Note that it is important
to define any necessary extension fields, as well as the full range of vocabularies that
populate each field. Furthermore, fixed lists of identifiers with standardized meanings
for concepts like business step and disposition must be provided, along with rules for
population of user-created identifiers like read point and business location.

A novel characteristic of the ASPIRE architecture (Figure 1) in terms of business
context handling is the introduction and implementation of the “Business Event Gen-
erator” (BEG) middleware module. This middleware module undertakes the auto-
mated and configurable mapping of reports (stemming from the F&C module) to
EPCIS events. This automation will greatly simplify the development of capturing
applications (according to the EPCglobal architecture).

 Middleware Building Blocks for Architecting RFID Systems 333

Fig. 3. Core EPCIS event types and the object-oriented relationship between them

6 Application Classification

The proliferating RFID applications, pilots and deployment vary in functionality and
scale. The RFID vision was initially articulated through the specification of large
scale “open loop” systems and deployments. Prominent examples of such systems are
those developed and trialed by Wall-Mart and the U.S Department of Defense (DoD).
A main characteristic of these systems is that they span different locations across
multiple companies and/or organizations. Note that these trials manifested several
problems, both technical (e.g., information sharing, interoperability and scalability at
a large scale) and business ones (e.g., business model related issues). Large scale
deployments can provide a crash test for protocols like EPCIS and ONS (Object Nam-
ing Service) [15].

Following these early complex and visionary deployments, the RFID community
has gradually starting to dispel the hype (and its associated complexity). Hence, dur-
ing the last couple of years we are witnessing a proliferating number of smaller scale
solutions covering a wide range of asset tracking and inventory management scenar-
ios, as well as other ROI (return-on-investment) generating case studies. These case
studies focus on very specific business problems, which an AIS (automatic identifica-
tion system) can solve even a single enterprise. A main characteristic of the smaller
scale deployment is also the fact that tagging occurs at the case and pallet level

334 N. Kefalakis et al.

tagging rather than item level. Furthermore, tracking, traceability and identification
occur within a warehouse or a single supply chain. Note that these smaller scale solu-
tions are also a reality for RFID vendors, which are gradually refocusing their strate-
gies towards smaller-scale opportunities. Nevertheless, the vision still exists, since
small applications (i.e. closed loop islands) could one day become integrated into
larger scale open loop systems.

We believe that middleware developers and RFID consultants should prioritize
middleware modules development based on the scale of the target application. Open
loop solutions must pay emphasis on implementing the full range of middleware lay-
ers described in this paper. On the other hand smaller scale closed loop systems must
prioritize the F&C, reading and tag virtualization building blocks. Moreover, for some
very simple systems our experience shows that custom filters over a HAL for the
target reader(s) could provide a rapid and acceptable solution. Table1 presents our
view regarding the middleware building blocks that are required to implement each of
the above application categories. This is based on our experience with RFID imple-
mentations and demonstrations across diverse deployments of varying scale (e.g., [9],
[12], [13]).

Table 1. RFID application Classification and Middleware Building Blocks

Application
Type/Middleware

Block

HAL EPC-RP,
EPC-LLRP F&C Business Context

Simple Yes Recommended Recommended No

Simple Closed
Loop

Yes
Yes Recommended No

Complex Closed
Loop

Yes Yes Yes
Recommended

Open Loop Yes Yes Yes Yes

7 Conclusion

In this paper we have presented the middleware components and layers, which are
commonly implemented in RFID applications. The EPCglobal architecture, as well as
its extensions in the scope of the ASPIRE architecture provide a general middleware
framework that can address the needs of many RFID applications. We argue however
that the full range of middleware layers and building blocks are necessary only in the
scope of large scale open loop middleware implementations. Simpler applications can
leverage cut down versions of these architectures, towards economizing on perform-
ance overhead as well as implementation complexity and cost. Specifically, trivial
applications can be implemented via customized filtering mechanisms on top of HAL
layers or event the EPC-LLRP and EPC-RP protocols. Also, a wide range of closed
loop intra-enterprise scenarios could be implemented without a need for sophisticated
information sharing layer. Overall, we think that lightweight low-overhead implemen-
tations are essential for the smooth transition to fully fledged RFID deployments. This
could reinforce a ‘start small, think big’ approach towards the Internet of Things (IoT)

 Middleware Building Blocks for Architecting RFID Systems 335

vision. The open source AspireRfid project of the OW2 (www.ow2.org) community
provides distinct implementations of the various building blocks, in order to enable
researchers and developers to gradually leverage the various middleware functional-
ities, as required by their target deployments.

Acknowledgments. Part of this work has been carried out in the scope of the ASPIRE
project (FP7-215417). The authors acknowledge help and contributions from all part-
ners of the project.

References

1. Floerkemeier, C., Roduner, C., Lampe, M.: RFID Application Development with the Ac-
cada Middleware Platform. IEEE Systems Journal 1(2), 82–94 (2007)

2. Architecture Review Committee, The EPCglobal Architecture Framework, EPCglobal
(July 2005), http://www.epcglobalinc.org.

3. The ASPIRE FP7 Project, http://www.fp7-aspire.eu
4. Cezon, M., Vaudaux-Ruth, G., Laurens, L., Soldatos, J., et al.: Review of State-of-the-Art

Middleware. ASPIRE Project Public Deliverable D2.1 (June 2008)
5. Sarma, S.: Integrating RFID. ACM Queue 2(7), 50–57 (2004)
6. The Accada RFID Middleware Project, http://www.accada.org
7. The Rifidi project, An open source IDE for RFID, http://www.rifidi.org
8. Sun’s JCAPS (Java Composite Application Platform) for RFID,

http://java.sun.com
9. AspireRfid project,

http://wiki.aspire.objectweb.org/xwiki/bin/view/
Main/WebHomewiki

10. EPC Information Services (EPCIS) Version 1.0, Specification, EPCglobal (April 2007),
http://www.epcglobalinc.org

11. BEAWebLogic RFID Enterprise ServerTM, Understanding the Event, Master Data, and
Data Exchange Services, Version 2.0, Revised: October 12 (2006)

12. Zarokostas, N., Dimitropoulos, P., Soldatos, J.: RFID Middleware Design for enhancing
traceability in the Supply Chain Management. In: The Proc. of the 18th IEEE Personal In-
door and Mobile Radio Communications, Athens, Greece, September 3-7 (2007)

13. Rudametkin, W., Touseau, L., et al.: NFCMuseum: an Open-Source Middleware for Aug-
menting Museum Exhibits. In: IEEE International Conference on Pervasive Services
(ICPS 2008), Sorrento, Italy, July 6-10 (2008) (Public demonstration)

14. Lampe, M., Floerkemeier, C.: High-Level System Support for Automatic-Identification
Applications. In: Maass, W., Schoder, D., Stahl, F., Fischbach, K. (eds.) Proceedings of
Workshop on Design of Smart Products, Furtwangen, Germany, March 2007, pp. 55–64
(2007)

15. EPCglobal standards, http://www.epcglobalinc.org/standards

Abbreviations

ALE – Application Level Events
BEG – Business Events Generator
EC –European Committee

336 N. Kefalakis et al.

ECReport – Event Cycle Report
ECSpec – Event Cycle Specification
EPC – Electronic Product Code
EPC-ALE - Electronic Product Code Application Level Events
EPC-IS - Electronic Product Code Information Service
EPC-LLRP - Electronic Product Code Low Level reader protocol
EPC-RP - Electronic Product Code Reader Protocol
ERP – Enterprise resource Planning
HAL – Hardware Abstraction Layer
ICT – Information and Communications Technologies
JMX – Java Management Extensions
ONS – Object Naming Service
OSGi – Open Service gateway Initiative
OSS – Open Source Software
RFID – Radio Frequency Identification
WMS – Warehouse management System

	Middleware Building Blocks for Architecting RFID Systems
	Introduction
	RFID Systems Architecture
	Readers and Tags Virtualization
	Tags Virtualization
	Readers Virtualization

	Filtering and Collection (F&C)
	Business Context and Information Sharing
	Application Classification
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

