
F. Granelli et al. (Eds.): MOBILIGHT 2009, LNICST 13, pp. 114–124, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunication Engineering 2009

A Tree Based Self-routing Scheme for Mobility Support
in Wireless Sensor Networks

Young-Duk Kim1, Yeon-Mo Yang2, Won-Seok Kang1, Jin-Wook Kim1,
and Jinung An1,∗

1 Mobile Robot Lab., Daegu Gyeongbuk Institute of Science and Technology
{ydkim,wskang,jwkim,robot}@dgist.ac.kr

2 Dept. of Electronics Engineering, Kumoh National Institute of Technology
yangym@kumoh.ac.kr

Abstract. Recently, WSNs (Wireless Sensor Networks) with mobile robot is a
growing technology that offer efficient communication services for anytime and
anywhere applications. However, the tiny sensor node has very limited network
resources due to its low battery power, low data rate, node mobility, and channel
interference constraint between neighbors. Thus, in this paper, we proposed a
tree based self-routing protocol for autonomous mobile robots based on beacon
mode and implemented in real test-bed environments. The proposed scheme
offers beacon based real-time scheduling for reliable association process between
parent and child nodes. In addition, it supports smooth handover procedure by
reducing flooding overhead of control packets. Throughout the performance
evaluation by using a real test-bed system and simulation, we illustrate that our
proposed scheme demonstrates promising performance for wireless sensor
networks with mobile robots.

Keywords: Wireless Sensor Networks, Handover, Self-routing, Mobile Robots.

1 Introduction

Recently, WSN (Wireless Sensor Network) [1] and mobile robot technology are the
one of the most popular technologies for realization of ubiquitous networks. WSN
can be widely used such as military, medical and industrial purpose. However, when
we deploy WSN in multi-hop environments, a number of open problems can be
observed because of limited bandwidth capacity and significant packet collisions by
channel interference, and so on. In order to tackle these problems, [5] [6] [7] are
proposed with BOP (Beacon Only Period) and LAA (Last Address Assignment)
mechanisms. However, they do neither consider nodes mobility nor smooth route
recovery mechanisms during the communication session. In addition, when the net-
work traffic is significantly congested, existing schemes suffer severe packet colli-
sions between beacons and other control packets. In this paper, we designed and

∗ Corresponding author.

 A Tree Based Self-routing Scheme for Mobility Support in WSNs 115

developed an efficient wireless sensor network system with autonomous mobile
robot for smooth mobility support. In order to reduce the handover overhead and the
latency of mobile robots which role mobile nodes in WSNs, we propose a tree based
self-routing scheme. All sensor nodes and sink nodes are implemented on the
TinyOS [2] system which is based on NesC [3]. In addition, we also developed a
monitoring system which is able to collect and process data packets from every sen-
sor node including the mobile robot.

The rest of this paper is organized as the follows. In Section 2, we review TinyOS
architecture for our operating system platform and IEEE 802.15.4 MAC protocol as
well as its improved versions with beacon scheduling. In Section 3, we illustrate the
detail design architecture and implementation issues of our tree based routing scheme.
Performance evaluation by real test-bed and simulation study is presented in Section
4. Finally, concluding remarks with future works are given in Section 5.

2 Related Works

2.1 TinyOS

TinyOS is developed in U.C. Berkeley and designed for exclusive operating system in
wireless sensor networks. Most applications based TinyOS can be compiled into very
tiny volume under 30Kbytes which is the optimal size for general specifications of
wireless sensor nodes such as a small hardware device, small memory size, low CPU
performance, and limited wireless channel resources. In addition, since TinyOS ex-
cludes unnecessary libraries and components, it can reduce extra overhead of the
source code and produce minimum sized programs. For the more convenient applica-
tion development, TinyOS is written in NesC language which is a component based
architecture. The components of each application are connected to each other by using
interfaces during the compile procedure. Although the grammar of NesC is similar to
traditional C language, there are several differences between them such as types,
development scheme, code size and etc. The other main features of NesC are as fol-
lows. It offers very convenient environment for application programming and the
final code size is small enough to install on tiny sensor motes. However, NesC does
not support a dynamic memory allocation mechanism, which may disturb intelligent
computing processes.

In order to support simple scheduling service, the process of TinyOS defines a
2-level scheduling scheme which consists of tasks and events. The task is a process
which is used for computing operations and procedure call operations. All tasks run in
a FIFO (First In First Out) queue. When all tasks in the queue finish their processing,
they minimize the CPU power consumption to reduce limited energy until other tasks
are activated. Although a task is not able to be preempted by other tasks, it is able to
be preempted by events. The event is a kind of process which has higher priority than
task and is invoked usually when a hardware interrupt occurs or certain conditions are
satisfied. When an event is produced by the interrupt, the related component is called
and the wiring component in upper layer is also called in succession if it is connected
to each other. At the same time, the related functions are transformed into tasks and
stored in the FIFO queue.

116 Y.-D. Kim et al.

2.2 IEEE 802.15.4 and Beacon Based Protocols

IEEE 802.15.4 [4] is the one of most representative protocols to support the commu-
nication between sensor nodes in wireless PANs (Personal Area Networks). In the
basic mode, IEEE 802.15.4 usually operates in star network topology and requires a
coordinator node to control the whole communication procedures between nodes by
using beacon frames. However, it has severe limitations that it supports only 1 hop
distance nodes from the coordinator, which is not suitable for multi-hop environments
or multi-beacon enabled mesh networks. If we adopt the legacy IEEE 802.15.4 in the
wireless mesh network with multiple paths, the network may suffer from significant
performance degradation such as beacon collisions, failures of routing path and etc.

In order to tackle these limitations of IEEE 802.15.4, [5] [6] [7] proposed the BOP
(Beacon Only Period) and the LAA (Last Address Assignment) algorithm for dy-
namic mesh networks. However, these schemes were not implemented with autono-
mous mobile robots and sensor nodes did not support a stable operating system such
as TinyOS. Another limitation of [5] [6] [7] is that they show poor network perform-
ance because they do not solve packet collision problems between flooding packets
for route discovery and beacon frames. Moreover, they do not suggest actual solution
of node mobility support when the application requires seamless data services. Thus,
throughout this paper, we propose an efficient network architecture for smooth mobil-
ity support with tree based the self-routing scheme.

3 Proposed Scheme

3.1 Association Process

It is necessary that each end node starts an association process to participate in PAN
communication when it hears beacon frames from the coordinator. Our network
scheme also uses the beacon policy like [5] [6] [7]. However, most WSNs have many-
to-one communication paradigm, which means that all nodes transmit their sensing
data upload direction. Thus, in order to make hierarchy architecture for efficient asso-
ciation, we define three node types, which are WC (Wireless PAN Coordinator), WR
(Wireless Router), and WED (Wireless End Device). WC plays a role of a sink node
and gateway by transmitting periodic beacon frames and collects data from WRs and
WEDs. The collected data is forwarded to monitoring server for more specific proc-
essing such as management of alert message to user terminals. WR also periodically
transmits beacon frames to neighbors and executes scheduling process with neighbors
by exchanging beacon frames. WEDs are logically located in the end of the network
and generate packets containing sensing data. Each packet of WEDs is forwarded to
WC via WRs in every wakeup time of the superframe. In general IEEE 802.15.4 net-
works, there are only FFD (Full Function Device) and RFD (Reduced Function De-
vice). However, in our work, we assume that FFD is able to be a not only WR but also
WC. In addition, FFD can manage the PAN or make its own network without partici-
pating in other PANs.

In order to organize and synchronize the network, WC and WR transmit beacon
frames to neighbors periodically. At first, one of WRs becomes WC if it does
not hear any beacon frame from neighbors. Then WC starts to beacon with its

 A Tree Based Self-routing Scheme for Mobility Support in WSNs 117

network information such as beacon interval, identification, and information of
its neighbors. When other WRs or WEDs try to scan the channel, they executes
MLME_SCAN_request() process which is a MAC layer management entity in order
to associate with parent node. In this situation, WR also can associate with another
WR node and it calculates its own beacon schedule within the BOP length, which is
executed by using received BTTSL (Beacon Tx Time Slot Length) information from
its neighbors or parent node [7]. The channel scanning process in MAC layer is in-
voked by calling Network_Discovery_request() command, then each node records
beacon information of accessible channels which is between 11 and 26. The scanning
information is delivered to upper layer by SCAN_Confirm() function. Finally, by
using MLME_SCAN_request() and MLME_SCAN_confirm(), a node transmits
Assocation_request() primitive to the parent node with maximum signal strength
which is derived from scanned beacon. This Assocation_request() is called by Net-
work_Discovery_confirm() from network layer. Figure 1 illustrates the overall pro-
cedure of association.

Fig. 1. Association process

3.2 Tree Based Self-routing Scheme

The traditional on demand routing protocols such as AODV (Adhoc On-demand Dis-
tance Vector routing protocol) [8] and DSR (Dynamic Source Routing protocol) [9]
broadcast RREQ packets and receive RREP packets for route discovery. Even though
the flooding scheme using these control packets is efficient for mobile ad hoc net-
works, it wastes network bandwidth and battery power in the wireless sensor network
which consists of tiny sensors and motes. In addition, when relay nodes use the bea-
con frame for synchronization, it suffers significant packet collisions between beacons
and other control packets. Moreover, when the duty cycle of each node increases, the

118 Y.-D. Kim et al.

flooding overhead also increases and it may result in network congestions. Thus, in
order to reduce the control packet overhead for routing in network layer, we propose a
self-routing approach by using association information between parents and child
nodes in MAC layer.

When a node tries to participate in network communications, its parent node (WR)
or coordinator (WC) may assign the address by using beacon frames with the LAA
scheme. Therefore, after association procedure, the parent node can obtain the address
of child node and the child node also can obtain the address of the parent node in tree
based topology. The sharing address information between the parent and the child is
stored in the simplified routing table which is described in table 1.

Table 1. An example of simplified routing table

Parent address Child address
Short address (16bit) Long address (32bit) Short address (16bit) Long address (32bit)

7
0x0000000
000000007

8
0x0000000
000000008

Then, if a node receives incoming packets from the lower layer, it directly trans-

mits to its parent node without using the RREQ flooding scheme. Consequently, the
source node and relay node can guarantee rapid packet forwarding and reduce addi-
tional control overhead. In addition, since each node does not need to maintain and
exchange the routing table information of whole network, it can not only resolve
memory overhead but also accomplish self-routing.

3.3 Mobility Management and Route Recovery Process

When a node does not receive the expected beacon frame or a data packet in a certain
interval, it believes that unexpected link failure or handover is taken placed in MAC
layer. In this case, there are two desirable solutions to recover the routing path. The
first one is that each node starts the process re-association to another parent node with
our self-routing scheme mentioned in the previous section, which is simple and effi-
cient approach from the fact that it does not require new route discovery process by
using RREQ (Route Request) packet flooding. Consequently, this re-association
scheme prevents unnecessary bandwidth wastes and prolongs the battery life time of
each node. The other approach of path recovery is to use a route maintenance scheme
by using network layer operation with RERR (Route Error) packet. Although this
scheme is most common approach in mobile ad hoc networks, it significantly suffers
from more route rediscovery delay and more bandwidth wastes.

Thus, we used the MAC layer re-association scheme and left the network layer
approach as optional operation. After finishing the re-association procedure, MAC
informs network layer with the updated route information and the node does not
need to flood RREQ packets to the whole network. Since our network architecture
intends to reduce the number of flooding of control packets, WR and WC execute
the route discovery operation with association based tree routing. During the L2/L3
re-association procedure, WR acquires the relation information between child and

 A Tree Based Self-routing Scheme for Mobility Support in WSNs 119

parent. By using this information, the intermediate WR forwards the uplink data
packet from the child node to the link of parent node. This relay process is contin-
ued until it arrives in WC. Consequently, the mobile node reduces handover latency
and we can say that it is a self-routing scheme from the fact that the intermediate
node does not depends on other routing information.

4 Performance Evaluation

4.1 Implementation of Test-Bed

As shown in figure 2, we developed sensor modules with CC2420 of TI Chipcon
product as RF transceiver and ATMega128L as a main processor. The application was
implemented for fire and atmosphere monitoring service such as temperature, gas,
smoke, humidity and illumination. The gas information is classified into CO, CO2,
HCHO, SO2, NO2, and etc. This information is forwarded to WC in every seconds and
KIP-AF (Knowledge Information Process Air/Fire data) shows the measured values
in real time. If any emergent data arrive in KIP-AF, the server immediately transmits
the alert message to the user terminal. For network entities, we used 1 coordinator, 8
relay WRs, and 50 WEDs with maximum 3hops. The transmission range was 30~40m
and RF power control was set from 0 to -20dBm. The application used 40 bytes length
packet and the duty cycle was maintained to 100%, which means all nodes transmit
packets every interval in order to process real time data. All sensor nodes transmit
their sensing data to coordinator and the gathered data is forwarded to KIP-AF which
maintains the database for intelligent decision and further processing.

Fig. 2. Test-bed topology

For the mobility support, we used a mobile robot with sensing module which let
the robot to be a mobile sensor node. The robot has 2 wheels and moved randomly
with maximum 50cm/sec velocity. The robot platform is also designed and imple-
mented on TinyOS and equipped with ATmega128L for the compatibility with
sensing module. When the robot has mobility, there is an inevitable problem of link

120 Y.-D. Kim et al.

failure due to network handover or loss of LOS (Line of Sight). Then, the mobile
robot tries to search another WR or WC with the best LQI value among the scanned
candidates.

For the verification of reliable transmissions, we measured packet loss rate from
end node to coordinator, which is logged and calculated in monitoring server. The
measured results are shown in table 2 and the maximum loss rate is less than 4%.
From the measurement our implemented network system is significantly reliable and
the performance is well suitable for real time processing applications.

Table 2. Loss rate measurements

Performance Measurement
Node ID Loss Rate (%) Node ID Loss Rate (%)

A 3.38 L 2.94
B 1.88 M 3.71
C 2.93 N 0.91
D 2.62 O 1.91
E 2.63 P 1.97
F 1.87 Q 1.93
G 3.44 R 0.72
H 2.92 S 2.93
I 1.87 T 3.01
J 1.92 U 1.87
K 2.50 V 2.26

Fig. 3. Handover scenario for mobile robots

We also conducted the performance evaluation for mobility support by using “Sen-
sor Network Analyzer (SNA)” of Daintree Networks [10], which is a commercial
product for packet analysis. Figure 3 shows the route recovery scenario with mobile
robots and the experiment is executed as follows. At first, we set up two WRs, named
WR1 and WR2, which are associated to WC and two mobile WEDs associate with
WR1. Then, WEDs move near to WR2, which means that they suffer the link failure.

 A Tree Based Self-routing Scheme for Mobility Support in WSNs 121

After the re-association process, the mobile nodes have a new route to WC and they
start to transmit data packets.

When the mobile node executes handover procedure in this experiment, the aver-
age handover latency, THO, is calculated as and figure 1 and expression (1).

 T T T

 T T T T T

ackasc_resack

data_reqackasc_reqsbeacon_losHO

+++

+++=
 (1)

By using parameters as follow

Tbeacon_loss : Interval of beacon loss due to handover
Tasc_req : Transmission time of association request frame
Tasc_res : Transmission time of association response frame
Tdata_req : Transmission time of data request frame
Tack : Transmission time of ACK frame

As shown in (1), since association duration is relatively short, the average hand-
over latency is highly depends on beacon loss interval during the link failure. Hence,
in order to minimize the beacon loss interval, we set the pending counter in MAC
layer as 2. This means that after the mobile node does not hear beacon frame more
than two times, it consider that the link is broken and executes the re-association pro-
cedure, immediately. In our implementation, we generated packets every second and
set the beacon interval 1 sec. Thus, Tbeacon_loss value is approximately 2 sec.

Table 3. Handover latency measurements

Trials Handover starting time
(min:sec:ms)

Handover finising time
(min:sec:ms)

Handover latency
(ms)

1 10:48:083 10:50:174 2,091
2 10:48:092 10:50:275 2,183
3 12:36:048 12:38:168 2,120
4 12:36:125 12:38:253 2,128
5 15:23:116 15:25:518 2,402
6 15:23:426 15:25:688 2,262

Table 3 shows the measurement results of handover latency of each trial. Around

time 10:48:08 (min:sec:ms), both mobile robots which are associated to WR1, start to
move to WR2. After the occurrence of route failure by handover, another route is
established between WR2 and WEDs in 10:50:174 and 10:50:275, respectively. As
shown in other results of trials, the average handover latency is under 2.5 sec. Thus
we can say that it is possible to support mobility for communication between mobile
nodes and the coordinator in wireless sensor networks.

4.2 Simulation Study

In addition to evaluation of our real test-bed, we also performed simulations to verify
our proposed tree based self routing scheme comparing to original AODV protocol.

122 Y.-D. Kim et al.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 2 3 4 5 6

Number of hops

N
um

be
r o

f N
W

K
 C

M
D

 .

AODV

BRREQ

AODV

Proposed

Fig. 4. The number of network commands

0

50000

100000

150000

200000

250000

1 2 3 4 5 6

Number of hops

A
g

gr
eg

at
e

T
hr

ou
gh

pu
t (

by
te

s)
 .

AODV

BRREQ

AODV

Proposed

Fig. 5. Aggregated throughput

We used TOSSIM [11] with our beacon enabled MAC protocol and run the simula-
tion for 1,000 seconds. All metrics are measured as a function of the number of hops
and the network topology was the form of a perfect binary tree. For the traffic genera-
tion, we set the duty cycle at 50% with beacon order BO=8 and superframe order
SO=7.

Figure 4 shows the number of network command packets as a function of the num-
ber of hops. When the topology is simple and the number of hops is smaller than 3,
legacy AODV and our proposed scheme show similar performance. However, When
the number of hops is higher than 4, our proposed scheme shows better performance
because it does not need to flood the RREQ control packets and it only need to per-
form the association procedure. Hence, our proposed scheme has more opportunity to
transmit data packets to neighbors with the limited wireless channel.

Figure 5 describes aggregated throughput during the simulation time. Since the
intermediate node does not relay control packets such as RREQs and RREPs, it

 A Tree Based Self-routing Scheme for Mobility Support in WSNs 123

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6

Number of hops

D
el

iv
er

y
R

at
io

 (%
) .

AODV

BRREQ

AODV

Proposed

Fig. 6. Packet delivery ratio

0

5000

10000

15000

20000

25000

30000

35000

40000

1 2 3 4 5 6

Number of hops

N
um

be
r o

f C
ol

lis
io

n
.

AODV

BRREQ

Fig. 7. The number of packet collisions

transmits more data packets during the channel access time. In case of AODV, it
should wait another channel acquisition by the wireless contention after the route
discovery procedure, which results in throughput performance degradation.

Figure 6 shows packet delivery ratios according to hop count and the result is
correspondent to figure 5. This implies that when the number of hops increases, the
performance gap between our scheme and AODV also increases. When AODV tries
to establish the optimal route to the destination node, it should use RREQ flooding.
These flooding packets may collide with data packets, which finally results in lower
packet delivery ratio. Furthermore, the collision problem is more serious when the
number of hops increases because the number of flooding increases exponentially in
the tree based network topology. The number of packet collision is illustrated in
figure 7. The collision performance shows a similar pattern with throughput results
Therefore, in large wireless sensor networks, we can observe that the on-demand
routing protocol like AODV is not suitable for communication with limited
bandwidth.

AODV

Proposed

124 Y.-D. Kim et al.

5 Conclusion

In this paper, we have designed and implemented beacon mode based wireless sensor
network system in TinyOS platform. For mobility support and smooth handover, we
proposed a noble tree based self-routing scheme with association information between
parent and child nodes. In other to verify the network performance, we implemented
various sensing nodes as well as coordinator in real test-bed. Throughout performance
evaluation with respect to loss rate, handover latency and several simulation studies,
we showed that our network architecture accomplishes the reliable transmission for
real-time processing service such as fire and emergency monitoring systems under
heavy traffic environments.

As the future work, we plan to perform other extensive experiment to support QoS
enabled packets such as voice and image. Then, we want to develop optimized and
stable network architectures for WSN with mobility support.

Acknowledgement

This work is supported by DGIST and funded by MEST (Ministry of Education, Sci-
ence and Technology) in Korea.

References

1. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a
survey. Computer Networks 38 (March 2002)

2. Gay, D., Levis, P., Culler, D.: Software Design Patterns for TinyOS. LCTES (June 2005)
3. Gay, P.L., Culler, D.: The nesC Language: A Holistic Approach to networked Embedded

Systems. In: ACM SIGPLAN 2003 (2003)
4. Draft IEEE Std. 802.15.4, Part 15.4, Wireless Medium Access Control (MAC) and Physi-

cal Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)
(September 2006)

5. Jeon, H.-I., Kim, Y.S.: BOP and beacon scheduling for MEU devices. In: ICACT 2007
(Feburary 2007)

6. Jeon, H.-I., Kim, Y.S.: Efficient, Real-Time Short Address Allocations for USN Devices
using LAA Algorithm. In: ICACT 2007 (Feburary 2007)

7. ISO/IEC JTC1/SC25, WiBEEM for Wireless Home Network Services - part 1, 2, 3, ISO
standard (March 2008)

8. Perkins, C.E., Royer, E.: Ad-hoc on-demand Distance Vector Routing. In: Proc. 2nd IEEE
Wksp. Mobile Comp. Sys. App. (February 1999)

9. Johnson, D.B., Maltz, D.A., Hu, Y.-C.: The Dynamic Source Routing Protocol for Mobile
Ad Hoc Networks (DSR). In: Internet Draft, IETF Mobile Ad hoc Networks (MANET)
Working Group

10. Sensor Network Analyzer (SNA),
http://www.daintree.net/products/sna.php

11. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In: SenSys 2003 (November 2003)

	A Tree Based Self-routing Scheme for Mobility Support in Wireless Sensor Networks
	Introduction
	Related Works
	TinyOS
	IEEE 802.15.4 and Beacon Based Protocols

	Proposed Scheme
	Association Process
	Tree Based Self-routing Scheme
	Mobility Management and Route Recovery Process

	Performance Evaluation
	Implementation of Test-Bed
	Simulation Study

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

