
C. Hesselman and C. Giannelli (Eds.): Mobilware 2009 Workshops, LNICST 12, pp. 85–97, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

Mobility and Remote-Code Execution

Eric Sanchis

University of Toulouse 1,
IUT, 33 avenue du 8 mai, 12000 Rodez, France

sanchis@iut-rodez.fr

Abstract. Using an adapted analysis grid, this paper presents a new reading of
the concepts underlying the mobile code/agent technology by proposing a
decomposition of the paradigms related to remote-code execution into three
categories: remote-code calling, remote code-loading and mobile code. Models
resulting from this decomposition are specified and implemented using a
uniform execution system. A distinction between mobile code and mobile
software agent is then proposed.

Keywords: distributed systems, design abstraction, remote-code execution,
mobile code, remote code-loading.

1 Introduction

Distributed applications implemented with mobile code or mobile agents were actually
developed from the first half of the Nineties [1]. Mainly considered under a technical
angle - mechanisms, programming -, opinions are divided today on the utility of
mobile agents in these applications [2], [3], [4]. Indeed, as a mechanism of remote-
code execution, mobile code is considered to be less universal than remote procedure
call while being more difficult to implement. Moreover, no killer application truly
emerged. Nevertheless, a certain number of implementations showed that mobile code
was an interesting mechanism in perfectly targeted applications.

When we wish to study mobile code as a manner of executing remote code, we
come up against the multiple meanings which are associated with the concept of code
such as:

- An executable code C provided with its data D and its execution context E: the
entity which moves is a complete execution unit defined by the triplet (C, D, E). This
type of mobility is generally called strong mobility

- An autonomous code or a code fragment C provided with some initialization data
D: the couple (C, D) is downloaded on the remote site then executed by a new
execution unit (weak mobility)

- A non mobile procedure P provided with its parameters which first must be
bound to an execution unit before being called (remote procedure call).

In these three cases, the concept of code has different semantic contents. Moreover,

we can notice that neither weak mobility, nor remote procedure call need the
execution context to be brought in.

86 E. Sanchis

The various interpretations of the notion of code and the consideration or not of the
execution context brought us to revisit the paradigms connected to the distributed
execution domain and to re-evaluate the place that the mobile code holds in this area.
Our work led us to the following conclusion: weak mobility and strong mobility
belong to quite distinct design paradigms. Weak mobility just like remote procedure
call aim at the execution of a remote code, while strong mobility is centred on the
migration of an execution context. That means that weak mobility and remote
procedure call correspond to the same abstraction that we have called Remote-Code
Execution (RCE) and which will be detailed in the following sections, whereas strong
mobility is conceptually close to the migration of process or thread, i.e. a paradigm
which we could call Migration of Execution Unit. In other words, weak mobility is
closer to remote procedure call than to strong mobility because an execution context
cannot be reduced to its code part.

In order to position mobile code with regard to the architectures generally used
within the distributed applications framework, a second reading of the paradigms
related to RCE was carried out starting from the work and proposals presented in [5].

This paper is structured as follows. Section 2 explains in depth the grid of analysis
which was used to carry out our second reading, a grid built on the concepts of
Abstraction, Model and Mechanism (called A2M grid) where each level of the grid
masks a set of non relevant details. Section 3 compares the Fuggetta’s design
paradigms and the models of our RCE abstraction. The last section describes the
execution system which was used to implement the RCE models.

2 Abstraction, Model and Mechanism

The construction of an IT application requires the use of several classes of services
provided by the underlying system (communication, synchronization, naming
services). In order to extract the principles at the heart of a class of services and to
ignore the implementation details, it is preferable to reason about an abstraction
representing a class of services solving a standard system problem. For example, the
conceptual or concrete functioning modalities relative to the services of
communication between processes can be grouped together in an interprocess
communication abstraction. However, it seems that the notion of communication even
limited to simple processes takes on very different meanings according to distributed
system designers. As far as we are concerned, we define a communication as the
transmission of a sequence of bytes between a sender process and a local or remote
receiver process. Other approaches utilize the concept of object or exchange
(call/reply, transaction) [6], [7], [8]: it is not any more an elementary communication
between two processes but a structured communication between active entities, with
the various additional variations which it authorizes. Consequently, although dealing
both with communications, they are two different abstractions. The essential interest
of abstractions is that they present a global comprehensive view of a problem and
their associated solutions (formalized or implemented) when this problem is perfectly
limited.

Generally, for each abstraction one or more models are defined where each one of
them formalizes a particular manner to solve the target problem. A model is

 Mobility and Remote-Code Execution 87

characterized by a set of features, in general a few ones, which identify its specificity
and which make it possible to immediately distinguish it from the other models of the
same abstraction. Thus, the interprocess communication abstraction as we described
previously declines according to the two well-known models: the shared memory
model and the message-passing model.

Lastly, while a model shows certain coherence, it can be implemented using very
different mechanisms. This multiple forms of the same model is due to several factors
such as the programming language used or the characteristics of the chosen execution
support (resources management, interactions between the execution units, etc.). Thus,
inside the Unix family systems, several mechanisms implement the model of
communication by shared memory. Let us quote for example the communication by
pipe, shared memory or message queue (an inadequate denomination with regard to
the implemented model!). The properties of these three mechanisms are very different
with respect to the communication direction (one-way or bidirectional), to the
synchronization of the communicating entities (synchronization provided by the
execution support or by the programmer). For complex abstractions such as RCE, the
associated mechanisms appear under the form of powerful execution systems which
section 4 will give some examples of.

It should be noted that often, relations between a model and its implementations
are sufficiently strong to introduce a certain duality between the model and
mechanism concepts. Indeed, certain mechanisms studied in a given context, are
presented as models in another context. For example, the RPC mechanism (Remote
Procedure Call) is often promoted to the rank of model, generally called Client-
Server model. We can attribute the emergence of this model/mechanism duality to the
consideration of different elements by the designers to define their paradigms. That
will be clarified in section 3 when the study of the paradigms related to the code
mobility presented in [5] will be made, paradigms which will be compared with our
own models associated to RCE.

Moreover, the plurifunctionality of certain models/mechanisms used in various
contexts leads to a situation where there is no unanimity among the researchers to
place a model in a single abstraction. For example, the Client-Server model is often
considered as a model of communication between process or threads [9], [8], [10] and
not as a model of the Remote-Code Execution abstraction.

Lastly, some complex mechanisms integrate sub-mechanisms which correspond to
models belonging either to the same class, or to different classes. This aspect will be
illustrated in section 4 where the middleware used to implement the Mobile Code
model is built on the Client-Server model.

In order to dissipate as well as possible the negative effects carried by the
model/mechanism duality and by the plurifunctionality previously described, we
proposed an analysis grid A2M which is articulated around three adjacent conceptual
levels (Figure 1), offering a certain flexibility in the definition and interpretation of
the studied paradigms.

The porosity of these three levels already present in the communication between
processes is more important when the studied abstraction is more complex such as
RCE. In order to specify the contents of this abstraction, the following section
presents the relationships between the design paradigms of a distributed system,
mobile code and the RCE abstraction.

88 E. Sanchis

Abstractions

Models

Mechanisms

Fig. 1. The A2M grid

3 The Remote-Code Execution Abstraction

A. Fugetta and his colleagues [5] studied in depth paradigms connected to mobile
code. Their project aimed at clarifying the terms, concepts and technologies which are
related to these paradigms. Their work led to the definition of a three-dimension
architecture: the technologies, the design paradigms and the applications of mobile
code. With regard to these three axes, the second reading we propose focuses on the
design paradigms (called models in the A2M grid). This is why only this aspect will
be explained in detail thereafter.

3.1 Design Paradigms

These researchers identify four general design paradigms: Client-Server (CS), remote
evaluation (REV), code on demand (COD) and mobile agent (MA). In order to clarify
the characteristics of these four paradigms, they distinguish the following elements:

- a component A, located on site Sa, which requests the execution of a service S
and waits for the corresponding result

- a component B, localized on site Sb
- the requested service S
- the necessary resources R (data, files, etc.).

The four paradigms are then decomposed into two categories: Client-Server and
those which exploit the code mobility (remote evaluation, code on demand and
mobile agent).

Using the Component/Service/Resource triptych, the Client Server paradigm (CS)
is stated as follows: at the initial moment, the service S and the resources R are
localized on site Sb. The component A located on site Sa asks the component B to
execute the service S. After execution of S, B returns the result to A.

The three paradigms associated to the code mobility are described in the following
way.

Remote evaluation (REV): at the initial moment, component A located on site Sa
possesses the required service S but the necessary resources R for obtaining the result

 Mobility and Remote-Code Execution 89

are present on site Sb. Component A sends service S to component B located on Sb. B
uses resources R to execute service S, then returns the result to A.

Code on demand (COD): at the initial moment, component A has the necessary
resources R to execute service S but this one is located on site Sb. A interacts with
component B which sends to it the required service S. A obtains the expected result by
executing on its site the received service S.

Mobile agent (MA): at the initial moment, A possesses service S and a part of the
resources R necessary to its execution, the other part of the resources being on the site
Sb. After a partial execution of service S on site Sa, component A provided with
service S moves on site Sb where it continues the execution of S.

As it was noticed by the authors, there is an unequivocal division between on one side
the REV and COD paradigms, and on the other side the MA paradigm. This separation
is attributed to the fact that in the MA paradigm, there is not only the movement of a
service but the transfer of an execution unit. As we suggested in section 1, this formal
asymmetry is due to the consideration of two design paradigms belonging to two
different abstractions: the RCE and Execution Unit Migration abstractions.

Within the framework of a methodology based on the use of the A2M grid and
before defining conceptually homogeneous design paradigms (models), it is necessary
to carefully characterize the contents of the abstraction which will synthesize these
models.

3.2 Models of the Remote-Code Execution Abstraction

Defining an abstraction consists in clarifying the generic problem, each model of the
abstraction providing a specific resolution method. As its naming indicates, the aim of
the Remote-Code Execution abstraction is the execution of a piece of code present on
a remote host. That means that the characterization of the models of this abstraction
will be based essentially on the code part, and more specifically on the operations on
this code such as copy, execution and deletion. To illustrate in a uniform manner the
functioning of the various RCE models and particularly the flow of control between
the local active entity and the remote one, only synchronous interactions will be
considered. That means that neither asynchronous alternatives, nor various types of
resources (in all its forms: initialization data, execution contexts - stack, instruction
pointer -, opened file descriptors, etc) will not be taken into account in modelling.

A precision must be underlined about the models naming which will follow. As the
description of the models is only based on the operations concerning the code part, the
denomination of the models will be different from the names of the paradigms
described in section 3.1. Thus, the Client-Server paradigm is named Remote Code
Calling model in the RCE abstraction. This naming has two advantages: on the one
hand, it does not use the Client-Server expression which is used in many branches of
computing and on the other hand it specifically refers to the operation carried out on
the code, i.e. the aspect which is at the heart of the model. The equivalents of REV
and COD paradigms are considered as two versions of the same principle: the Remote
Code-Loading. Finally, the MA paradigm disappears from RCE abstraction for the
benefit of a new model: the physically mobile code (or more simply mobile code).

90 E. Sanchis

Local Site Remote Site

 Code LC

C Call

C Execution

result

Fig. 2. Remote Code Calling

Remote Code Calling. Figure 2 illustrates the Remote Code Calling model.
This model generalizes the traditional procedure call mechanism in a distributed

system. The principle of Remote Code Calling is the following: at the initial moment,
the local code LC requires the execution of the remote code C present on site Sb and
waits for the result. After execution of code C on Sb, the result is returned to code LC
which continues its execution.

It is important to notice that no precision relative to the data, the used resources or
the intermediate synchronizations between the execution units associated with codes
LC and C are present into the model: these details are encapsulated into the model
implementation according to the used execution system.

Remote Code-Loading. It is with the Remote-Code Evaluation and Code on Demand
models that important differences appear with the REV and COD paradigms.

Remote-Code Evaluation is a generalization of the evaluation principle imple-
mented by the interpreters of certain high-level languages. This model can be
described as follows: at the initial moment, the local code LC copies a code C on site
Sb and asks for its execution there. Code C is executed on Sb, the result is returned to

Local Site Remote Site

Code LC

Copy of Code C

C Exécution

result C Deletion

Fig. 3. Remote-Code Evaluation

 Mobility and Remote-Code Execution 91

code LC then code C is removed from Sb (Figure 3). After the result reception, code
LC continues its execution.

It is the combination of the Copy/Execution/Deletion operations which
characterizes the remote evaluation of code C. This model substitutes the code
mobility aspect by a remote code-loading sketch. This point of view is perfectly
compatible with the application which is usually used to illustrate the REV paradigm:
the printing of a PostScript file. When a copy of this file is loaded, this copy is
directly interpreted by the printer then disappears.

The same operations combination also applies to Code on Demand, but executed in
an indirect way (Figure 4).

Local Site Remote Site

Code LC

Copy of Code C

C Exécution
result

C Deletion

Activation

Fig. 4. Code on Demand

The principle of the Code on Demand model is the following: at the initial
moment, the local code LC activates an intermediate remote code RC located on Sb.
Code RC copies on Sa code C which is also located on Sb. Code C is executed on Sa,
the result is provided to code LC and code C is removed from Sa. After the reception
of the result, code LC continues its execution.

The presence of the code deletion in the Remote-Code Evaluation and Code on
Demand models contributes to reinforce the internal coherence of the two models.
Indeed, if the operation of deletion was absent, the successive execution of two
remote evaluations of the same code C on the same remote site Sb would lead to a
logically incoherent behaviour (copy of code already present).

Mobile code. The Mobile Code model derives directly from the physical mobility of an
object, mobility understood according to the common sense: a mobile object is an
object which is present in its physical totality at a point x at an instant t, then is at a
point y (y different from x) at instant t+1. This model extends the concept of passive
message (short lifespan data) to the concept of active message (persistent lifespan
code).

92 E. Sanchis

Local Site Remote Site

Code LC

Copy of C

C Deletion

result

C Execution

Fig. 5. Mobile Code

The Mobile Code principle is translated in the following way: at the initial
moment, local code LC copies code C to site Sb then removes code C from Sa. Code
C is executed on Sb and the result is returned to code LC which can continue its
execution. Disappeared from site Sa, code C remains present on the remote location
Sb: there was an actual physical moving of code between the two sites (Figure 5).

By construction, two successive executions of the same mobile code C cannot take
place from the same site Sa. This behaviour corresponds perfectly to the natural
semantics of a code qualified as mobile. The mobility of the code is actual.

Lastly, to be complete and by orthogonality with the Code on Demand model, we
deduct the indirect version of Mobile Code (Figure 6).

Local Site Remote Site

Code LC

Copy of Code C

C Exécution
result

C Deletion

Activation

Fig. 6. Indirect Mobile Code

Compared to the Remote-Code Evaluation model, in these two models the
operations of execution and deletion are made on two different sites.

 Mobility and Remote-Code Execution 93

3.3 Discussion

The RCE abstraction as previously characterized, i.e. centred on the code part and the
associated operations, has the major consequence to completely reorganize paradigms
that are generally related to mobile code. Indeed, we showed that:

- remote evaluation (paradigm REV) and code on demand (paradigm COD) are two

models built on the remotely copying of code and not on its mobility: thus, they must
be clearly distinguished from mobile code. Our point of view is that neither PostScript
printing nor Applet and Servlet technologies constitute examples of mobile code but
are different implementations of the remote code-loading model. On the other hand,
advantages generally attributed to mobile code or mobile agent such as the reduction
of the network load or the interest to bring closer code and data to be treated are not
related to the mobility but to the copy of the code on the data’s site. In other words,
certain positive aspects associated to mobile code are rather to put at the credit of the
remote code-loading model

- strong mobility agents do not constitute a model of the RCE abstraction but a
model of a very different abstraction – Execution Unit Migration -, an abstraction the
study of which (characterization of the abstraction, its models and mechanisms)
remains to be made. Consequently, the advantages and disadvantages associated with
strong mobility agents are not attributable to the management of their code but rather
to the mobility of their execution unit as in process migration implemented in certain
operating systems [11].

The mobile code model of the RCE abstraction completes in a coherent way the

tools offered to the distributed applications designer, tools dedicated to remote-code
execution. By construction, this model allows the checking of the uniqueness and the
location of the executed code. It also illustrates the difference between mobile code
and strong mobility agent.

Lastly, it invalidates the widespread idea according to which viruses and worms
would be mobile entities. Indeed, the code of these software entities does not move
from a site to another but remotely replicates itself on infected sites: if viruses and
worms were mobile, it would be easier to eradicate them. Their power of nuisance
results essentially from their capacity of remote replication.

4 From Models to RCE Mechanisms

The purpose of the models presented previously was to extract the specificity of each
of them with regard to the other models of the RCE abstraction. This specificity was
formalized by a particular combination of operations relating to the code part, one of
the singularities of the suggested interpretation being to consider all other aspects as
concerning a particular implementation. Before illustrating a building of each model,
i.e. to pass from the model to a mechanism which implements it, the used execution
support must first be described. Indeed, it is the characteristics of the underlying
execution system that will determine the possible synchronizations, the necessary
resources and the global modes of functioning.

94 E. Sanchis

The judicious choice of the used execution system associated with the formal
coherence of the RCE abstraction models allowed us an implementation of these
models which is precise, elegant and homogeneous as well.

4.1 Execution System

Two elements characterize an execution system: the middleware and the programming
language which are used.

A middleware groups together a set of broad utility services making the
implementation of distributed applications easier. Often, a full development system
goes with the middleware, a system which not only provides the necessary tools for
the construction of the distributed application, but the tools facilitating its deployment
too. Two examples of very used middlewares are the RPC and RMI systems. The first
one is intended for the implementation of distributed applications written in C
language, the second to those written in Java. Both middlewares realize the same
remote-code execution model (Remote Code Calling), but in different ways: Remote
Procedure Call for the first and Remote Method Invocation for the second.

Two classes of programming languages are mainly used to implement a distributed
application: system programming languages such as C, C++ or Java and script
languages such as the Unix shells (bash, sh, ksh), PERL, TCL or Python. Although
each class has its advantages and its disadvantages, script languages have a strong
power of expression perfectly adapted to the use we wish to make [12].

For more simplicity, the execution system which was used to implement the
various models of the RCE abstraction is articulated around the middleware SSh and
the script language bash. The execution system bash/SSh was selected for the two
main following reasons: a native deployment on many computing systems and a
concise and elegant programming syntax.

Middleware SSh provides a high level network programming interface with the
couple of secure commands ssh/scp. Well configured, the middleware SSh offers a
sufficient security level to simply implement the RCE abstraction models. The
remote-code execution model at the centre of the commands ssh/scp is Remote Code
Calling. By default, interactions via ssh or scp between the two entities are
synchronous. However, the interpreter bash natively integrates the necessary
mechanisms to implement asynchronous interactions.

Shell bash - as any other Unix shell - interfaces itself with ssh/scp in a perfect
manner. Its compactness favours the fast writing of prototypes. Weakly typified and
string oriented, it is less sensitive to the traditional problems posed by data
representation between heterogeneous systems than system programming languages
such as C or other languages of the same family.

4.2 RCE Models Implementation

Supplying an implementation of the RCE models simply consists in translating the
operations defined in section 3 into comprehensible instructions by the execution
system bash/SSh. These instructions are the following:

 Mobility and Remote-Code Execution 95

To execute the command cmd located on the remote site Sb: ssh Sb cmd
To copy on remote site Sb the code of command cmd: scp cmd Sb:
To locally copy the code of command cmd located on remote site Sb:

scp Sb:cmd .
To remove the code of command cmd: rm cmd
To assign to a variable var the value resulting from the execution of command cmd:
 var=$(cmd)

The translation of the models is immediate (to simplify, the various cases of error are
not treated).

Remote Code Calling.

 result=$(ssh Sb C)

The result coming from the execution of the remote code C is assigned to the local
variable result.

Remote Code-Loading.

Remote-Code Evaluation

scp C Sb:
result=$(ssh Sb ″C ; rm C″)

Code C is copied to the remote site Sb. Then, the two commands C and rm C are
sequentially executed on Sb. The result of the remote execution of C is assigned to the
local variable result.

Code on Demand

scp Sb:C .
result=$(C)
rm C

Code C located on the remote site Sb is locally copied, locally executed then locally
removed.

Mobile Code.

scp C Sb:
rm C
result=$(ssh Sb C)

Code C is copied to the remote site Sb then the local copy of C is removed. Code C is
executed on site Sb and the result is assigned to the local variable result.

96 E. Sanchis

The indirect version of Mobile Code is expressed in the following way:

scp Sb:C .
ssh Sb rm C
result=$(C)

5 Conclusion

In previous works [13], the study of complex properties such as autonomy revealed
how important it was to use a precise reasoning framework to be able to analyze then
to rigorously classify the models associated with the same paradigm. It was shown
that an incompletely controlled abstraction could lead to inappropriate conclusions.

The definition then the use of grid A2M applied to mobility showed the relevance
to distinguish mobile code and strong mobile agent: the mobile code model belongs to
the Remote-Code Execution abstraction while strong mobility is to be associated with
the Execution Unit Migration abstraction.

The meticulous construction of the RCE models clarified the replication/mobility
duality and underlined the important features making it possible to distinguish the
various models of the RCE abstraction. The immediate profit was to restore to each
model its advantages and its disadvantages.

References

1. Chess, D.M., Harrison, C.G., Kershenbaum, A.: Mobile Agents: Are they a good idea?
IBM Research Report, RC 19887 (1994)

2. Lange, D.B., Oshima, M.: Seven Good Reasons for Mobile Agents. Communication of the
ACM 42(3), 88–89 (1999)

3. Vigna, G.: Mobile Agents: Ten Reasons For Failure. In: Proceedings of the IEEE
International Conference on Mobile Data Management 2004 (MDM 2004), Berkeley,
USA, pp. 298–299 (2004)

4. Johansen, D.: Mobile Agents: Right Concept, Wrong Approach. In: Proceedings of the
IEEE International Conference on Mobile Data Management 2004 (MDM 2004),
Berkeley, USA (2004)

5. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code mobility. IEEE Transactions on
Software Engineering, 24(5), 352–361 (1998)

6. Goscinski, A.: Distributed Operating Systems – The Logical Design. Addison Wesley,
Reading (1991)

7. Silcock, J., Goscinski, A.: Message Passing, Remote Procedure Calls and Distributed
Shared Memory as Communication Paradigms for Distributed Systems. Technical Report
TR C95/20, School of Computing and Mathematics, Deakin University (1995)

8. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems – Concepts and Design.
Addison Wesley/Pearson Education (2005)

9. Tanenbaum, A.: Modern Operating Systems. Prentice Hall, Englewood Cliffs (1992)
10. Silberschatz, A., Galvin, P.B., Gagne, G.: Operating System Concepts with Java. John

Wiley & Sons, Chichester (2007)

 Mobility and Remote-Code Execution 97

11. Thiel, G.: LOCUS operating system, a transparent system. Computer Communication 14(6),
336–346 (1991)

12. Ousterhout, J.K.: Scripting: Higher Level Programming for the 21st Century. IEEE
Computer 31(3), 23–30 (1998)

13. Sanchis, E.: Autonomy with Regard to an Attribute. In: IEEE/WIC/ACM International
Conference on Intelligent Agent Technology 2007 (IAT 2007), Silicon Valley, USA
(2007)

	Mobility and Remote-Code Execution
	Introduction
	Abstraction, Model and Mechanism
	The Remote-Code Execution Abstraction
	Design Paradigms
	Models of the Remote-Code Execution Abstraction
	Discussion

	From Models to RCE Mechanisms
	Execution System
	RCE Models Implementation

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

