
Defending against Attribute-Correlation Attacks

in Privacy-Aware Information Brokering

Fengjun Li1, Bo Luo2, Peng Liu1, Anna C. Squicciarini1, Dongwon Lee1,
and Chao-Hsien Chu1

1 College of Information Science and Technology, The Pennsylvania State University
2 Dept. of Electrical Engineering and Computer Science, The University of Kansas

Abstract. Nowadays, increasing needs for information sharing arise due
to extensive collaborations among organizations. Organizations desire to
provide data access to their collaborators while preserving full control over
the data and comprehensive privacy of their users. A number of informa-
tion systems have been developed to provide efficient and secure informa-
tion sharing. However, most of the solutions proposed so far are built atop
of conventional data warehousing or distributed database technologies.

Recently, information brokering systems have been proposed to pro-
vide privacy-preserving information sharing among loosely federated data
sources. However, they are still vulnerable to attribute-correlation attacks
during query routing, due to the lack of protection of the routed queries.
In this paper, we investigate the problems caused by such an attack, and
propose a countermeasure by limiting the view of query content at each in-
termediate broker. We show that the proposed content-based XPath query
routing scheme with level-based encryption and commutative encryption
can effectively prevent an attribute-correlation attack originated by com-
promised brokers, with reasonable overhead.

Keywords: information brokering, attribute correlation attack, privacy,
XML.

1 Introduction

Today’s organizations often operate across organizational boundaries. They raise
strong needs for efficient and secure information sharing to facilitate extensive
collaborations. However, early approaches on information sharing, which mainly
focus on providing transparency and interoperability among heterogeneous sys-
tem, fall short of satisfying new requirements of these inter-organizational col-
laborations.

To better understand such requirements, we overview the unique needs of such
interorganization collaboration by considering an example in the healthcare do-
main. Large-scale health information infrastructures, such as Regional Health
Information Organization (RHIO), are being developed to share medical infor-
mation (e.g., patient records) collected by collaborative health providers (e.g.,
hospitals) via protected “channels”. First, there is no centralized authority to

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 100–112, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

Defending against Attribute-Correlation Attacks 101

coordinate the data in different hospitals. Each health provider is authorized
by its patients to collect medical information independency, and stores it across
multiple local data servers. Since the data is private and sensitive, the health
providers are responsible for not leaking patient records to irrelevant parties.
The health providers desire to share their data to fulfill collaboration, however,
they prefer to do it in a restricted and controlled fashion. Data requestors, such
as doctors, need to be able to retrieve the medical records with precision and not
be distracted by “noisy” data. Finally, the RHIO should be able to maintain a
large number of data servers, considering the participant population. In general,
such interorganization collaboration application requires an information sharing
system that offers full autonomy to underlying databases, preserve data security
and privacy comprehensively, and provides good scalability.

Recently, information brokering systems (IBS) [8,13] have been proposed to
meet the above requirements. In an IBS, geographically distributed data sources
within a consortium are linked through a set of brokers to provide unified data
access to all the users in the consortium. No third party is required to keep a
centralized copy of data from local databases. Each data source maintains full
control over its data and has great flexibility to grant, restrict, and revoke access
of a particular user to certain data. Moreover, in order to achieve the desired
query expressiveness, XML data model is widely adopted. Brokers are linked in
a peer-to-peer fashion that makes IBS a scalable system.

Although IBS systems meet most of the requirements in current interorgani-
zaion information sharing, they suffer from many attacks to privacy. In [13], we
gave an insightful analysis of types of privacy involved in on-demand distributed
information access as well as the risks. We proposed an automaton based ap-
proach for comprehensive privacy protection, however, it still suffered from a
major privacy threat. In databases, data is represented as a set of records and
each record can be viewed as a set of attributes with distinct values. Thus, the
content of a query may be simply viewed as a sequence of query conditions (or
predicates): each condition/predicate involves a specific attribute. Although the
queries are sent through secure tunnels, an intermediate broker can view every
XML query routed through it. If no proper privacy control is enforced, an en-
route broker, when compromised or turned into a malicious insider, could easily
extract query conditions and correlate the attributes to infer sensitive informa-
tion about the data owner. The attack is known as attribute-correlation attack.
Moreover, the results from attribute-correlation attacks may facilitate further
inferences such as the re-identification attack.

In this paper, we define the attribute-correlation attack in information broker-
ing systems, and provide solutions. More specifically, we design a content-based
query routing scheme which uses encryption scheme to protect query content
from attribute-correlation attacks by limiting broker’s view of query content.
Through insightful analysis, we show that no private information leaks even if
some brokers collude. To the best of our knowledge, this is the first solution that
protects an IBS against attribute-correlation attacks launched by compromised
brokers.

102 F. Li et al.

The rest of the paper is organized as follows. We first summarize the related
work in Section 2. Then, in Section 3, we briefly introduce IBS and the attribute-
correlation attack problem in IBS. We propose the details of our scheme in
section 4, including broker tree construction, content-based routing, and level-
based and commutative encryptions. Privacy and performance analysis is given
in section 5. And we conclude in Sections 6.

2 Related Work

A number of information integration approaches had been developed to support
business applications since 1980’s. However, most of the early approaches focus
on providing transparency and interoperability among heterogeneous system but
neglect the needs for autonomy, scalability and privacy-preserving.

In early 90’s, Wiederhold proposed the well-known mediator architecture
[16,17], in which an additional layer of mediators was added between clients
and back-end databases. The mediators, exploiting encoded knowledge about
data, execute and enforce regulations over both query and data bidirectionally.
However, the mediator approach was not designed for large scale federations, so
it is only practical for systems with a small number of components.

The data warehousing and data store approaches [10,5] provide another way
for information integration and sharing. However, they all request to pour the
data into a centralized repository so as to provide a global view to the user.
Therefore, these approaches fall short to meet the autonomy needs of individual
organizations.

Federated database systems have the requested capabilities of autonomy and
supporting large-scale data distribution. However, the current designs neglect
comprehensive privacy considerations.

Other approaches, such as pub/sub approaches in [3,18], mesh-based overlay
network proposed in [15], and peer-to-peer (P2P) systems that support content-
based routing of XPath queries [6,11], all implement the information push model,
thus they are not suitable for the applications focused in this paper, in which
information access is typically in the information pull model.

3 Information Brokering Overview

An IBS system is a peer-to-peer overlay network consisting of data owners,
brokers and end users (i.e. data requestors). This type of architecture is employed
in an interorganization scenario, where multiple organizations have strong needs
of cross-organizational information sharing.

More specifically, we define IBS as agent-based systems across loosely feder-
ated XML or XML-supported databases. XML data model and XML query lan-
guages are adopted to achieve the desired query expressiveness. Local databases
are autonomous systems geographically distributed across multiple domains.
Certain agents, namely brokers, are employed to link data sources (i.e. databases)
and data requestors, where data sources and data requestors of each domain are

Defending against Attribute-Correlation Attacks 103

connected to a local broker. Then, brokers are linked in a peer-to-peer fashion
to provide transparent data access to data requestors. The flexible topology of
broker overlay may ease the on-and-off maintenance as well as reduce the cost
when the number of databases scales.

In this work, we focus on read-only querying access to various data sources,
which enables a data requestor with no priori knowledge about the requested
data distribution to send a query to a local broker and to receive answers from
data sources sitting in different organization domains.

To guide a query to data sources with the requested data, a broker(s) needs cer-
tain knowledge about data distribution. Such knowledge is represented as routing
rules, describing which data source (i.e. location) holds which data objects.

In a distributed setting, regardless of the network topology and routing pro-
tocol adopted by the IBS [12], one broker only holds a partial set of all routing
rules. Thus, multiple brokers should collaborate in routing an XML query to its
destined data source(s).

3.1 The Attribute-Correlation Attack

A major function of an IBS is to route XML queries from data requestors to
relevant data sources by means of routing rules. Routing rules are metadata
of the form R = {subject, location}, where subject is an XPath [4] expression
denoting a set of data objects and location is a list of IP addresses1. Routing
rules could be expressed at different level of specificity. Two example routing
rules are shown as follows.

Rule1:{//recordTarget//patient//*, {206.132.1.18, 206.132.1.19}},
Rule2:{//ClinicalDocument//Date[@value=‘041207’]//*, 206.132.1.110}.
To route a query, a broker extracts the XPath expression from the subject

field and compares with its routing rules. If the XPath expression matches one
of its routing rules, the broker will forward the query to the address(es) in the
location field of the routing rule; otherwise, the broker will deny the routing
request and drop the query. Obviously, in order to fulfill the routing task, the
involved brokers should be allowed to view the query in clear-text.

The main body of a query is an XPath expression consisting of a sequence of
steps. Each step is an axis specification followed by a node test and a predicate
(optional). Two steps are separated by a “/”. A query always contains one or
several predicates in some of its steps, which act as query conditions. Each
predicate involves a specific attribute that may represent sensitive and private
data of its owner (e.g. name, SSN or credit card number, etc.). If there are more
than one predicate in a query, one can associate the corresponding attributes
to infer sensitive information about the data owner. This attack is known as
attribute correlation attack.
1 In this work, we adopt XPath as a format to express XML queries and routing rules.

XPath is a restricted variation of regular path expressions, which can refer to all or
part of the nodes in an XML document. However, our system is applicable to any
regular path expression and any query language based on it.

104 F. Li et al.

Next, we elaborate on the vulnerability with an example. Assume a data
requestor, doctor Bob, requests all medical records that are relevant to blood
cancer of a patient named Alice. Bob creates an XML query:

q=/report[//patient/@name=‘Alice’]//code[@displayname=‘BloodCancer’]//*.

This query has two query conditions (i.e. name = ‘Alice’ and displayname

= ‘BloodCancer’) on attributes of XML nodes patient and code, respectively.
Without further protection, one could easily extract the two query conditions
and correlate the two attributes to infer “Alice has blood cancer”, a highly
sensitive information of Alice.

The problem of correlated attributes in XML query was not considered as
severe in early information brokering systems, due to the fact that query content
is only viewable to intermediate brokers that are typically assumed trusted.
However, as large amount of local data sources join the system, this assumption
becomes more and more weak. When joining the system, a member organization
either contributes with its own servers to be used as local databases or local
brokers, or it delegates it to a third party. It is unrealistic to assume full trust
to the brokers, especially if the IBS is used for privacy-sensitive applications.

To defend against the problem caused by attribute correlation, our goal is to
limit or at least minimize the capability of any intermediate broker’s view of
non-empty statement in the sub-queries.

4 New Privacy-Preserving IBS Design

The most intuitive approach to address the problem of attribute-correlation
problem is to rely on trustworthiness of the brokers. It is believed that the
chance of the attacker will be greatly reduced if we limit the interactions only
among trusted brokers, which are less likely to be malicious or compromised.
However, fully trusting a broker either exposes to unexpected risks in case it
gets compromised or it introduces expensive costs on continuously monitoring
its status. Moreover, the set of brokers trusted by any given organization needs
to capture a complete copy of routing rules in order to fulfill the routing task. In
the worst case, when every single organization only trusts its own broker, each
broker needs to store all routing rules. As a conclusion, the trust-based solution
is neither practical nor scalable.

A more effective solution is to let multiple entities share responsibility for
query routing, so that the trust assumption on each entity could be lowered to a
more reasonable level. We assume the brokers are semi-honest, i.e. brokers will
faithfully obey the rule but curiously infer the private data as much as they can.

Our approach is to split the routing responsibility into multiple brokers so that
they can fulfill the routing task by cooperating together, but a single broker is
no longer capable of launching the attribute-correlation attack. More specifi-
cally, our approach is characterized by two main components: (1) constructing
a broker-tree overlay atop of current topology by decomposing each routing rule

Defending against Attribute-Correlation Attacks 105

into segments and assigning each routing segment to one broker; and (2) splitting
each query into segments accordingly and wrapping each segment with a special
key. We present the details in the following subsections.

4.1 Broker Tree Construction

Since our work is orthogonal to information integration, we simply assume a
global integrated schema (e.g. HL7) is shared among all organizations in a con-
sortium. The schema is a structural description of the syntax of XML documents.
If we model the schema as a tree, every node denotes an element or attribute
of the schema and the edge between two nodes represents the parent-child rela-
tionship. Taking XMark2 as example, its schema graph is shown in Figure 1(a).

IP3

IP2

IP1

site

regions people closed_auctionsopen_auctions

{africa, asia, ...}

income

person open_auction edgeclosed_auction

item
homepage

name profile
creditcard

annotation

description

bidder
initial

itemref

from
description

to

increase

catgraph

category

description
mailbox

reserve name

categories

mail

annotation

description

price
itemref

Routing rules:
/site/categories/category/description, IP1: 206.132.1.120

//asia/item[reserve]//*, IP2: 210.128.110.4

/site//*/bidder//*, IP3: 130.203.0.1
site

regions people closed_auctionsopen_auctions

{africa, asia, ...}

income

person open_auction edgeclosed_auction

item
homepage

name profile
creditcard

annotation

description

bidder
initial

itemref

from
description

to

increase

catgraph

category

description
mailbox

reserve name

categories

mail

annotation

description

price
itemref

(a) (b)

Fig. 1. (a) The schema graph of XMark DTD; (b) Filtering routing rules against the
schema

Routing rules are collected from distributed data sources (by means of query
searching) based on the global schema. Considering the XPath expression in the
subject field of a routing rule, it denotes a set of nodes in XML documents.
We can locate a subtree by filtering the subject field of a routing rule against
the global schema. Then, we attach the address(es) in the location field to the
root of the subtree. In this way, we create a centralized routing schema for query
routing, similar as in [13]. An example in Figure 1(b) shows that the addresses
(i.e. IP1, IP2 and IP3) are attached to the roots of three subtrees (i.e. nodes
description, item and bidder) when three routing rules are filtered against
the XMark schema.

Next, we divide the routing schema into multiple sub-trees (namely routing
segments) in a way that every leaf-node of a subtree points to the root of its child
subtree. We allow flexible granularity in schema dividing : a more fine-grained
schema dividing results in less nodes in a routing segment, which indicates well-
protected privacy but increased maintenance cost. For each broker, we assign
a unique routing segment to it, and attach its address to the leaf-nodes of the
parent routing segments. In this way, the brokers are connected in a tree structure

2 XMark is an XML benchmark modeling data from Internet auction applications
with a single DTD. We use it as an example in the following discussions.

106 F. Li et al.

site

regions

{africa, asia, ...}

item
description

mailbox reserve

name

mail

people

person

homepage

name
creditcard

income
profile

open_auctions

annotation
description

bidder

initial

itemref

increase

closed_auction

annotation
description

price itemref

closed_auctions

edge

from to

catgraph
categories

category

description

B1

B2 B3 B4 B5 B6 B7

B8

B9

B10 B11 B13

B19 open_auction B12

B14 B15

B16

B17

B18 B20

B21

B22

B23

B24

B25

B26 B27

Fig. 2. A broker-tree is constructed with 27 subtrees

according to the relationship of their routing segments. Figure 2 shows a broker
tree consists of 27 routing segments based on the routing schema in Figure 1(b).

Since routing rules are split into segments in a broker tree, several brokers need
to cooperate to complete the routing task. Let us denote by q={qseg1 ||...||qsegn} an
XML query with n segments. The content based routing process can be simply
described as follows. The query q is first sent to the root broker B1, where qseg1

is processed against the routing segment at B1. If the routing segment matches
with qseg1 , the query will be forwarded to the broker whose address is attached
at B1; otherwise, the query will be dropped. The same process follows until the
query is dropped by some broker or reaches the final data source.

4.2 Query Segment Encryption

As introduced in the previous section, the first step of our solution consists
of sharing the routing responsibility among multiple brokers by constructing a
broker tree. Next, we design query segment encryption schemes to guarantee
each broker can only decrypt one query segment of a encrypted query. More
specifically, for any query segment qsegi of q={qseg1 ||...||qsegn }, the responsible
broker Bi is only allowed to view qsegi in clear-text, while both the processed
segments {qseg1 ||...||qsegi−1 } and the unprocessed segments {qsegi+1 ||...||qsegn } are
still encrypted beyond the capability of Bi.

We propose a level-based encryption scheme for general cases. As we return
later in the paper, this solution is not yet satisfactory, since the wildcard “//” in-
troduces mismatch among the level keys. As such, a new commutative encryption
scheme is proposed to solve this problem.

Level-based Encryption Scheme. A simple solution to meet the encryption
requirement is to encrypt each query segment with the public key of the responsi-
ble broker. For example, assume an input query q=/site/regions/asia/item[@id=

10028]/name. If q is processed through the broker tree in Figure 2, the query seg-
ments /site, /regions/asia, and /item[@id=‘10028’]/name will be processed by
brokers B1,B2, and B8, respectively. So, we can encrypt the three query seg-
ments, each with the related public key.

Defending against Attribute-Correlation Attacks 107

However, a fundamental problem in the proposed PKI-based solution occurs
since we assume no centralized routing authority exists after offline broker tree
construction process. For any query, the route through the broker tree is un-
predictable since neither the brokers enroute nor their public keys to decrypt
portions of the route are known.

Therefore, we propose a more effective solution, which encrypts query seg-
ments while mitigating the dependency of routing, namely level-based encryption
scheme. Instead of assigning a pair of public and private keys to each broker, we
assign them to all the brokers in the same level3. The concept of level is defined
as the distance from a node to the root of the tree. Taking the broker tree in
Figure 2 as an example, brokers B2, B3, B4, B5, B6, and B7 are all belonging to
level 1. Moreover, if a routing segment contains nodes belonging to more than
one levels, all the relevant private level key will be assigned to that broker. Since
an XPath expression in an XML query is a location path consisting of s sequence
of steps, we will encrypt the XPath steps with corresponding public level keys,
e.g. encrypting the ith step with the public key of level i.

CommutativeEncryption Scheme. The level-based encryption scheme works
well unless the input query contains the descendant-or-self axis in its XPath ex-
pression. According to the level-based encryption scheme, a broker of level i can
view and only view the ith XPath step of any given query. However, if a descendant-
or-self axis (denoted as “//”) shows at the ith XPath step, the brokers behind level
i may have chance to view some steps after the ones they are authorized to view.
We refer to this issue as the mismatching problem.

We employ a simple example (as shown in Figure 3(a)) to further elaborate
on the mismatching problem. We denote by Ei the encryption process with
public level key Pui and Di the decryption process with private level key Pri.
The input query is Q2 = /site//item/name. Three XPath steps of Q2 are en-
crypted with the public keys of level 1, level 2, and level 3, respectively. If we
send Q2 into the global schema tree of Figure 1, the XPath step “/name” is an
XPath node of level 5, which should be processed by broker B8 along the path
“/site/regions/{africa|asia|...}/item/name” in Figure 2. However, following
the level-based encryption scheme, broker B2, with the private level keys of level
2 and 3, will first decrypt the XPath step “//item” at the node “regions” and
add a step “/regions” to the original query. Then, it will decrypt the XPath
step “/name” at the node “/{Africa|Asia|...}” and add another step “Asia” to
the query. As a result, B2 will uncover the XPath step (i.e. /name) that it is not
authorized to access.

To tackle this problem, we propose a new encryption scheme based on well-
known commutative encryption algorithms [2,7,14]. Commutative encryption is
a collection of algorithms that have the property of being commutative. In short,
an encryption algorithm E(.) is commutative if for any two keys e1 and e2,
Ee1 [Ee2 [m]] = Ee2 [Ee1 [m]], where m is the message to be encrypted. We adopt
3 We adopt the broadcast encryption scheme [9,1] to create public and private level

keys so that the public key of any given level is generated based on the private keys
of all the brokers at this level.

108 F. Li et al.

Pohlig-Hellman exponentiation cipher with modulus p as our commutative en-
cryption function.

We employ the commutative encryption algorithm in order to make flexible
switching of decryption sequence possible. The commutative-based encryption
scheme introduces a commutative symmetric key for each level, namely commu-
tative level key Ci. Besides being issued to brokers of level i, Ci is also issued
to all the brokers at level Ci+2. The public and private level keys Pri and Pui,
as defined in level-based encryption scheme, are also defined and assumed to be
commutative. Moreover, a pointer p is introduced to indicate the XPath step
to be processed by the current broker. A broker will always decrypt the XPath
step marked by the pointer with its private level key, and move the pointer to
the next XPath step.

Commutative encryption scheme is an improver for the level-based encryption
scheme. In general, the brokers process XPath steps of a query in the same way
as they do following the level-based scheme. When encountering a step with
wildcard “//”, and the token in wildcard step does not match with the one in
its routing segment, the broker will launch the special commutative encryption
process, which is summarized as follows: first, the broker starts the set wildcard
processing stage by setting a flag f = 1. Then, it encrypts all the following
unprocessed XPath steps with its commutative level key. With respect to the
example in Figure 3(a), the XPath step “/name” is encrypted with key C2 at the
node “regions” of B2. The following brokers compare the wildcard token with
the one in its routing segment. If they do not match, the broker, says Bj , will
apply two symmetric commutative keys onto all the XPath steps in the query.
This additional encryption guarantees every unprocessed XPath segments are
protected by the commutative keys of the current level and its upper level. If they
match with each other, Bj will set f = 2 to indicate post-wildcard processing.
In this stage, a broker encrypts all the unprocessed steps with Cj and decrypts
them with Cj−2. As shown in Figure 3(b), B2 wraps unprocessed query step
/name with the commutative level key C2 and C3. Then, when B8 finds “//item”

/site

site

regions

{africa,asia...}

item

name

//item /name

/regions

An input query Q2: /site//item/name

E1 E2 E3

/site //item /name
E2 E3

/site //item /name
E3

/site //item /name

/site /regions /asia

/site

D1

D2

D3
/regions /asia

/site

site

regions

{africa,asia...}

item

name

//item /name

/regions

E1 E2 E3

/site //item /name
E2 E3

/site //item /name
E3

/site //item /name
C3

/site

D1

D2

D3
/regions /asia

/name
C3

/regions /asia /item

/site /name/regions /asia /item
C3

Output query + Destination

/item /name

/regions /asia /item /name

Output query + Destination

(a) (b)

C2

C2

C2

Fig. 3. Example of (a) the mismatching problem caused by the descendent-or-self axis
in a query; (b)the solution based on commutative encryption scheme

Defending against Attribute-Correlation Attacks 109

matches with the token in its routing segment, it decrypts /name with C2 and
C3, accordingly.

5 Analysis

The main purpose of this work is to protect the privacy of the data owners while
authorized organizations collect the data from them and share with other col-
laborators. More specifically, we protect the content of the query from the mali-
cious or compromised intermediate servers during information brokering process.
Therefore, we evaluate our system with two metrics: the privacy preserved with
the proposed schemes, and the overhead introduced in the querying access of
distributed data.

5.1 Privacy Analysis

If the honest-but-curious assumption about the brokers holds, the proposed level-
based and commutative encryption schemes can guarantee that no intermediate
broker views the complete query content while the brokers fulfilling the query
routing function. Risks exist only when one or multiple brokers are abused by
the insiders or compromised by the outside adversaries.

The threats caused by malicious or compromised brokers depend on the num-
ber of hostile brokers as well as their relative positions in the schema tree. Here,
we classify possible cases as the threat under one hostile broker and collaborate
brokers, and briefly discuss as follows.

One hostile broker. In the proposed IBS, a broker is assigned with a routing
schema, which is part of the global schema tree, and with level keys (i.e. one
private level key and two commutative level keys). With the level keys, a hostile
broker can always uncover the corresponding XPath step(s) of an input query.
However, the XPath step may at most contain one attribute. Thus, a single
hostile broker cannot conduct attribute correlation attack with the restricted
view of the query content.

However, a hostile broker may locate the relative position of the routing
schema it holds in the global schema tree by looking it up in the global schema
tree. From the relative location, it can further guess the routing schemas of the
brokers right before and next to it. This information itself is not sensitive, al-
though it may help colluded brokers to determine the next-step target to be
compromised.

Collusive brokers. Hostile collusive brokers at different level are capable to
uncover different XPath steps of an input query. Whenever a hostile broker re-
ceives a query, it can intercept the query and forward it to colluded brokers for
decryption. In this case, the compromised broker will view multiple segments
of the query instead of one, so its chance to successfully launch the attribute
correlation attack increases. In our approach, the risk is however still restricted
due to two reasons: first, when a query is intercepted by a broker, only its un-
processed part is at risk since processed XPath steps of the query are encrypted

110 F. Li et al.

using preassigned public keys of the data servers. So the attacker’s chance to
succeed depends on the position of the hostile broker that first intercepts the
query. If the hostile brokers are near the leaf brokers, the unprocessed query
segments are very limited. Therefore, possible countermeasure is to strategically
assign the routing schemas of higher levels to more trusted brokers. Secondly,
the risk is also related to the number of levels that collusive brokers can cover.
Since an attacker may not compromise all the brokers in a limited time interval,
his view of the query content is still incomplete.

5.2 Performance Analysis

The overhead introduced by our routing scheme mainly includes computational
cost and communication overhead. The former denotes the cost introduced by
cryptography operations and query segment matching, and the latter represents
the overhead in the end-to-end query brokering time due to distributed routing.

Computational Cost. Assume the cost of asymmetric encryption and decryp-
tion as Cae and Cad, respectively, and the cost of commutative encryption and
decryption as Cce and Ccd, respectively. Since Pohlig-Hellman method requires
almost the same number of exponentiation operations and modulus operations
as RSA method, we adopt Ce and Cd to denote the cost of encryption and
decryption in general, where Ce and Cd are at millisecond level.

For each XML query with m XPath steps, the computational costs of our
scheme include asymmetric encryption cost m · Ce at the user-side, asymmetric
decryption cost of Cd at each intermediate broker, and additional commutative
encryption and decryption cost Ce +Cd at each broker when encountering query
segment with wildcard. At each broker, the query segment is matched against the
routing schema carried by the broker. We adopt a similar approach as in [13],
which implemented query segment matching and routing table look-up using
hash table. It results in an average query segment matching time as 1ms4.

Communication Cost. Since the computational cost at each intermediate bro-
ker is at millisecond level, the overhead in end-to-end query brokering is mainly
caused by the direct IP latency in overlay routing. The latency is measured using
round trip time (RTT), where data from Internet traffic report 5 shows average
IP latency is about 200ms.

An important parameter that determines the RTT of a particular query is the
number of hops experienced by the query. It is related to how we split the global
schema tree. If the finest granularity splitting is taken, the number of hops is
exactly the depth of the query, providing that the query has no wildcard. When
there exists a wildcard, the number of hops cannot be measured accurately, but
we know it should be smaller than the depth of the path, a branch of the global
routing schema, along which it is routed. As a result, we can estimate the average
4 The result is based on simulations with synthetical XML queries and XPath routing

rules that are generated atop of the XML benchmark [4].
5 http://www.internettrafficreport.com

Defending against Attribute-Correlation Attacks 111

number of hops with the average depth of the global routing schema. Considering
the setting as in [13], this value is 5.7.

Therefore, the average overall overhead is around 5.7 × 100ms, which is rea-
sonable considering the preserved privacy.

6 Conclusion

We have described an application of content-based information brokering to
defend against attribute-correlation attacks. A commutative encryption based
scheme is further designed to protect query content from irrelevant brokers. Per-
formance overhead is evaluated and results show that the performance degrada-
tion is insignificant.

The privacy of query content is enhanced with the proposed scheme, however,
it is not without limitation - the privacy of query content is at risk in some
extreme cases when a specific set of brokers collude. We plan to further explore
this vulnerability in the future work and to devise possible mitigation techniques.

References

1. Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical
identity-based encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007)

2. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: SIGMOD 2003: Proceedings of the 2003 ACM SIGMOD interna-
tional conference on Management of data, pp. 86–97. ACM, New York (2003)

3. Altinel, M., Franklin, M.J.: Efficient filtering of XML documents for selective dis-
semination of information. The VLDB Journal, 53–64 (2000)

4. Berglund, A., Boag, S., Chamberlin, D., Fernndez, M.F., Kay, M., Robie, J., Simon,
J.: XML path language (XPath) version 2.0 (2003),
http://www.w3.org/TR/xpath20/

5. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Source inte-
gration in data warehousing. In: DEXA Workshop, pp. 192–197 (1998)

6. Chan, C.-Y., Felber, P., Garofalakis, M., Rastogi, R.: Efficient filtering of XML
documents with XPath expressions. In: ICDE, San Jose, pp. 235–244 (2002)

7. Clifton, C., Kantarcioglu, M., Vaidya, J., Lin, X., Zhu, M.: Tools for privacy pre-
serving distributed data mining. ACM SIGKDD Explorations 4(2) (2003)

8. De Capitani, S., Samarati, P.: Authorization specification and enforcement in fed-
erated database systems. Journal of Computer Security 5(2), 155–188 (1997)

9. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

10. Hammer, J., Garcia-Molina, H., Widom, J., Labio, W., Zhuge, Y.: The stanford
data warehousing project. IEEE Data Engineering Bulletin 18(2), 41–48 (1995)

11. Koloniari, G., Pitoura, E.: Content-based routing of path queries in peer-to-peer
systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V.,
Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp.
29–47. Springer, Heidelberg (2004)

http://www.w3.org/TR/xpath20/

112 F. Li et al.

12. Koudas, N., Rabinovich, M., Srivastava, D., Yu, T.: Routing XML queries. In:
Proceedings of 20th International Conference on Data Engineering, p. 844 (2004)

13. Li, F., Luo, B., Liu, P., Lee, D., Chu, C.-H.: Automaton segmentation: A new
approach to preserve privacy in XML information brokering. In: ACM CCS 2007,
pp. 508–518 (2007)

14. Lu, H.Y.S.: Commutative cipher based en-route filtering in wireless sensor net-
works. In: Vehicular Technology Conference, vol. 2, pp. 1223–1227 (September
2004)

15. Snoeren, A.C., Conley, K., Gifford, D.K.: Mesh-based content routing using XML.
In: Symposium on Operating Systems Principles, pp. 160–173 (2001)

16. Wiederhold, G.: Mediators in the architecture of future information systems. Com-
puter 25(3), 38–49 (1992)

17. Wiederhold, G.: Value-added mediation in large-scale information systems. In: DS-
6: Proceedings of the Sixth IFIP TC-2 Working Conference on Data Semantics,
London, UK, pp. 34–56 (1995)

18. Yan, T.W., Garcia-Molina, H.: The SIFT information dissemination system. ACM
TODS 24(4), 529–565 (1999)

	Defending against Attribute-Correlation Attacks in Privacy-Aware Information Brokering
	Introduction
	Related Work
	Information Brokering Overview
	The Attribute-Correlation Attack

	New Privacy-Preserving IBS Design
	Broker Tree Construction
	Query Segment Encryption

	Analysis
	Privacy Analysis
	Performance Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

