
Ontology Support for Managing Top-Down
Changes in Composite Services�

Xumin Liu1 and Athman Bouguettaya2

1 Department of Computer Science, Virginia Tech, USA
xuminl@vt.edu

2 CSIRO ICT Center, Canberra, ACT, Australia
Athman.Bouguettaya@csiro.au

Abstract. We present a foundational framework to manage changes in
composite services. The framework takes as input a change specification
and reacts to the change in an automatic and efficient manner. We pro-
pose a service ontology that provides systematic support for the change
management process. We also propose a set of algorithms that enable
us to efficiently query the proposed service ontology. With the ontology
support, desired service functionalities can be accurately, efficiently re-
trieved and composed to react to changes. We use a Service-Oriented
Enterprise (SOE) as an application of composite services to motivate
and illustrate the proposed solution. We evaluate the performance of the
proposed algorithms with a set of experiments.

Keywords: top-down changes, change management, composite service,
ontology, service oriented enterprises.

1 Introduction

The emerging service oriented computing and the enabling technologies facilitate
efficient functionality outsourcing on the Web. This is enabling a paradigm shift
in business structures allowing them to outsource required functionality from
third party Web-based providers through service composition [3]. A composite
Web service is therefore an on-demand and dynamic collaboration between au-
tonomous Web services that collectively provide a value added service. Each
autonomous service specializes in a core competency, which reduces cost with
increased quality and efficiency for the business entity and its consumers. While
there has been a large body of research in the automatic composition of Web
services, managing the changes during the lifecycle of composite Web services
has so far attracted little attention [3,19,4].

We use a Service Oriented Enterprise (SOE) as a typical application of com-
posite services to motivate and illustrate our work. An SOE is a Web-based
Virtual Enterprises [11]. It outsources the functionalities from autonomous Web
services, whose providers may be geographically distributed and organizationally
� This work was supported by the National Science Foundation under the CNS - Cyber

Trust program with contract 0627469.

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 760–777, 2009.
c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

Ontology Support for Managing Top-Down Changes in Composite Services 761

independent. It is expected to promote entrepreneurship and introduce new busi-
ness opportunities through dynamic alliances.

Example 1.1. We use an application from the travel domain as a running ex-
ample throughout this paper. Consider a travel SOE that aims to provide a
comprehensive travel package by outsourcing functionalities from different ser-
vice providers, including Airline services, Hotel services, and Car rental services.
Suppose that a new market report shows that Point of Interest (POI) services are
very popular recently. A POI service is expected to retrieve the local attrac-
tions based on user interests given a geographical location. Using this service,
a traveler can very easily get the information, like restaurants, museums, music
centers, around the hotel he/she chooses to stay in during the trip. Therefore,
the owner of a travel agency SOE, say John, wants to add a new POI service
into the travel package to attract more market interests. To react to this change,
a POI service needs to be added and composed with other services. Meanwhile,
suppose that another market report shows that users put more attention to the
service’s reputation when they choose a travel package. In this case, John wants
to ensure that all the outsourced service providers have a high reputation. ��
Fully realizing SOEs lies in providing support to improve their adaptability to the
dynamic environment, i.e., to deal with changes during the life-time of an SOE as
rules and not as exceptions [2,11]. For instance, market conditions may change,
business regulations may evolve, individual Web services may come and go at will,
or new technologies may emerge over time. These all may trigger a change in an
SOE with respect to the functionality it provides, the way it works, the partners
it is composed of, and the performance it offers. Unlike traditional enterprises,
where changes are “exceptions", in SOEs changes are likely the norm. Therefore,
a systematic solution for handling changes is a fundamental issue in SOEs.

Changes in SOEs can be classified into two categories: top-down changes and
bottom-up changes [12]. Top-down changes refer to those that are initiated by
an SOE owner. These are usually the result of new business requirements, new
regulations, or new laws. For example, the owner of a travel agency SOE may
want to add a taxi service to the travel package. Bottom-up changes refer to
those that are initiated by the outsourced Web service providers. For example,
an airline reservation service provider may change the functionality of the service
by adding a new operation for checking a flight status, or a traffic service provider
may decide to increase the invocation fee of the service. In this paper, we focus
on dealing with top-down changes.

Change management in the context of composite services poses a set of re-
search issues. A composite service outsources its functionality from independent
service providers. There are no central control mechanisms that can be used to
monitor and manage these service providers. Therefore, the challenge of manag-
ing changes lies in providing an end-to-end framework to introduce, model, and
manage a top-down change in a way that best reacts to the change.

Among the most challenging issues is the automation of the process of change
reaction. We expect that changes in an SOE occurs frequently due to the dynamic

762 X. Liu and A. Bouguettaya

business environment it interacts with. Thus, it is challenging to manage all
changes in a manual way. There are existing frameworks proposed for managing
changes in other fields, such as software systems, database systems, and workflow
systems [8,14,16]. In these frameworks, automating change reaction mainly relies
on predefined schemas or policies, whose availability cannot be guaranteed in an
SOE.

Therefore, it is not sufficient to manage changes in an SOE by simply applying
the approaches adopted in existing frameworks.

In this paper, we leverage the machine-processable semantics delivered by a
Web service ontology to support automatic change management in an SOE. Web
service ontologies have been proposed to semantically enrich the description of
Web services, such as their functionality, invocation, quality, etc [18,5]. They
also capture the semantics of the interactions between different communities
of Web services. The semantics enable software agents to automatically locate,
access, and compose Web services without human interference. Therefore, we ex-
pect that the semantic support will also play a key role in the automatic change
management process. We assume that the development, agreement, and manage-
ment of ontologies can be achieved through the existing ontological supporting
tools [9].

We summarize our major contributions as follows.

– First, we propose an integrated change management framework that enables
an SOE to systematically react to a top-down change. The framework takes
a change specification as input and reacts to the change by modifying the
composition of the member services of an SOE.

– Second, we enrich the change management framework with ontology support
for automatically reacting to the changes. This has the effect of transform-
ing a change specification into a corresponding service ontology query. By
answering the query, the desired functionality related to the change can be
efficiently retrieved from the tree-structured service ontology.

The reminder of this paper is organized as follows. In Section 2, we introduce
three-layer top-down changes based on an SOE’s architecture. In Section 3, we
propose an ontology-based framework that manages top-down changes in an
SOE. In Section 4, we define a service ontology with a tree-like structure to pro-
vide the sufficient semantics for change management. In Section 5, we propose a
set of algorithms to efficiently query the service ontology. We report our experi-
mental results in Section 6. We briefly overview some related work in Section 7
and conclude in Section 8.

2 Preliminary

In this section, we briefly introduce a supporting infrastructure of an SOE by
identifying its key components. Based on this infrastructure, we then describe a
layered top-down changes that might occur to an SOE. Top-down changes are
initiated at the top components and propagated to the lower ones.

Ontology Support for Managing Top-Down Changes in Composite Services 763

2.1 A Supporting Infrastructure of an SOE

There are two key components and two supporting components in an SOE infras-
tructure. The key components include an SOE schema and an SOE instance. An
SOE is associated with an SOE schema, which describes its high-level business
logic. An SOE schema consists of a set of abstract services and the relationships
among these services. An abstract service specifies one type of functionality pro-
vided by Web services. It is not bounded to any concrete service. It is defined
in terms of a Web service ontology. An SOE instance is an orchestration of a
set of concrete services, which instantiates an SOE schema. It actually delivers
the functionality and performance of an SOE. The two supporting components
include ontology providers and Web service providers. The ontology provider
manages and maintains a set of ontologies that semantically describe Web ser-
vices. An SOE outsources ontologies from an ontology provider to build up its
schema. The Web service providers offer a set of Web services, which can be
outsourced to form SOE instances.

The underpinning of the proposed supporting infrastructure is a standard
Service Oriented Architecture (SOA) [7]. The service providers use WSDL to
describe their services. Web service registries, such as UDDI, can be used as a
directory for an SOE to look for Web services. After locating a Web service,
SOAP messages are exchanged between an SOE and the service providers for
invoking the service. Beyond this, semantic Web service technologies can be used
by the ontology providers to define their service ontology, such as OWL-S and
WSMO [5,18]. The composition between selected services can be defined using
service orchestration language, such as BPEL [10].

2.2 The Change Layers

Changes in an SOE can be categorized into three layers: business requirement
changes, SOE schema changes, and SOE instance changes. The uppermost layer
reflects the dynamic environment that an SOE is exposed to. An SOE schema
gives a high-level abstraction of an SOE’s functionality and invocation. An SOE
instance consists of a set of concrete Web services, which are composed together
to instantiate an SOE’s schema. A business requirement change could be led
by new technologies, new business strategies, new market requirements, or new
regulations and laws. In our running example, the owner of the travel agency
SOE wants to add a POI service to the travel package. The business requirement
change can be interpreted as the modification of SOE’s functionality, invocation,
(i.e., an SOE schema change) and the updated performance requirement (i.e.,
an SOE instance change). That is, the travel agency SOE needs to add a POI
functionality. At the same time, the invocation among the member services (i.e.,
the airline service, the hotel service, and the taxi service) needs to be modified,
respectively. An SOE schema change will be propagated to the SOE instance
changes, to implement the changes in practice. An SOE instance change can be
specified as the modification of the list of the concrete services and the way they
cooperate.

764 X. Liu and A. Bouguettaya

3 Ontology-Based Framework for Change Management

In this section, we propose an ontology-based framework to support automatic
change management. We first propose a formal model that captures the key
features of top-down changes. Based on this model, we then propose our frame-
work (depicted in Figure 1). The framework consists of two major components:
a change manager and an ontology manager. The change manager is used for
managing changes in an SOE. It takes a change specification as input and gen-
erates a new SOE schema and instance as output. The ontology manager is used
for managing ontologies to provide semantic support for the change manager. It
also provides an interface to query the semantics.

3.1 Top-Down Change Model

Generally, the process of change reaction is modifying an SOE’s functionality
and/or performance to fulfill the requirement introduced by the change. There-
fore, we model a change by specifying its functional and non-functional (i.e.,
performance) requirement.

Definition 3.1. A top-down change C is a binary {CF , CP}, where CF is the
functional requirement enforced by introducing the change (referred to as a func-
tional change), and CP is the performance requirement enforced by introducing
the change (referred to as a non-functional change). �
In the above definition, CF specifies the requirement on the modification of an
SOE’s functionality enforced by introducing C, such as adding a new functional-
ity and/or removing an existing functionality. In our running example, CF refers
to that an SOE should add a POI service.

To fulfill the requirement defined in CF , the first step is to change the SOE’s
schema, which defines the SOE’s functionality. Therefore, the change analyzer

functional change non-functional change

Change Manager

Schema Modifier SOE
Schema

Service Selector Service
Integrator

concrete
service list

Change Analyzer

Concrete Service Query

Service Ontology
Base

Concrete Service
List

subscribe toOntology
Provider

providers

Ontology Query
Interface

Ontology Manager

Change
Specification

Fig. 1. An Ontology-based Framework For Change Management in SOEs

Ontology Support for Managing Top-Down Changes in Composite Services 765

needs to specify CF in the same way in defining an SOE’s functionality. Since
an SOE outsources its functionality from one or more Web services, it is nat-
ural to use the combination of a set of abstract services to define an SOE’s
functionality [12]. Each abstract service defines a type of functionality, such as
transportation, lodge, information, etc. Therefore, we have the formal definition
of CF as follows.

Definition 3.2. A functional change CF is a binary {SA, SD}, where SA is the
set of abstract services that define the functionality required to be added to an
SOE, and SD is the set of abstract services that define the functionality required
to be removed from an SOE. �
CP specifies the requirement on the modification of an SOE’s performance en-
forced by introducing C, such as improving the SOE’s reliability, reducing the
cost, reducing the invocation duration, increasing the service provider’s reputa-
tion, etc. In our running example, CP refers to that all the outsourced service
providers should have a reputation with the degree of high.
CP can be defined in terms of a set of quality constraints. These constraints

can be enforced on a single outsourced service or the SOE. Examples of such
constraints include: the charge of the Lodge service should be less then 80 dollars
per night; the reputation of each service provider in the SOE should be high;
the overall reliability of invoking the SOE should be high. We have the formal
definition of CP as follows.

Definition 3.3. A functionality change CP is a set {γ1,..., γi, ..., γn}, where
each γi is a quality constraint and defined as a triple {pi, ci, Si}. pi is a quality
parameter, such as reputation, reliability, cost, etc; ci is a conditional formula,
such as “< $80", “= high", etc. Si is a set of abstract services whose perfor-
mances are enforced by γi. Since a quality constraint can be enforced on either
single service or an SOE, we use E to represent the SOE. Therefore, if Si = E,
it means that γi is enforced on the entire SOE. �
Example 3.1. In our travel SOE example, the functional change can be specified
as CF={ {POI}, {}} based on Definition 3.2. Similarly, based on Definition 3.3,
the non-functional change can be specified as CP={γ1}, where γ1={“reputation",
“=high", {Airline, Hotel, Car rental, POI} }. �

3.2 Change Manager

The change manager consists of a set of components, including a change analyzer,
a schema modifier, a service selector, and a service integrator. The change analyzer
takes as input a change specification in the format that can be understood and
processed by other components. A change specification conveys the information
about the requirement on modifying an SOE’s functionality and/or performance,
which are determined by the SOE’s schema and the outsourced Web services re-
spectively. Therefore, the schema modifier may need to update the SOE’s schema
to fulfill the functional requirement of the change. The service selector may need
to locate Web services to fulfill both the functional and performance requirement

766 X. Liu and A. Bouguettaya

of the change. Finally, the service integrator may compose the outsourced Web
services to generate the new SOE instance.

A change analyzer provides a user interface that takes as input a top-down
change specification. The information contained in a change specification is used
for reacting to the change, including functional requirement (CF) and performance
requirement (CP) of a change. CF will be used as the input of the schema modifier
to update the functionality of an SOE. CP will be used as the input of the service
selector to locate the service that delivers the desirable quality.

The schema modifier changes an SOE’s schema to fulfill the requirement
specified in CF . A set of SOE schema templates can be predefined and stored
in a domain-specific knowledge base to facilitate the schema updating process.
Thus, once there is a requirement on changing an SOE’s schema, a schema
modifier first searches the knowledge base for a predefined SOE schema that
matches the requirement. If there is not such a match, the schema modifier will
automatically generate a new semantically correct service schema based on CF
to compose different services [13].

The service selector locates Web services to generate an instantiation of the
new SOE’s schema. It takes as the input of the SOE’s new schema and CP to
guarantee that the newly generated SOE’s instance meets both the functional
and the performance requirement of C. Specifically, a service selector follows two
steps: functionality-based Web service discovery and quality-based service selec-
tion. The first step is to find Web services that provide the functionality specified
in the new SOE’s schema. It requires a functionality-based service registry to
achieve this purpose. Since there might be competing providers that offer the
similar functionality, the service selector may get multiple services. Thus, it needs
to select a service based on the quality requirement. The service selector first
removes the services that do not meet CP . It then chooses the service with the
best quality. The output of the service selector is a list of Web services (referred
to as CS) whose composition is expected to meet both CF and CP .

The service integrator generates a new SOE’s instance by composing the
services in S. It takes as input the service list CS and the updated SOE’s schema.
It specifies the execution order and data flow among the services in S that
conforms to the cooperation patterns defined by the updated SOE schema. It
also coordinates the interaction between different services. Some existing Web
service standards such as WS-Coordination, BPEL, etc, can be leveraged to
implement the service integrator [15,10].

3.3 The Ontology Manager

The ontology support components include a service ontology base and an ontology
query interface.

The service ontology base stores the ontology definitions of Web services
within a specific domain. A node in a service ontology defines a type of func-
tionality offered by a service. Examples of the nodes in a travel domain include
Airline, Taxi, and Hotel. By the nature of ontology, Web services can be classified
into categories based on their functionalities. Therefore, each node in a service

Ontology Support for Managing Top-Down Changes in Composite Services 767

ontology is associated with a list of services that provide the defined function-
ality. This association enables a service selector to perform functionality-based
service discovery by first locating the corresponding node in a service ontology,
then locating the Web services that subscribe to the node. Beside of functionality,
a service ontology also models the relationship between different Web services,
which can be used to guide their composition.

The ontology query interface supports two types of queries in the ontology
base: functionality query and Web service query. The functionality query is to
locate a node in the service ontology and retrieve the related information, such as
its relationships with other nodes. It can be performed in the following ways: (1)
operation-based query, (2) data-based query, and (3) the combination of (1) and
(2). An operation-based query is to traverse the service ontology and retrieve the
related information about the nodes which provide the operation. A data-based
query is to traverse the ontology and retrieve the related information about the
nodes which provides the matched input and output. The Web service query is to
find a list of Web services that provide a specific functionality, which is identified
by a certain node in a service ontology. The corresponding Web services can be
retrieved by checking whether they are subscribing to the node.

Ontology support components are central for automatic change management
process. We will elaborate them in the following sections.

4 Web Service Ontology

In this section, we propose a Web service ontology that provides semantic support
for automatic change management. We first identify a set of key semantics that
are described by the service ontology. We then define the structure of the service
ontology which will be used as the basis for ontology querying.

4.1 Ontology Definition

The semantics provided by the service ontology aims to help automatically gen-
erate a new SOE’s schema. Generating the new schema requires two steps. First,
it needs to identify the functionality being added to or removed from an SOE.
Second, it needs to gracefully compose the newly updated service list. To achieve
this, a service ontology needs to capture two types of semantics: service function-
ality (which helps achieve the first step), and service dependency (which helps
achieve the second step).

The functionality of a service can be modeled from two aspects: the operations
that a service provides (i.e., service operation) and the data that a service oper-
ates on (i.e., service data), which also corresponds the two type of functionality
query we proposed in Section 3.3.

A service functionality is collectively delivered by a set of operations. The
process of accessing a service is actually invoking one or more operations provided
by the service. The operations consume the service input and generate the output
of the service. It is worthy to note that there may be dependent relationships

768 X. Liu and A. Bouguettaya

between different service operations. For example, an Airline service may provide
several operations, such as user_login, airline_reservation, etc. Typically,
an user needs to login before (s)he can reserve an air ticket. Therefore, there is a
dependency between user_login and airline_reservation. The dependencies
between service operations (referred to as operation-level dependencies) need to
be strictly enforced when accessing a service.

A service data is also an essential aspect of a service functionality. A service is
affected by the outside with a set of input and responses with a set of output [1].
From the external perspective, a service data therefore consists of two data sets:
input (I) and output (O) data.

A service ontology also needs to capture the dependent relationships defined
in term of composite services. A Web service is independent and autonomous
in nature. A user can directly access a Web service without relying on other
services. However, when multiple services are composed together by an SOE,
certain dependency constraints can be defined within the generated composite
service. For example, the Hotel service usually depends on the Airline service when
they are both included in a travel package since the city and the check in-and-out
dates of the Hotel service are usually determined by the flight information. As a
result, the invocation of the Hotel service should be performed after the Airline
service is invoked.

4.2 Ontology Structure

The structure of ontology is hierarchical and extensible by nature. Each node in
this structure corresponds to a type of service functionality. Once the ontology
structure becomes large with the increment of the available service functionali-
ties, the process of identifying a proper piece of functionality would turn out to
be time consuming. It is of importance and beneficial for change management
to make this process efficient and accurate. An intuitive way is to leverage the
relationship between a node and its children to guide the search of the ontology.
We identify two types of parent-child relationships in a service ontology: Is-a and
Has-Of, as depicted in Figure 2.

An Is-a relationship lies in between a node and its parent node if the node
is one type of the parent node. That is, the child node has all the properties
(i.e., operations and service data) of its parent node. Beside, it may also has
the properties that the parent node does not have. For example, in Figure 2, an
Airline service is a child of a Transportation service. It provides the transportation
service with a special feature, i.e., through a flight. Therefore, there is an Is-a
relationship between the Airline service and the Transportation service, shown by
a line between them.

A Has-of relationship lies in between a node and its parent node if the node
is one part of the parent node. That is, the child node has part of the properties
of its parent node. For example, in Figure 2, a Flight Quote service is a child of
an Airline service. It only provides the service of getting the quote of a flight, but
not other airline-related services, such as checking flight status, reserving a flight,

Ontology Support for Managing Top-Down Changes in Composite Services 769

Transportation
Service Lodge Service Geographic

Information Service

Airline
Service

Ground
Transportation Service

Cruise
Service

Hotel
Service Map Service Weather

Service
Point-Of-

Interests Service

Taxi
Service

Car Rental
Service

Train
Service

Flight Quote
Service

Flight Reservation
Service

Taxi Quote
Service

Taxi Quote
Service

Car Rental
Quote Service

Car Rental
Reservation Service

Hotel Search
Service

Hotel Reservation
Service

Traffic
Service

Geocode_based
POI Service

Zipcode_based
POI Service

Address_based
POI Service

…...…...
…

...

Geocode_based
Map Service

Zipcode_based
Map Service

Address_based
Map Service

…
...

…
...

…
...

Fig. 2. A Travel Domain Ontology

electronic check in, etc. Therefore, there is a Has-of relationship between the Flight
Quote service and the Airline service, shown by a dashed line between them.

5 Service Ontology Query Infrastructure

As stated in Section 3, reacting to a change requires to refer back to the hierar-
chical structure of the corresponding service ontology. As the ontology structure
may become very large due to the increase of the services in the domain, there
is a need to efficiently query the service ontology to retrieve the required service
nodes and locate Web services that subscribe to them at the same time. Con-
sidering the tree-like structure of the service ontology we proposed in Section 4,
we leverage path expressions as an effective tool to declaratively and efficiently
query the service ontology [17].

To use path expression in the service query, we add a root node to our ontology
to make it have a well-formed tree structure. The root node is an abstract one
that does not have any properties. For any service node that does not have a
parent node will take the root node as its parent. An Is-a relationships lies in
between the root node and its child nodes. By using the abstract node, it is
guaranteed that the query can be specified and performed from the root of the
ontology tree.

5.1 Processing the Service Ontology Queries

We present algorithms to process the queries on the service ontology for the
purpose of change management. As discussed in Section 3, there are mainly
two types of ontology queries needed to be performed: Web service query and
functionality query.

The Web service query is required when a service selector needs to find a list
of Web services that provide the specific functionality. In this case, the query
process takes a service node as a input and return the list of Web services that
subscribe to it. It can be easily performed through the subscription between the
ontology base and the Web service list in our proposed framework. Therefore,
we will focus on functionality query in this section.

770 X. Liu and A. Bouguettaya

The functionality query is required under two situations. First, when an SOE’s
owner wants to add a new functionality to the SOE, the corresponding node and
the related operation in the service ontology need to be retrieved. Meanwhile,
the information about both operation-level and service-level dependencies also
needs to be retrieved for automatically generating the new SOE’s schema. In
this case, an operation-based functionality query should be performed. Second,
the composition of the new member services may need to outsource another
functionality which is not specified in a change requirement. This will happen
when the completeness of the data flow is violated by adding new services or
removing existing ones. New services need to be added to fill the blank [12]. In
this case, data-based functionality query should be performed. We will present
algorithms for these two types of functionality queries as follows.

Operation-based Functionality Query. In an operation-based functionality
query, the tree-like structure of an ontology is traversed to find the node that
matches the given functionality. The query is specified in terms of a path ex-
pression. It returns the required service node and the operation as well as both
the service-level and operation-level dependencies if there is any.

As depicted in Algorithm 1., the input is a service ontology tree and a path
expression, which is specified in terms of a string. It first extracts the elements
from the path expression, such as the path variables(C), the service nodes(S),
and the operation(OP). It then takes different steps for different path variables.
If the path variable is ‘/’, the algorithm leverages a simple search procedure
(line 7-17), which only looks up the immediate children of the current node being
processed. On the other hand, if the path variable is ‘//’, the algorithm leverages
a heuristic breath first search procedure (line 18-25 and line 32-38), which only
searches the child nodes that potentially have the desired operation. For example,
if the parent node does not provide the targeted operation, its Has_of children
will not provide it either. In this case, the algorithms will not explore these
children. This will greatly improve the performance of the search process. When
the algorithm hits a path variable of ‘[’, it gets the target operation. Then the
information of the node and the operation will be retrieved (line 26-29).

Data-based Functionality Query. The data-based functionality query takes
as input the desired service data (i.e., input and output). It then traverses the
ontology tree to locate the service node that provides the specified service data.
Instead of exhaustively going through the entire ontology tree, the algorithm
takes advantage of the two types of relationships between a node and its children
to effectively narrow down the searching scope.

As shown in Algorithm 2., we use a recursive procedure to query the tree-like
structure of a service ontology. The data-based functionality query is performed
by matchmaking between two sets of data: service data (including SI and SO) of
the node in an ontology and the required data (including DI and DO) given by
the schema modifier. The matching criteria can be defined as: a node is matched
if it’s output covers the required output, i.e., SO ⊇ DO, and it’s input can be
covered by the given input, i.e., SI ⊆ DI .

Ontology Support for Managing Top-Down Changes in Composite Services 771

Algorithm 1. Operation-based Service Functionality Query
Require: a service ontology query Q (a path expression); a service ontology tree T (r)
Ensure: a service node NS; NS ’s depending service nodes LS; an operation op; op’s depending

operationLop
1: C = Q.C; S = Q.S; OP = Q.OP;
2: N = r;
3: while C �= φ do
4: c = C.pop();
5: if S �= φ then
6: s = S.pop();
7: if c==‘/’ then
8: find=false,
9: for all n ∈ N do
10: if n.name matches s then
11: N = n; find=true;
12: end if
13: end for
14: if find==false then
15: return ERROR; {Fail to find the specified service}
16: end if
17: end if
18: if c==‘//’ then
19: for all n ∈ N do
20: N=HBFS(s,OP, T (n)); {Heuristically breath first search s in subtree T (n)}
21: if N=null then
22: return ERROR; {Fail to find the specified service}
23: end if
24: end for
25: end if
26: if c=‘[’ then
27: NS = N ; LS=N .getDependingService();
28: op = N .getOperation(OP);
29: Lop=N .getDependingOperation(op);
30: end if
31: end if
32: end while
33: Function HBFS(s,OP, T (n))
34: N=get_Children(n);
35: if OP /∈ n.OP then
36: N=get_Is_a_Children(n);
37: end if
38: for all t ∈ N do
39: if t.name matches s then
40: return t; {Find the service}
41: Else HBFS(t, OP, T (t))
42: end if
43: end for
44: return NULL;

The query starts at the root node. It first checks whether the current node
matches the requirement. If so, it will return the current node as the result
(Line 3-9). If not, there will be two cases. First, the current node requires more
input than the specified one. In this case, the child nodes that follow an Is-a
relationship will be pruned since they require no less input than the current
node (Line 10-17). Second, the current node does not fully provide the specified
output. In this case, the child nodes that follow a Has-of relationship will be
pruned since they provide no more output than the current node (Line 18-25).
By leveraging the two types of relationships to guide the search, the algorithm
performs more efficient by only checking the potential nodes that provide the
specified service data.

772 X. Liu and A. Bouguettaya

Algorithm 2. Data-based Service Functionality Query
Require: Required input DI ; Required output DO, a service ontology subtree T (r)
Ensure: a service node S; the related operation list LOP
1: Function CHECK(s,DI ,DO, T (s))
2: if s.Input ⊆ DI then
3: if s.Output ⊇ DO then
4: S = s; {Find the matched service node}
5: LOP=s.get_Operation_By_Output(DO)
6: return LOP ;
7: end if
8: end if
9: if (s.Input ⊆ DI)==true then
10: if (s.Output ⊇ DO)= false then
11: CL=get_Is_a_Children(s);
12: for all s′ ∈ CL do
13: return CHECK(r, DI ,DO,T (r)});
14: end for
15: end if
16: end if
17: if (s.Input ⊆ DI)==false then
18: if (s.Output ⊇ DO)= true then
19: CL=get_Has_of_Children(s);
20: for all s′ ∈ CL do
21: return CHECK(s’, DI ,DO,T (s)})
22: end for
23: end if
24: end if
25: return ERROR; {Fail to find a matched service node}

5.2 Automatic SOE Schema Modification

In this section, we propose an integrated process to automatically modify an
SOE’s schema. The updated schema is guaranteed to fulfill CF . This process
is essentially enabled by the proposed service ontology and the corresponding
query support.

As depicted in Figure 3, the process starts from generating the new function-
ality list, taking CF as its input. The functionality that is expected to add to an
SOE is specified in terms of a path expression.

In the second step, it performs an operation-based service ontology query (i.e.,
algorithm 1.) to retrieve the related service node and the operations for each

Update functionality list

Perform operation-based
ontology query

Generate execution order of
participated services

Data Flow is complete?

Perform data-based
ontology query

Begin End

Functional Change

New member service list

Service nodes,
operations,

service dependencies,
operation dependencies

Service node,
operations

Updated SOE schema

Y

N
Desired Input and output

Fig. 3. The Diagram of Modifying an SOE’s Schema

Ontology Support for Managing Top-Down Changes in Composite Services 773

path expression. The query result will be used for service selection. Meanwhile,
the related service dependencies and operation dependencies are also retrieved.
These dependencies will be enforced when composing different services together.

In the third step, the invocation order of the member services and their op-
erations are generated based on their dependencies. Specifically, it first follows
the service-level dependencies to generate a service-level order. For example, if
invoking a service A depends on the invocation of service B, A will be invoked
after the invocation of B. It then follows the operation-level dependencies to
generate an operation-level order. As a result, the member services are compose
together, which actually defines the new SOE’s schema.

In the fourth step, it checks whether the data flow of the updated schema is
complete. If not, it performs a data-based query on the service ontology to find
the service node which can fill the blank of the data flow (refers to algorithm 2.
for details). The returned service nodes are then added to the SOE and composed
with other services (i.e., by taking the third step). If the data flow is complete,
the process terminates with the output of a new SOE’s schema.

6 Experiments

We conducted a set of experiments to assess the performance of the proposed ser-
vice ontology query algorithms. We run our experiments on a cluster of Sun Enter-
prise Ultra 10 workstations under Solaris operating system. In order to evaluate
the query efficiency, we need to first build a complete service ontology, referred to
as O, upon which the query can be applied. We describe the key parameters and
illustrate how each of these parameters are used to construct the service ontology.
Table 1 shows the definitions of the parameters and their values.

6.1 Constructing the Service Ontology

We define two key parameters to determine the size of O: depth d and total
number of service nodes n. We will evaluate the effect of both d and n on the
query efficiency. We construct the service ontology level by level. The construc-
tion starts from the root, which is a dummy node with an id of 1, representing
the entry point of the ontology. The fanout of each node is a randomly generated
number with an upper bound of f . For instance, if the fanout is 3, the root node
will have three child nodes, whose ids are 11, 12, and 13. The parent-children

Table 1. Parameter Settings

Parameter Meaning Values
d Ontology depth [6, 12]
n Total nodes [103, 106]
f Node fanout [5, 10]
k1 Number of new operations [1, 5]
k2 Number of inherited operations [1, 4]

774 X. Liu and A. Bouguettaya

relationship has two types: t1 =is-a and t2 =has-of. We randomly assign t1 or t2
between a child node and its parent. If a child node cn holds an is-a relationship
with its parent pn, cn will inherent all the operations from pn. In addition, k1
randomly generated new operations will also be assigned to cn. If cn holds an
has-of relationship with pn, k2 operations will be randomly selected from the
operation set of pn and assigned to cn. We assign no operations for the root
node since it is just an entry point of the service ontology.

We leverage a FIFO queue Q to facilitate the process of building the service
ontology O. We start by generating the root node and inserting it into Q. The
root node is then extracted from Q. All its child nodes are generated based on
the rationale we described above. These child nodes are then inserted into Q.
The node generation stops when the depth or the maximum number of nodes
are reached. After that, we continue to extract the node from the queue until it
becomes empty.

6.2 Performance Study

We study the performance of the service ontology query algorithm (referred to as
OntoQuery) in this section. We also implemented a Depth First Search (referred
to as DFS) on the service ontology for comparison purpose. By performance,
we report both the node accesses (referred to as NA), which is independent of
hardware settings, and the actual running time on our experiment machines. We
run our experiments on a cluster of Sun Enterprise Ultra 10 workstation with
512 Mbytes Ram under Solaris operating system.

Depth of the Service Ontology. We study the effect of the depth of the
service ontology in this section. We keep the maximum fanout as 5, i.e., f = 5,
and vary the depth from 6 to 12. Figure 4 shows how the number of node
accesses varies with the depth of the service ontology. OntoQuery accesses much
less number of nodes than DFS. The smallest difference is almost two orders
of magnitude. Generally, DFS accesses more nodes as the depth of the service
ontology increases. This increase is in line with the increase in the size of the
service ontology (in terms of the total nodes). It is worth to note that the size
of the created service ontology does not necessarily increase with its depth. This
is because that we only specify the upper bound of the fanout of each node
and the actual fanout of most nodes in a deeper ontology may be smaller than
those in a shallower ontology. The number of node accesses does not necessarily
increase with the depth, either. This is because OntoQuery only picks either is-a
or has-of to proceed. Since these two relationships are randomly generated, they
may not necessarily increase with the depth. This also accounts for the larger
performance difference when the depth increases. Figure 5 shows the actual CPU
time, which demonstrates a very similar trends as the number of node accesses.

Fanout of the Service Nodes. We investigate the effect of the maximum
node fanout f in this section. We keep the depth of the ontology as 6, i.e., d = 6,
and vary the maximum fanout from 6 to 15. Figure 6 and 7 show the number of

Ontology Support for Managing Top-Down Changes in Composite Services 775

6 7 8 9 10 11 12
10

0

10
2

10
4

10
6

d

N
od

e
ac

ce
ss

es

DFS
OntoQuery

Fig. 4. NA Vs. d

6 7 8 9 10 11 12
10

0

10
1

10
2

10
3

d

C
P

U
 ti

m
e

(m
s)

DFS
OntoQuery

Fig. 5. Time Vs. d

6 7 8 9 10 11 12 13 14 15
10

1

10
2

10
3

10
4

10
5

10
6

f

N
od

e
ac

ce
ss

es

DFS
OntoQuery

Fig. 6. NA Vs. f

6 7 8 9 10 11 12 13 14 15
10

0

10
1

10
2

10
3

f

C
P

U
 ti

m
e

(m
s)

DFS
OntoQuery

Fig. 7. Time Vs. f

node accesses and the CPU time, respectively. The results are fairly consistent
with those from Section 6.2. The results also further confirm the efficiency of the
proposed algorithm.

7 Related Work

Change management is an active research topic in database management, knowl-
edge engineering, and software evolution. Research efforts are also underway to
provide change management in a Web service community and adaptive workflow
systems [2,6]. In this section, we will elaborate some representative works and
differentiate them with our work.

In [2], it focuses on managing bottom-up changes in service-oriented enter-
prises. Changes are distinguished between service level and business level: trig-
gering changes that occurs at the service level and reactive changes that occur at
the business level in response to the triggering changes. A set of mapping rules
are defined between triggering changes and reactive changes. These rules are
used for propagating changes. A petri-net based change model is proposed as a
mechanism for automatically reacting changes. Agents are employed to assist in
detecting and managing changes to the enterprises. [2] mainly focus on devising

776 X. Liu and A. Bouguettaya

handling mechanisms for exceptional changes. An example of such mechanisms
is that the system will switch to use an alternative service if a sudden failure
occurs to a service. We focus on the top down changes, which are initiated by
an SOE’s owner in case of the occurrence of new business requirements or new
business regulations.

In [6], it focuses on modeling dynamic changes within workflow systems. It
introduces a Modeling Language to support Dynamic Evolution within Workflow
System (ML-DEWS). A change is modeled as a process class, which contains
the information of roll-out time, expiration time, change filter, and migration
process. The roll-out time indicates when the change begins. The expiration time
indicates when the change ends. The change filter specifies the old cases that
are allowed to migrate to the new procedure. The migration process specifies
how the filtered-in old cases migrate to the new process. In [6], the new version
of the workflow schema is predefined. In our work, the new SOE schema is
automatically generated. We also propose mechanisms to efficiently select Web
services to instantiate the new schema.

8 Conclusion

We presented an ontology-based framework that enables an SOE to efficiently
adapt to top-down changes. The proposed service ontology provides sufficient se-
mantic support for automatically updating an SOE’s schema when reacting to a
change. The tree-like service ontology structure defines two types of parent-child
relationships: Is-a and Has-of. The functionalities relevant to a change can be
efficiently and accurately identified by following these two types of relationships
in the ontology tree. Our experimental results demonstrated the efficiency of the
proposed service ontology query algorithms.

References

1. Abiteboul, S., Vianu, V., Fordham, B., Yesha, Y.: Relational transducers for elec-
tronic commerce. In: PODS 1998, pp. 179–187. ACM Press, New York (1998)

2. Akram, M.S., Medjahed, B., Bouguettaya, A.: Supporting Dynamic Changes in
Web Service Environments. In: First International Conference on Service Oriented
Computing, Trento, Italy, pp. 319–334 (December 2003)

3. Baghdadi, Y.: A Web services-based business interactions manager to support elec-
tronic commerce applications. In: ICEC 2005: Proceedings of the 7th international
conference on Electronic commerce, pp. 435–445. ACM Press, New York (2005)

4. Casati, F., Shan, E., Dayal, U., Shan, M.-C.: Business-Oriented Management of
Web Services. ACM Communications (October 2003)

5. Coalition, T.O.S.: Owl-s: Semantic markup for web services. Technical report (July
2004), http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html

6. Ellis, C.A., Keddara, K.: A workflow change is a workflow. In: Business Process
Management, Models, Techniques, and Empirical Studies, London, UK, pp. 201–
217. Springer, Heidelberg (2000)

http://www.daml.org/services/owl-s/1.1B/owl-s/owl-s.html

Ontology Support for Managing Top-Down Changes in Composite Services 777

7. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and Web
Services. Prentice Hall PTR, Upper Saddle River (2004)

8. Francisco-Revilla, L., Frank Shipman III, M.S., Furuta, R., Karadkar, U., Arora,
A.: Managing change on the web. In: Joint Conference on Digital Libraries,
Roanoke, United States, June 2001, pp. 67–76 (2001)

9. Gomez-Perez, A., Corcho, O., Fernandez-Lopez, M.: Ontological Engineering: with
examples from the areas of Knowledge Management, e-Commerce and the Semantic
Web. Springer, Heidelberg (2004)

10. Khalaf, R., Nagy, W.A.: Business Process with BPEL4WS: Learning BPEL4WS,
Part 6. Technical report, IBM (2003),
http://www-106.ibm.com/developerworks/webservices/library/
ws-bpelcol6/

11. Khoshafian, S.: Service Oriented Enterprises, 1st edn. Auerbach (October 2006)
12. Liu, X., Bouguettaya, A.: Managing top-down changes in service-oriented enter-

prises. In: ICWS 2007, Salt Lake City, Utah (July 2007)
13. Liu, X., Bouguettaya, A.: Reacting to functional changes in service-oriented enter-

prises. In: CollaborateCom 2007, White Plains, NY (November 2007)
14. Nickols, F.: Change management 101: A primer. Technical report, Distance Con-

sulting (September 2004), http://home.att.net/~nickols/change.htm
15. Orchard, D., Cabrera, F., Copeland, G., Freund, T., Klein, J., Langworthy, D.,

Shewchuk, J., Storey, T.: Web Service Coordination (WS-Coordination) (March
2004)

16. van der Aalst, W.M.P., Basten, T.: Inheritance of workflows: an approach to tack-
ling problems related to change. Theoretical Computer Science 270(1–2), 125–203
(2002)

17. W3C. XML Path Language (XPath) (November 1999),
http://www.w3.org/TR/xpath

18. WSMO Working Group. Web Service Modeling Ontology (WSMO) (2004),
http://www.wsmo.org/

19. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.: Quality-driven
Web Service Composition. In: Proc. of 14th International Conference on World
Wide Web (WWW 2003), Budapest, Hungary, May 2003. ACM Press, New York
(2003)

http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol6/
http://www-106.ibm.com/developerworks/webservices/library/ws-bpelcol6/
http://home.att.net/~nickols/change.htm
http://www.w3.org/TR/xpath
http://www.wsmo.org/

	Ontology Support for Managing Top-Down Changes in Composite Services
	Introduction
	Preliminary
	A Supporting Infrastructure of an SOE
	The Change Layers

	Ontology-Based Framework for Change Management
	Top-Down Change Model
	Change Manager
	The Ontology Manager

	Web Service Ontology
	Ontology Definition
	Ontology Structure

	Service Ontology Query Infrastructure
	Processing the Service Ontology Queries
	Automatic SOE Schema Modification

	Experiments
	Constructing the Service Ontology
	Performance Study

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

