
Monitoring Contract Enforcement within Virtual
Organizations

Anna Squicciarini1 and Federica Paci2

1 College of Information Sciences and Technology
The Pennsylvania State University

asquicciarini@ist.psu.edu
2 Computer Science Department

Purdue University
paci@cs.purdue.edu

Abstract. Virtual Organizations (VOs) represent a new collaboration paradigm
in which the participating entities pool resources, services, and information to
achieve a common goal. VOs are often created on demand and dynamically
evolve over time. An organization identifies a business opportunity and creates
a VO to meet it. In this paper we develop a system for monitoring the sharing of
resources in VO. Sharing rules are defined by a particular, common type of con-
tract in which virtual organization members agree to make available some amount
of specified resource over a given time period. The main component of the sys-
tem is a monitoring tool for policy enforcement, called Security Controller (SC).
VO members’ interactions are monitored in a decentralized manner in that each
member has one associated SC which intercepts all the exchanged messages. We
show that having SCs in VOs prevents from serious security breaches and guaran-
tees VOs correct functioning without degrading the execution time of members’
interactions. We base our discussion on application scenarios and illustrate the
SC prototype, along with some performance evaluation.

Keywords: Virtual Organizations, Monitoring, Access Control, Collaboration.

1 Introduction

The Internet and the Web have enabled new ways for users, enterprises, and organiza-
tions to collaborate in a large number of application domains–from service provisioning
and e-commerce to collaborative e-learning, entertaining, and cultural heritage. Virtual
organizations (VOs for short) represent a new collaboration paradigm where the par-
ticipating entities (enterprises or individuals) pool resources, services, information, and
knowledge in order to achieve a common goal. Researchers as well as practitioners
have recognized the advantages of VOs and have explored a number of possible ap-
proaches to facilitate their formation and management, especially in grid computing
systems [2,4].

VOs vary tremendously, according to the specific goals, context and infrastructure.
As such, a single architecture is not sufficient to fit all the possible organization types.
Nevertheless, despite the many differences among VOs, research studies have identified

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 563–577, 2009.
c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

564 A. Squicciarini and F. Paci

a broad set of common concerns and technology requirements. For example, Foster et
al. in [4], identify a number of relevant requirements, the first of which is the need for
highly flexible sharing relationships. They also pointed to the need of sophisticated and
precise levels of control over how shared resources are used, including fine-grained and
multi-stakeholder access control, delegation, and application of local and community
policies and issues of quality of service, scheduling, and accounting. With regards to
issues related to access controls, several approaches have been proposed [10,11,14].

A widely adopted approach, that we take into account in this work, is to share ser-
vices and/or resources according to a set of policies of two main types, global to the
VO and local to the VO members. The VO community policies are specified in the VO
contract, representing the collaboration agreement established among all the VO mem-
bers. Members join the VO aware of the contract regulating the system, and define their
own local policies accordingly. The local policies represent the plan according to which
the VO members will collaborate within the VO, and they must be compliant with the
VO contract. Because many relevant operations by members depend on such policies,
monitoring that they are properly enforced is crucial for the development of safe and
well grounded VOs. In fact, it is possible that, unless strict enforcement mechanisms
are in place, VO members do not act as stated and thus violate such contract.

Previous work has tackled the issue of policy enforcement within VOs from different
angles, resulting in new access control mechanisms [10,11] and monitoring systems
[9,14]. However, most of the proposed approaches either rely on a centralized entity,
causing bottlenecks and scalability issues, or they are specific to a given domain, and
cannot be easily applied to others.

In this paper we propose a new decentralized mechanism to monitor VO members’
behaviors and compliance with global policies. Our work builds on a framework for
secure specification and distribution of VO contracts previously proposed by us [9,11].
The framework includes a model for specifying VO contracts and policies of VO mem-
bers, along protocols addressing integrity and confidentiality of the policy publication
process [11], and is completed by the protection mechanism discussed in this paper.

The core component of our solution introduced in this paper is the Security Con-
troller (SC), a fully implemented monitoring system, developed using SOA architecture.
The SC has a number of interesting features. First, the SC enables secure distribution
of the VO contract in a private fashion and ensures that VO members’ local policies
are compliant to the VO contract. Second, it monitors messages among VO members
and ensures that entitled members receive the services as promised by the provider
members; third it ensures non-repudiation, in that VO members cannot deny having re-
ceiving a request or a certain service and claim for additional ones (if not entitled). The
SC is realized in a completely decentralized fashion, in that each VO member has an
associated SC, which verifies if service requests are to be satisfied, To the best of our
knowledge this is the first comprehensive solution for access control policy specifica-
tion, monitoring and enforcement specific to VOs.

The paper is organized as follows. Section 2 introduces the concept of VO contract,
while Section 3 overviews the main phases of the VO lifecycle. Section 4 describes
the VO creation process and how the rules specified in the contract are enforced. Sec-
tion 5 describes the SC architecture, possible application scenarios and some relevant

Monitoring Contract Enforcement within Virtual Organizations 565

Fig. 1. Contract Publishing and Entitlements Distribution

implementation details. It also shows results of experiments we carried out to bench-
mark the overhead of the system. Section 6 gives an overview of related works. Section
7 concludes the paper.

2 Contract Specification and Local Policy Representation in
Virtual Organizations

In this section we present an overview of a framework for regulated sharing of compu-
tational resources in a Virtual Organization[9] (VO). The type of organization we focus
on is characterized by VO members, denoted as V oSet representing groups of end
users, also referred to as enterprises. We do not make any assumption about enterprise
internal regulation and structure, and assume that the entities interested in participating
to the VO are represented by service providers (SP). In a VO, different V oSet members
are pooled together for sharing a set of resources, referred to as ResSet, according to a
community policy, also referred to as a contract among VO members.

The building block of a contract is represented by obligations. Obligations dictate
exactly when and for what amount a member has the right to use the resources provided
by the other members and the obligations a member has in terms of resources it has
to provide to other community members. Precisely, we represent an obligation by a
logic predicate of the form Obl(V oM, V oS, R, I), where V oM, V oS ∈ V oMSet, R
is a resource in ResSet and I is a temporal expression. A VO member V oM has to
make available to members V oS a total amount of a resource R over a time interval
I . The resource can also be made available to all possible members, in which case
V os is omitted. We represent contracts in terms of two building blocks: the obligation
sequence and the contract block.

566 A. Squicciarini and F. Paci

An obligation sequence is a sequence of obligations Obl(V oM , V os, R1, I1,. . . ,Rk,
Ik), such that R1,...,Rk are all instances of the same resource type and each Ii, i =
1, . . . , k, is an ordered, contiguous time interval. Each contract block lists a set of obli-
gation sequences, in order to allow the bearer V oM to choose which component of the
obligation sequences to fulfill. A contract is a finite set of contract blocks
{CB1,...,CBn} (n ≥ 1), specified in such a way that it is not possible for a resource
bearer to fulfill several obligations at once.

Each VO member, upon joining the VO, agrees on sharing its resources with other
partners. The starting point for the fulfillment of a VO contract by a VO member is the
publishing of a local policy for its resources. Indeed, the VO member keeps control of
its resources and it autonomously decides which is the policy to use for them. As such, a
local policy serves two main purposes: specifying how the VO member intends to grant
access to its resources and, second, publishing the VO member’s plan to comply with its
obligations in a contract. Vo members define such local policies as strong permissions to
a set of entitled members, denoted by expressions of the form EntV oMk

(V oMi, R, I).
By publishing an entitlement the V oMk promises that it will make R available over
time interval I to the VO member V oMi. The local policy is publicly available for
other VO members. A local policy has to comply with community policies, that is, with
the obligation sequences of the contract blocks referring to the resource bearer.

We say that a set of entitlements Ep complies with an obligation Obl(V oM, V oS,
R, I) if, for every enterprise E ∈ V oS and every time point t ∈ I there exists an
entitlement Ent′(E, R′, [ts, te]) such that ts ≤ t≤ te and R ⊂ R′. We denote with
R ⊂ R′ as two comparable instances of a certain resource of the same type, wherein
R is less than or equal to R′ according to a given metric. Finally, we say that an access
request is supported if there is a corresponding entitlement granting it.

Example 1. We consider a VO called Genome where the members are enterprises Hos-
pital of Chicago (HPC), Department of Biochemistry California University (UBC), Hos-
pital of Seattle (HSE), Department of Computer Science of University of Illinois (CSI)
and cooperate for a project whose goal is to study the structure of human genomes.
The resources to be shared are two databases conveying human genome data, called
DB1 (provided by the HPC) and DB2 (provided by the HSE) and two servers Serv1

and Serv2 (provided by the CSI) where special software implementing dynamic pro-
gramming techniques to elaborate data runs. Further, assume that DB1 and DB2 can be
accessed either with read(r), or write(w) option, while Serv1 and Serv2 can be accessed
for running (e) existing software or for updating(u)/deleting (d) software components1.
The following is HPC’s contract block: CB1= (Obl(HPC, {HSE, UBC}, {DB1, w},
[(1-05-2007,10:00:00),(5-05-2007,22:15:00)]). Once received CB1, HPC defines its
own local policies by specifying the following set of entitlements: EntHPC(HSE,
{DB1, r},[(1-05-2007,10:00:00),(1-05-2007,15:10:00)]),
EntHPC(HSE, {DB1, a},[(1-05-2007,15:20:00),(1-05-2007,22:15:00)]),
EntHPC(UBC, {DB1, r},[(1-05-2007,13:16:00),(2-05-2007,15:10:00)]),
EntHPC(UBC, {DB1, r},[(2-05-2007,15:11:00),(5-05-2007,21:36:00)]).

1 Here, we assume that access rights follow the following order: r < w for databases, whereas
e < u < d for server management.

Monitoring Contract Enforcement within Virtual Organizations 567

3 Virtual Organization Lifecycle

In order to discuss the role of SCs in the VO management, we summarize the main
phases in a VO lifecycle.

– Preparation for participation in the VO. This is a preliminary phase and reflects the
necessary steps that a SP has to take in order to participate to the VO. SPs publish
their resources’ functionalities in a public repository. The resources’ description
provides detailed information about resources’ capabilities, the resources’ interac-
tion means and other information like the resource quality. This information allows
one to select a SP for inclusion in the VO.

– Identification. This phase is considered as the first major phase in the VO lifecycle
and starts when an organization, referred to as VO Creator, identifies a business goal
and thus defines a contract to fulfill it. The contract, as discussed in the previous
section, states the roles and the requirements that each member has to fulfill in order
to be part of the VO.

– Formation. The VO Creator queries public repositories to retrieve the information
published during the Preparation phase. The Creator uses such information to select
a set of potential VO members that match the contract’s requirements. The VO
Creator then sends them an invitation to join the VO containing the terms of the
contract they have to fulfill. If they accept the invitation, they become members of
the VO.

– Operation. Once the VO is set up, its members cooperate according to the col-
laboration rules specified in the contract. The operation phase has several critical
security issues. VO members may exploit their privileges and misuse the resources
available, gather information about other enterprises for personal gain or fail to ful-
fill the contract rules, and even take advantage of the resources made available to
perpetrate crimes. All the interactions must be monitored, ruled by security policies
and any violation must be notified.

– Dissolution. This phase takes place when the objectives of the VO have been ful-
filled. The VO structure is dissolved and final operations are performed to nullify
all contractual binding of the VO members.

4 Security Enhanced Virtual Organization Lifecycle

The SC monitors and coordinates the main operations of each of the VO lifecycle’s
phases. In particular, the SC has two main functions 1) during the creation phase, it
distributes the VO contract in a selective manner and it controls compliance of the VO
member’s local policies, and 2) during the operational phase it monitors VO member’s
message exchanges to detect contract breaches. We elaborate on such functions in the
remaining of this section.

4.1 Virtual Organization Creation and Contract Distribution

In this section we focus on the main operations of the VO creation phase in the in
case the SC is set up. The SC interleaves with the conventional contract distribution

568 A. Squicciarini and F. Paci

and policy publishing operations, so to ensure that the VO members access only the
correct amount of data and that the members publish local policies compliant with the
VO contract.

Upon defining the contract, the VO Creator is in charge of setting up the VO. It
thus invites a number of potential members, selected on the basis of the services (or
resources) they could offer to the VO. Potential members are selected based on the in-
formation related to the provided resources made available during the preparation phase.

If the potential member accepts, the VO Creator requests to a Certificate Authority
(CA) to issue an identity certificate to it. This certificate is typically encoded by an
X.509 credential that binds the VO’s public key to the VO member identity. At this
point, in conventional VO systems, the contract is distributed and the related local poli-
cies published by the new VO members. To ensure the correctness and compliance
of VO contracts, we require the VO Creator to publish a list of endpoints where the
SC components are up and running2. Each VO member then selects the SC that will
monitor its message exchanges during the whole VO lifetime. The same SC can be the
monitor of more than one VO member. Once all VO members have been identified, the
VO creator distributes the contract to the VO members through a software component
that selectively distributes obligations and entitlements [1]. Distribution is performed
in such a way that members will access only the obligations of which they are bearers
and the entitlements that grant them the access to other VO members’ resources (Figure
1-step 1).

Each SC component facilitates the tasks of the VO members, in that it intercepts
the contract and forwards to the associated VO member only the contract blocks of its
interest (Figure 1-step 2). Upon receiving the contract blocks, the VO member defines
the set of entitlements specifying how it will fulfill its obligations towards the commu-
nity (Figure 1-step 2) and returns them to the SC component (Figure 1-step 3). The SC
is in charge of verifying that the entitlements fulfill the member’s obligations, and of
distributing these entitlements (Figure 1-step 4) to the guaranteed members-identified
by the VOs field of the entitlement (see entitlement definition in Section 2). Once obli-
gations and entitlements have reached all the respective VO members, the VO set up
process is complete and the VO enters the operational phase. SC components play a
crucial role in this phase of the VO lifecycle: they check that their VO member submits
only requests supported by entitlements, and in case of VO provider members that the
provided resources respect the entitlements in place.

We elaborate on how SC components guarantee that there are no VO contract
breaches in the subsequent section.

4.2 Contract Enforcement and Monitoring

Within the operational phase, the VO members’ interaction consists of resources and
services provided upon request, according to the specified entitlements. Intuitively, if no
monitoring system is in place, a number of security breaches could arise. For example,
a VO member could simply deny supported requests, or it could falsely claim of not
having received the requested services. A trivial solution to avoid these issues would be

2 SCs are by assumption trusted software components that run on trusted platforms.

Monitoring Contract Enforcement within Virtual Organizations 569

to rely on a centralized controller. However, this would likely result in delays and the
centralized monitor be a bottleneck. When the SC components are employed, instead,
these type of situations are prevented without causing significant overhead.

The interaction among VO members can proceed with no third party in between.
When a request is rejected, two different -and trusted- SCs double-check it, to ensure
that the denial is grounded. Furthermore, a requesting member cannot claim of not
having received a service, if this was actually granted, as by the data logged by the SC.
Figure 2 summarizes how the SC components affect the message flow between two VO
members. The SC filters intercepts the messages exchanged, to detect potential contract
breaches. Precisely, a SC accepts two types of incoming messages:

– a message msg = (Cert, Resource) that requests a resource Resource that is
provided by the monitored VO member;

– a fault message msg = (Resource, FaultReason) that communicates that the
monitored VO member’s request of Resource cannot be granted because is not
available.

As shown in Algorithm 1, If SC receives a resource request message msg = (Cert,
Resource) it first verifies the validity of Cert in msg. Then, it derives from Cert the
identity of the resource requester and controls the existence of an entitlement EntV oMi

(V oMk, R, I) that obliges the monitored VO member to provide the resource
Resource to requester VO member for the whole time interval I , where I includes
the time in which the request is received. If such an entitlement exists, SC forwards
the resource request to VO member it controls that, in turn, returns the Resource to
the requester VO members (lines 1-11, Algorithm 1). On the contrary, if SC receives
a fault message msg = (Resource, FaultReason) it checks if the denial of Resource
is motivated or not. SC looks for an entitlement EntV oMi (V oMk, Resource, I) that
grants to the monitored VO member the access to Resource. If such an entitlement does
not exist, then the denial was motivated and the SC forwards the fault message to the

Receive Request

from Vo Member 1

Verify requestor ’s
identity and evaluate request

Forward request to
Vo Member 2 Send Resource Denial

Message

NOYES

Security
Controller

VO Member1

3

2

VO CreatorCore Application

Evaluate request

Was the request
supported?

Forward Denial
Message NOTIFY ERROR

VO Member2

Core Application

Security
Controller

NO YES

Is the request
supported?

1

3’ 3”

4’

4”

5’

5’’

5’’b5’’a

6’’a

6’’b

6’’b

Fig. 2. Contract monitoring flow

570 A. Squicciarini and F. Paci

controlled VO member. Otherwise, the provider’s VO member violated the entitlement
and the SC forwards the message msg = (Resource, FaultReason) to the VO mem-
ber it monitors, and to the VO Creator, which can apply some punishing actions3.

The SC also detects the situation in which a requested Resource that is available, is
not released to a requestor whose request is granted by entitlement EntV oMi(V oMk,
R, I). The SC stores locally all the messages received and sent by the monitored VO
member within a certain time frame (e.g., a few sessions). Such message history can be
consulted at any time by the VO member, as it is made available to it upon request.

In this case, the SC checks that a reply message has been sent by the VO member
providing resource R within the time interval I . If this is not the case, the SC notifies to
thirds, typically the VO Creator. This simple mechanism ensures non-repudiation; the
VO member cannot claim it has been denied a resource that it has actually received.

Example 2. UCB wants to examine some data contained in the database DB1 of HPC. It
decides to access the database DB1 the 2nd of May 2007 at 10 p.m. The HPC’s SC checks
if there are entitlements granting the access to UCB. The access to DB1 is granted to UBC
in times different from the time of the request as stated by the following entitlement:
EntHPC (UBC, {DB1, r},[(1-05-2007,13:16:00), (2-05-2007, 15:10:00)]), EntHPC

(UBC, {DB1, r},[(2-05-2007,15:11:00),(5-05-2007,21:36:00)]).Thus, the HPC’s con-
troller sends a fault message to the UBC’s controller to communicate the denial of the
request. UBC’s SC verifies that the denial was well motivated and forwards the fault
message to UBC.

5 System Implementation

In this section we provide a sketch of the architecture which implements the proposed
SC along with interesting details of the SC monitoring component.

The SC component is realized by three main modules. First is the message han-
dler that handles incoming and outcoming messages during the distribution phase of
the contract and the VO operational phase. The second component is the distribution
module that is realized by the X -Seal system [1], for the distribution of signed contract
blocks and encrypted documents. Last but not least is the compliance checker module.
The compliance checker module is used for checking whether the received entitlements
at the time of contract distribution or contract update are actually fully compliant with
obligations or not. Running this module is a crucial precondition for ensuring moni-
toring correctness since only compliant entitlements and obligations must be usefully
distributed and enforced within the VO [11].

The core of the SC is the monitoring system. This module is activated during the VO
formation phase and it is used during the operational phase. The monitoring system is
realized as a proxy that enforces the local entitlements on the incoming messages. We
focus on technical details related to this component in the remainder of this section.

3 Punishing actions can be of several type, from banning to the VO to decreased reputation and
services’ availability. We do not further elaborate on this aspect as it is out of the scope of the
current work.

Monitoring Contract Enforcement within Virtual Organizations 571

Algorithm 1. Monitor Contract Enforcement
Require: A resource request message msg = (Cert,Resource) where Cert is the sender’s

identity certificate and Resource is the requested resource OR a fault message msg =
(Resource, FaultReason) where Resource is the resource requested but not available
and FaultReason specifies the reason why Resource is not granted

1: if msg is a msg =(Cert, Resource) then
2: if Cert is valid then
3: V OMemberID := ExtractIdentity(Cert);
4: if (EntV oMi(V oMk, R, I) s.t V oMk, == V OMemberID ∧ R == Resource ∧

tmsgsend ∈ I) then
5: Send msg=(Cert,Resource) to Resource’s provider Member
6: else
7: FaultReason:= ”No Entitlement Supports Resource Request”;
8: Send msg=(Resource,FaultReason) to Resource VOMemberID ’s SC
9: end if

10: end if
11: end if
12: if msg is a msg =(Resource, FaultReason) then
13: if (EntV oMi(V oMk, R, I) s.t V oMk,== VOMemberMonitored ∧ R = = Resource ∧

tmsgsend ∈ I) then
14: FaultReason:=”Resource’s provider violates the contract”;
15: Send msg=(Resource,FaultReason) to VOMemberMonitored and VO Creator
16: else
17: Send msg =(Resource, FaultReason) to VOMemberMonitored
18: end if
19: end if
20: if !(Receive msg ∧ tr ∈ I) then
21: Send msg=(Resource,Contract V iolation) to VO Creator
22: end if

Fig. 3. Security Controller main interface

572 A. Squicciarini and F. Paci

Security Controller Monitoring System. The SC monitoring system has been im-
plemented in Java (JDK 1.5) and Java Server Pages (JSPs), the Apache Tomcat Ap-
plication Server and MySQL database to store the entitlements and certificates. We
have deployed the SC component in a SOA-based VO infrastructure where the ser-
vices provided by the VO members are Web services and the messages exchanged
are SOAP messages. The three most relevant operations of the monitoring sys-
tem are realized by the checkRequestResource, checkReplyMessage and
checkReceivedMessage java methods. checkRequestResource is executed
upon receiving of the SOAP message from a VO member to invoke a Web service opera-
tion. This method implements the checks performed on a resource message listed in Al-
gorithm 1 (lines 1-11). We report the code snippet of the checkRequestResource
method in Appendix. checkReplyMessage, on the contrary, is executed when the
request of a Web service’s operation cannot be granted and hence a SOAPFault message
is received or when no reply SOAP message is received. The method implements the
second half (lines 12-21) of Algorithm 1. checkReceivedMessage controls that
for a given request message, the corresponding reply message has been received (see
Figure 4).

Entitlements and information about the VO Web service providers and the url to lo-
cate them are stored respectively into the ENTITLEMENTS and RESOURCES tables.
Table CERTIFICATES contains the VO membership certificate and the certificate of
the issuer CA. The messages intercepted by the SC are stored in the table MESSAGES.

The monitoring system has been suited with a JSP interface that displays the SOAP
messages sent from or to its VO member. Possible displayed messages are: the SOAP
message sent by the VO to invoke the operations of a Web service of another VO mem-
ber, the reply received to the VO member as output of an executed operation request, and

Fig. 4. Message receival interface

Monitoring Contract Enforcement within Virtual Organizations 573

the reply SOAPFault message, if the operation cannot be invoked. Figure 3 represents
an example of SOAP message sent by the VO member 123456 to invoke the operation
query offered by the Web service DataStorageWS. The message Header contains
an Authentication element including a Certificate which includes the VO member’s
123456 identity certificate, while the Body of the message contains an element query
specifying the name of an XML file name and the XPath query to execute on the file.
The entitlement that supports this request states the VO member 123456 is allowed to
invoke any of the DataStorageWS’ operations between 10:00 a.m to 11:00 p.m.

Notice that the SC implementation is modular: checking if a resource message re-
quest is supported by an entitlement is independent from the type of message. Therefore,
our SC could be integrated in any VO infrastructure -like grid infrastructure- by only
implementing the necessary parsers to comply with the format exchanged in that VO, if
it does not support SOA messages. Similarly, to facilitate future integrations we chose
not to encode the entitlements in any proprietary format. To this extent, we also used the
standard and well established X.509 encoding for our VO member identity certificates.
This certificate should be released on behalf of the VO Creator by a CA. In order to
verify the validity of this certificate, also the CA public key certificate is needed. Both
the certificates have to be sent with the resource request messages to authenticate the re-
source requester. For testing purposes, we assumed that both the membership certificate
and the CA certificate are stored locally into the database of the VO member.

Monitoring System Evaluation. We present different test cases to evaluate the per-
formance of the SC component. For each scenario we have compared the interaction
time between two VO members with and without the intervention of the SC Com-
ponents. In all the test cases we have assumed that: a) VO member HPC provides
the DataStorageWS Web service; b) HBC previously defined an entitlement that
grants to VO member UCB the right to invoke the query operation between 10:00 a.m.
and 3:00 p.m. Specifically, we have conceived the following cases:

1. UCB requests the operation query within 10:0 a.m-3:00 p.m. a. HPC’s SC al-
lows the execution of query operations and the query result is returned to UCB b.

Fig. 5. VO Members Interaction Times

574 A. Squicciarini and F. Paci

HPC’s SC allows the execution of query operations but the DataStorageWS is
not available due to a deployment error. Therefore, the query result is not returned
to UCB.

2. UCB requests the operation query at 4:15 p.m. HPC’s SC does not grant query
operation invocation. It returns a SOAP fault message to UCB’s SC. It double-
checks that the request to invoke query operation is in fact not supported and for-
wards the message to UCB.

3. UCB requests the operation query at a time t within 10:0 a.m-3:00 p.m. a. HPC’s
SC allows the execution of query operations but the query result is not returned to
UCB. UCB’s SC checks that a return message with the query results has been
received by UCB in the time interval that goes from t to 3:00 p.m.

4. UCB invokes directly the query operation and receives the result. In this case the
SC components are not involved.

We have performed our experiments on a Genuine Intel CPU T2300@ 1.66 GHz pro-
cessor and with 1 GB of RAM, under Microsoft Windows XP Home Edition. The per-
formances have been measured in terms of CPU time (in milliseconds) and are reported
in Figure 5.

We notice that the interaction time is always between 200 and 400 ms, regardless of
the considered case. The variance for each case is relatively small, and it is about 22.
Therefore we can conclude that having SCs which mediate the collaborations among the
VO members is worth the cost of the added overhead as it prevents from serious security
breaches and guarantees the correct functioning of a VO. Additionally, we expect the
time required for the monitoring process to become lower once the SC will be deployed
in a real setting, where more efficient and faster processors can be used.

6 Related Work

Virtual Organizations have been thoroughly explored in the realm of grid computing
systems [4,2], where technology and resources enable the formation of virtualized envi-
ronments of users and relative resources belonging to different administrative domains.

The TrustCom project [12] have produced a framework for trust, security and con-
tract management of service oriented architectures, web services and grid technologies
to manage the formation, operation and dissolution of virtual organisations and supply
chain business relationships.

Another interesting project about virtual organizations is [5]. The project focus on
dynamic coalitions, namely, coalitions where member domains may leave or new do-
mains may join during the life of the coalition. In dynamic coalitions, the sharing of
resources by autonomous domains is achieved by the distribution of access permissions
to coalition members based on negotiated resource-sharing agreements. In the context
of the project, a set of tools have been developed that integrate security services for dy-
namic coalitions, namely, services for (1) private and shared resource management, (2)
identity and attribute certificate management, (3) secure group communication, and (4)
joint administration for enforcing joint-action policies on shared critical resources. A
number of tools and techniques to support the monitoring of network performance and

Monitoring Contract Enforcement within Virtual Organizations 575

Grid resources and services have been proposed: for example, NetLogger[13], Autopi-
lot [8] and Remos [3]. These systems incorporate a range of often sophisticated sen-
sor interface, instrumentation, data collection, data filtering, and data summarization
techniques that have proven invaluable in a range of application experiments. These
systems differ from ours in their main goals and application domains. We do not re-
quire specific underlying infrastructure and do not focus on monitoring performance
of distributed applications. Rather our goal is to create a self-monitored VO, where
members’ fulfillment to security and sharing policies is proactively executed. Our SC
could be integrated with a performance monitoring tool, to also tackle the problem of
monitoring services performance and quality of service. A related contract monitoring
system intended to provide automated checking of business to business contracts has
been proposed in [6]. It introduces a novel modeling approach to obligations, unifying
the treatment of both permissions and obligations by refyining both. The closest work
to ours is the Law governed interaction (LGI) proposed by Minsky et al. [14]. LGI is a
decentralized coordination and control mechanism for distributed systems. It enables a
distributed group of software actors, which may be heterogeneous, open, and large, to
engage in a mode of interaction governed by an explicitly specified policy, called the
interaction law of this group. The law-enforcement is done in a logically decentralized
manner, by associating with each actor a generic component called controller, which is
trusted to mediate the interaction of its actor with others. The implementation of this
coordination and control mechanism is called Moses [7]. Similarly to our work, the
community is governed by global policy and each actor is governed by a local policy,
which must conform to. Our concept of contract is however different. In [14] local laws
are obtained as refinements of community laws, whereas we consider local policy as
a plan for enterprises to allocate resources under their own control while complying
with coalition policy as expressed in the contract. Moreover, the implementation of the
Moses’ controller and of our SC differs in two aspects: 1) the Moses controller allows
the member/actor to chose the law that he wants to be applied, while in our controller
this is not possible, since it is the single member that has the ability to specify its own
entitlements; 2) the Moses controller applies a law enforcing strategy that prevents con-
tract violations, while our controller lets the members autonomy to operate, and detects
entitlements violations.

7 Conclusions

Virtual Organization represents a new collaboration paradigm in which the participating
entities pool resources in order to achieve a common goal. Ensuring trustworthiness of
the members is a fundamental aspect for the VO success. In this paper, we addressed
two main problems related to Virtual Organizations’s secure deployment: the VO poli-
cies’ enforcement and the monitoring of VO members’ interactions. We have proposed
a decentralized monitoring system realized by a software component called Security
Controller. We have also evaluated the system overhead introduced by the presence of
SC components. The overhead introduced by the SC is reasonably low. Therefore we
conclude that having SCs in VOs prevents from serious security breaches and guaran-
tees VOs correct functioning without degrading the time required for members’ inter-
actions. We plan to extend the SC implementation with new components to provide

576 A. Squicciarini and F. Paci

monitoring of service performance. We are investigating which of the existing perfor-
mance monitoring tools could possibly be employed for integration. We also plan to
deploy our SC component in the realm of grid environment.

References

1. Bertino, E., Ferrari, E., Paci, F., Parasiliti Provenza, L.: System for Securing Push Based
Distribution of XML Documents. International Journal of Information Security 6(4), 255–
284 (2007)

2. Czajkowski, S., Foster, I., Kesselman, C., Sander, V., Tuecke, S.: Snap: A protocol for negoti-
ating service level agreements and coordinating resource management in distributed systems.
In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 153–183. Springer, Heidelberg (2002)

3. Dewitt, T., Gross, T., Lowecama, B.: Remos-A Resource Monitoring System for Network
Aware Applications. Carnegie Mellon School of Computer Science, CMU-CS-97-194

4. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. Supercomputer Applications 15(3) (2001)

5. Integrated Security Services Dynamic Coalition Management,
http://www.ece.umd.edu/gligor/ISSDCM2003/ISSDCM2003.html

6. Linington, P., Neal, S.: Using policies in the checking of business to business contracts. In:
Proceedings of the 4th IEEE Workshop on Policies for Distributed Systems and Networks,
Como, Italy, June 2003, pp. 207–218 (2003)

7. Moses-Law Governed Interactions (LGI), http://www.moses.rutgers.edu/
8. Nastel AutoPilot Overview White Paper. Published by Nastel Technology
9. Sadighi Firozabadi, B., Sergot, M., Squicciarini, A.C., Bertino, E.: A Framework for Con-

tractual Resource Sharing in Coalitions. In: Proceedings of IEEE 5th International Workshop
on Policies for Distributed Systems and Networks, New York, USA, pp. 117–126 (2004)

10. Sadighi Firozabadi, B., Sergot, M.: Contractual Access Control. In: Proceedings of IEEE
Security Protocols,10th International Workshop, Cambridge, UK, pp. 96–103 (2002)

11. Squicciarini, A.C., Bertino, E., Paci, F.: A Secure framework for Virtual Community Con-
tracts. International Journal of Web based Communities (IJWBC), Inderscience 2(2), 237–
255 (2006)

12. TrustCom project, http://www.eu-trustcom.com/
13. Tierney, B., Gunter, D.: NetLogger: A Toolkit for Distributed System Performance Tuning

and Debugging,
http://dsd.lbl.gov/publications/NetLogger.overview.pdf

14. Xuhui, A., Minsky, N.H.: Flexible Regulation of Distributed Coalitions. In: Snekkenes, E.,
Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 39–60. Springer, Heidelberg
(2003)

A CheckRequestResource’s Code

In this appendix we report code snippet of method CheckRequestResource intro-
duced in Section 5.

http://www.ece.umd.edu/gligor/ISSDCM2003/ISSDCM2003.html
http://www.moses.rutgers.edu/
http://www.eu-trustcom.com/
http://dsd.lbl.gov/publications/NetLogger.overview.pdf

Monitoring Contract Enforcement within Virtual Organizations 577

public boolean checkRequestResource() {

settings = Proxy.getInstance().serverSettings;
this.direction = "IN";
this.destinationHost = settings.getHost();
this.senderHost = settings.getSenderHost();
boolean result = false;
boolean valid;
try {
(SOAPobject.getCertificate()).checkValidity(new Date());
valid=true;

} catch (CertificateExpiredException e1) {
valid=false;
e1.printStackTrace();

} catch (CertificateNotYetValidException e1) {
valid=false;
e1.printStackTrace();

}

if(valid==false){
msg="Error: Your Certificate is not Valid!";
result = false;

}else{
result = findEnt(SOAPobject.getResource(), memberID);
}

if(result){
Proxy.getInstance().getInfoServer().add(getInfoLog());
}

return result;
}

	Monitoring Contract Enforcement within Virtual Organizations
	Introduction
	Contract Specification and Local Policy Representation in Virtual Organizations
	Virtual Organization Lifecycle
	Security Enhanced Virtual Organization Lifecycle
	Virtual Organization Creation and Contract Distribution
	Contract Enforcement and Monitoring

	System Implementation
	Related Work
	 Conclusions
	References
	A CheckRequestResource's Code

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

