

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 545–562, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

A Contract Language for Service-Oriented Dynamic
Collaborations

Surya Nepal, John Zic, and Shiping Chen

CSIRO ICT Center, P.O. Box 76,
NSW 1710, Australia

FirstName.LastName@csiro.au

Abstract. Dynamic collaborations are built using contributed resources that
have come across the organizational boundaries. These resources include data,
application, software, tools as well as infrastructures, and are typically subject
to a rich set of access policies. The automated instantiation of a collaboration
using such resources including their interoperability is a difficult problem.
Existing systems are either built for specific resources, or use manual and ad-
hoc approaches. This problem has attracted the Web Services community,
where Web Services standards such as WSLA and WS-CDL have been
proposed to address similar problems. These approaches are designed to deal
with scenarios involving two parties: a service provider and a service consumer.
They do not scale well to multiparty nature of dynamic collaborations. This
paper proposes a contract language for dynamic multiparty collaborations that
captures the contributed resources and negotiated agreements on them, as well
as the mechanisms for instantiation and termination of the collaboration. The
language itself has been defined using XML Schema and has been implemented
in a dynamic collaboration platform to provide a connectivity service.

1 Introduction

Recently, there has been much interest in forming on-demand dynamic collaborations
between autonomous, competitive organizations to collaborate on occasion [4]. Such
collaborations are built for a specific purpose. For example, a dynamic collaboration
among researchers in eResearch domain may be required so as to study a specific
climate change problem. The idea of collaborating in this way, however, is not new.
For example, the area of virtual organizations [1][2][3] explores mechanisms that
enable entities from different organizations to collectively create such virtual
enterprises or organizations. This goal is typically achieved through open service
discovery, negotiation and execution based on service level agreements (SLAs). A
trend is developing, however, where collaborations are much more dynamic and the
resources contributed by each organization to the collaboration are governed by a set
of complex policies [5][4][18] constructed upon each separate organization’s policies.
In this situation, open service discovery mechanisms cannot be used, as resource
information is deliberately hidden through the use of organizational policies.
Collaborations built around this concept are termed dynamic collaborations.

546 S. Nepal, J. Zic, and S. Chen

One of the key features of a dynamic collaboration is an on-demand contribution of
resources from participating autonomous organizations. Recently, resources such as
storage and networking infrastructures, tools, software and data are implemented
using Web Services technologies so that they can be made available as services. For
example, the concept of Software-as-a-Service (SaaS) is introduced for providing
software [19] and Infrastructure-as-a-Service (IaaS) [11] for storage and networking
infrastructures. Therefore, it is possible to define and share resources as services in
the context of dynamic collaborations.

The management of workflows of contributed resources during a dynamic
collaboration is a critical issue. The management workflows include negotiation of
resources, validation of resources, instantiating of resources/collaboration, monitoring
resources and releasing resources when the collaboration terminates or when a partner
leaves the collaboration. Existing dynamic collaborations deal with these issues either
in an ad hoc manner or manually. There is a need of a framework that enables the
definition of collaborations in such a way that it can be unambiguously and
automatically instantiated and managed.

The problem of interoperability becomes evident while managing the workflows of
resources due to involvement of a variety of autonomous organisations as well as the
resources contributed by them. This problem has attracted the Web Services
community, where standards such as WSLA and WS-CDL have been developed.
Keller and Ludwig [17] defined a Web Service Level Agreement (WSLA) [10]
framework for defining and monitoring Service Level Agreements (SLAs) between
service providers and service consumers in an electronic commerce scenario.
Kavantzas et al. [27] define the Web Services Choreography Description Language
(WS-CDL) that describes peer-to-peer collaborations of Web Services participants by
defining their common and complementary observable behavior.

These languages work well in a type of scenarios that involve only two parties with
distinct roles; the service provider offering a service and the service consumer
requesting and consuming the service. However, in the context of dynamic
collaboration, this does not work well due to the following reasons:

• Dynamic collaborations have complex policies defining the interactions, access
and use of resources.

• Multiple parties are involved in dynamic collaborations;
• Multiple resources (services) are contributed to the collaboration by multiple

parties;
• Both roles of service provider and service consumer are often played by a

single party;
• All parties must agree with each other’s contributions and obliged with their

agreements.

In order to start to address this problem, we recently [28] proposed an extension to
WSLA, called WSLA+, for dynamic collaborations. However, the extended language
involves semantic interpretations of WSLA elements different than what they were
intended for as well as could not fulfill all the above requirements specifically on
specifying policies on services. In order to fulfill these requirements, this paper
presents a framework for Web Service Collaborative Context Definition Language for
dynamic collaboration, called WS-CCDL. It enables collaborating partners to

 A Contract Language for Service-Oriented Dynamic Collaborations 547

unambiguously define the requirements for the collaboration as well as agreements
for all the resources contributed to the collaboration. The semantics of the framework
is defined briefly as a short paper in [29]. In this paper, we describe the language
itself, which is defined using XML Schema and an implemented prototype system in
an environment to deliver a connectivity service between multiple partners in a
collaboration.

The rest of the paper is structured as follows. Section 2 describes the background
and motivation of this work using examples from a variety of applications. We then
describe the framework and its runtime model in Sections 3 and 4, respectively.
Section 5 describes the connectivity service implemented using the framework. The
final section draws the concluding remarks and future works.

2 Background and Motivation

Dynamic collaborations bring together complementary sets of competencies from
competing enterprises to address new market opportunities in a rapidly evolving
services economy [4]. In addition to enterprise applications, dynamic collaborations
between cross-organizational entities occur in other application domains such as
Global Command and Control Systems in military application [5], coalitions formed
among civilian organizations as responses to emergency situations, coalitions between
researchers in different institutions for eResearch applications and health care facility
and practitioners’ coalitions for eHealth applications. The valuable contributions of
dynamic collaboration technologies have been recognized by both industries and
governments as evident from the special issue Journal on Dynamic Collaboration by
NEC [4], the Australian Government’s funding support for collaborative platforms
within eResearch [18], European collaborative project ECOSPACE [23] and DARPA
funded research in dynamic collaboration [14][15][16]. We next describe three
motivating examples of collaboration from different application domains.

Post-production industry - Figure 1 shows an example of a dynamic collaboration
formed between three distributed, autonomous postproduction houses in order to
produce a movie [6]. As can be seen in the figure, three companies contribute

Fig. 1. An Example of Dynamic Collaboration in a movie postproduction industry

548 S. Nepal, J. Zic, and S. Chen

different resources as services in the collaboration. The contributed services include
Audio Visual editing service, Audio Visual application service, storage service,
printer service, computation service as well as the services of audio video specialists.
The collaboration also uses external third party provided services such as contract
service and network service.

Retail enterprise - [20] explains the scenarios in retail and hospitality industries where
collaborations with partners provide effective ways of gaining competitive advantages
by making use of existing resources. They include streamlining the product recall
process, online web conferencing and virtual war room. The partners within the retail
industries include retail outlets, suppliers, transport companies, etc.

eHealth – Collaborative eHealth programs such as Baltic eHealth [21] and Kentucky
eHealth [22] are taking advantage of collaboration in health care sectors. The aim of
these programs is to provide secure, private and confidential healthcare services by
taking advantages of expertise within the regions.

3 WS-CCDL Framework

Figure 2 shows the main concepts and their relationships within WS-CCDL. As a
convention throughout this paper, we denote sets of entities using upper-case letters,
with the entities themselves in lower-case letters. The main entity, called contract,
captures the entities requirements, participants, contributions and agreements. The
resources, activities, policies and attributes are used to describe these entities.

A contract is a collaborative context that specifies not only the requirements for the
collaboration but also captures the contributions made by the participants as well as the
agreements between them for contributed resources. The contract includes collaboration
requirements, contributions by participants, agreements among participant and the list

Fig. 2. Overview of main WS-CCDL concepts and relationships

 A Contract Language for Service-Oriented Dynamic Collaborations 549

of participants. The high-level elements of the contract are shown in a snapshot of
XML-schema below.

<xs:element name="econtract" type="ccdl:econtractType"/>
 <!-- high level element -->
<xs:complexType name="econtractType">
 <xs:sequence>
 <xs:element ref="ccdl:participants"/>
 <xs:element ref="ccdl:requirements"/>
 <xs:element ref="ccdl:contributions"/>
 <xs:element ref="ccdl:agreements"/>
 </xs:sequence>
 <xs:attribute name="econtractId" type="xs:anyURI" use="required"/>
 <xs:attribute name="Version" type="ccdl:VersionType" default="1.0"/>
 <xs:attribute name="contractAgreementProtocol" type="xs:anyURI" use="required"/>
</xs:complexType>

In addition to the four core elements, the contract must also specify the negotiation

and agreement protocol.
A dynamic collaboration is built among a number of participating organizations. In

general, we categorize the participants as follows:

Initiator is a participant who initiates the collaboration. The initiator specifies the
initial requirements for the collaboration.

Invited participants are the participants that are invited by the initiator to participate in
the collaboration.

These participants are further categorized as follows.

Signatory participants are authorized by the collaborating organisations to negotiate
on their behalf. Both initiator and invited participants are signatory participants.

Contributing participants are contributed by the signatory participant to participate in
the collaboration. For example, a participant can delegate a storage service provider
to provide a storage service to the collaboration. We capture such participants as
resources in our framework. We do further discussion on resources later in this
section.

The signatory participants are defined using their identity, role, addressing mechanism,
etc. as follows. Also, the participants must be specified with an authentication algorithm.

<xs:element name="participants" type="ccdl:participantsType"/>
 <xs:complexType name="participantsType">
 <xs:sequence>
 <xs:element ref="ccdl:participant" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
<xs:complexType name="participantType">
 <xs:sequence>
 <xs:element ref="ccdl:identity"/>
 <xs:element ref="ccdl:role"/>
 <xs:element ref="ccdl:organisation"/>
 <xs:element ref="ccdl:addressing"/>
 <xs:element ref="ccdl:section"/>

550 S. Nepal, J. Zic, and S. Chen

 </xs:sequence>
 <xs:attribute name="authenticationAlg" type="xs:anyURI" use="required"/>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

As discussed earlier, an initiator – the participant who initiates the collaboration -

expresses the need of the collaboration through requirement. The requirements
specify not only the purpose of the collaboration, but also durations, activities and
resources needed for establishing and continuing the collaboration. In order to capture
these initial statements about the collaboration, we define the requirement as follows.

<xs:element name="requirement" type="ccdl:requirementType"/>
 <xs:complexType name="requirementType">
 <xs:sequence>
 <xs:element ref="ccdl:activities" minOccurs="0"/>
 <xs:element ref="ccdl:resources" minOccurs="0"/>
 <xs:element ref="ccdl:policies" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="name" type="xs:string" use="required"/>
 <xs:attribute name="date" type="xs:date" use="required"/>
 <xs:attribute name="time" type="xs:time" use="required"/>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

It is also important to note that these requirements are negotiable. That is, a

participant may disagree with some of the requirements and may negotiate the
changed requirements with other participants using negotiation protocols. Examples
of such negotiation protocols will be discussed in the next section.

Within a collaboration, participants may engage in a number of activities, and each
activity may need different set of participants and resources. For example, a
collaboration in the post-production industry may have activities like video enhancing,
audio enhancing, audio-visual mixing, preparing scenes, etc. In our framework, we
represent such activities as follows.

<xs:element name="activities" type="ccdl:activitiesType"/>
 <xs:complexType name="activitiesType">
 <xs:sequence>
 <xs:element ref="ccdl:activity" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
<xs:complexType name="activityType">
 <xs:sequence>
 <xs:element name="activityid" type="ccdl:idType"/>
 <xs:element name="activityname" type="xs:string"/>
 <xs:element name="resources" type="ccdl:resourceType"/>
 <xs:element ref="ccdl:policies" minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="participant" type="xs:string" minOccurs="0"
 maxOccurs="unbounded">
 <xs:keyref name="activityref" refer="ccdl:participantKey">
 <xs:selector xpath="ccdl:econtract/participants/identity"/>
 <xs:field xpath="id"/>

 A Contract Language for Service-Oriented Dynamic Collaborations 551

 </xs:keyref>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="date" type="xs:date" use="required"/>
 <xs:attribute name="time" type="xs:time" use="required"/>
 <xs:attribute name="duration" type="xs:time" use="required"/>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

It is important to note here that the activity definition includes both the description

for the activity as well as the resources required to perform these activities. Whether
the overall resource requirements may capture these resources depends on what kind
of resource satisfaction algorithm would be used and this will be discussed in the next
section in details.

A unique characteristic of a dynamic collaboration is that it is formed by
combining each participant’s contributed resources. In our framework, signatory
participants contribute resources towards the collaboration. The resources are
contributed at both activity and collaboration levels. That is, one participant may
choose to contribute resources in such a way that it can be used by all activities within
a collaboration, whereas other participants may choose to contribute resources only
for a specific activity. The resources include contributing participants, software, data,
tools and information resources. The resources are formally represented as follows.

<xs:element name="resources" type="ccdl:resourcesType"/>
 <xs:complexType name="resourcesType1">
 <xs:sequence>
 <xs:element ref="ccdl:resource" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="resource" type="ccdl:resourceType">
 <xs:key name="resourceKey">
 <xs:selector
 xpath="ccdl:econtract/collaborationcontext/resources/resid/identity"/>
 <xs:field xpath="@id"/>
 </xs:key>
 </xs:element>
 <xs:complexType name="resourceType">
 <xs:sequence>
 <xs:element name="resid" type="ccdl:idType"/>
 <xs:element name="resname" type="xs:string"/>
 <xs:element ref="ccdl:policies" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 <xs:anyAttribute namespace="##any" processContents="lax"/>
 </xs:complexType>

A collaborator must provide enough information about any contributed resources

so that they can be accessed by other collaborating participants such as addresses,
interfaces and protocols. With the emergence of Web Services, it is now possible to
define these resources as services and contribute them to the collaboration. The details
on how to model and define a resource as a service is outside the scope of this paper.

552 S. Nepal, J. Zic, and S. Chen

However, we refer readers to the implementation of storage and networking
infrastructures as services in [11] for further details.

Fundamentally, we maintain that collaborations are driven by policies, and this is
presented in the above formalization. Different organizations participating in the
collaboration each operate under their own set of policies. Furthermore, the
collaboration is built and operated under a set of policies defined for different entities
and activities. For example, a collaborator can define policies that determine who can
participant in the video editing activities. Similarly, a participant contributing
resources can specify a set of policies for their contributed resources. For example,
only project leaders can access the edited videos. In order to represent policies within
our framework, we define policy as follows.

<xs:element name="policies" type="ccdl:policiesType"/>
 <xs:complexType name="policiesType">
 <xs:sequence>
 <xs:element ref="ccdl:policy" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="policy" type="ccdl:policyType"/>
 <xs:complexType name="policyType">
 <xs:sequence>
 <xs:element name="PolicySet" type="xacml:PolicySetType"/>
 </xs:sequence>
 </xs:complexType>

Different Digital Right Management and access policy expression languages such

as XACML [24][25] can be used to describe policies.
One of the key elements specified in the requirements is resources. The

requirement of resources is fulfilled through contributions from the participating
parties. The contribution can be done at a specific activity level or at the collaboration
level. Also, the contributions need to satisfy the corresponding policies specified in
the requirement. Therefore, the contribution of the resources by participants depends
on the resource needs specified in the requirements as well as the corresponding
policies. We define such contribution as follows.

<xs:element name="contributions" type="ccdl:contributionsType"/>
 <xs:complexType name="contributionsType">
 <xs:sequence>
 <xs:element ref="ccdl:contribution" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 <xs:element name="contribution" type="ccdl:contributionType" id="string"/>
 <xs:complexType name="contributionType">
 <xs:sequence>
 <xs:element ref="ccdl:contributor"/>
 <xs:element ref="ccdl:activitityName" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element ref="ccdl:resourceName" minOccurs="0"
 maxOccurs="unbounded"/>
 <xs:element ref="ccdl:policies" minOccurs="0" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 A Contract Language for Service-Oriented Dynamic Collaborations 553

As mentioned earlier, in the Web Services and SOA environment, such resources
can be contributed as services, i.e., Resource-as-a-Service (RaaS).

The contributed resources are negotiated among participants. One of the important
requirements of the dynamic collaboration is that all participants must agree with each
others’ contributions. In the Web Services environment, this means agreement with
the contributed services. We define agreement using a digital signature as shown
below.

<xs:element name="agreements" type="ccdl:agreementType"/>
 <xs:complexType name="agreementTypeType">
 <xs:sequence>
 <xs:element ref="ds:Signature" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

Fig. 3. Different phases of the contract in a runtime environment

4 WS-CCDL Runtime Framework

In the above section, we define a contract language along with its associated elements.
The contract goes through the different phases in its lifecycle as shown in Figure 3.
This section describes the four different phases of the contract namely negotiation
phase, validation phase, instantiation phase and termination phase.

Negotiation Phase

During this phase, the participants negotiate the terms and conditions of the
collaboration, including contributed resources and policies attached to them. Each
party may contribute a set of resources along with associated access policies. A party
in the collaboration may, however, disagree with the terms and conditions of the
collaboration or some particular contributed resources or access policies. In such
scenarios, participants may need to re-negotiate the content in the contract. This is
facilitated using contract negotiation algorithms.

554 S. Nepal, J. Zic, and S. Chen

A set of Web Services standards for negotiations have been proposed for this
purpose: WS-AgreementNegotiation [7], WS-Negotiation [8], and WS-Agreement
[9]. WS-Negotiation is a domain independent language for generating agreements
between a service provider and a service consumer. WS-Negotiation only considers
two parties: a provider and a consumer. WS-Negotiation supports a simple one to one
negotiation protocol. Though the objective of WS-Agreement is to have a language
and a protocol that creates agreements, publicizes a service offer and provides a
monitoring service, it also specifies a very simple negotiation protocol. As this
protocol does not allow offer refinement, WS-AgreementNegotiation was defined so
as to overcome this shortcoming by allowing negotiation and re-negotiation of
agreements between two parties.

As mentioned earlier, these work well in two party scenarios but are not suited for
use in multi-party, multi-service negotiation in the context of dynamic collaborations.
We have defined protocols for dynamic collaboration in [12]. The unique
characteristic of such protocols is that all parties must agree with each others’
contributions. The negotiation phase ends when the contract meets this characteristic
and results in an agreed contract. An agreed contract is such all parties have seen the
final contributions from all other parties and all have agreed with it.

Validation Phase

During this phase, the agreed contract is validated against two criteria first of all, and
if both are successful, a determination is then made whether the collaboration is
instantiable or not.

The first criterion is to check whether the resources required for the collaboration
as well as activities are met by the contributions made by the participants. Contributed
resources can be categorized into the following two broad categories:

• Collaboration specific – includes resources contributed to the whole
collaboration and not tied to a specific activity.

• Activity specific – includes resources contributed for specific activities.

That means resources specified for the collaboration can be used for a particular
activity if the resources contributed for an activity do not satisfy the requirements
specified for that activity. We also need to ensure that the resource satisfaction for a
contract meet the policy conditions. For example, if a printer is available for a week
and the collaboration requires the printer for one month, then the contributed resource
can not meet the required resource. We define this check as follows. The contract is
said to be resource satisfied if the contributed resources meet all the resource
requirements of the contract under the given policy.

The second criterion is to check whether different set of policies specified within
the contract conflict with each other or not. Policies are specified at the level of
requirements, participants, resources, activities and contributions. Some of these
policies may conflict with each other. For example, a policy may state that
participants can access all information related to the collaboration at the requirement
level, but the policy specified at the contribution by a participant may prevent certain
participants accessing some information. The policies need to be checked and any
conflicts arises need to be resolved. The final set of policy must satisfy the

 A Contract Language for Service-Oriented Dynamic Collaborations 555

requirements for the collaboration and activities within it. We define this process
formally as follows. The contract is said to be policy satisfied if the policies expressed
in the contract are not conflicting each other.

After the successful checking of the two criteria above, we need to check whether
the contract is instantiable or not. We define the contract is instantiable if it is agreed
by all participant and satisfies both policy and resource requirements. It is important
to note that the above definition does not cover some of the technical aspects such as
all resources specified must have a valid address and they are online. These aspects
are dynamic and included in the monitoring of contract, which is outside the scope of
this paper.

Instantiation Phase

Once the contract has been validated, it is then interpreted by an engine (the
instantiation engine) that results in an instantiation of the collaboration. The
instantiation engine extracts the information from the contract and sends to relevant
services. For example, the network specific requirements are extracted and sent to the
network service provider. Once the collaboration is established (and has not been
terminated), the contract is said to be active. The contract is active if it has been
successfully instantiated and has not been terminated.

Termination Phase

The last phase of the runtime environment is called termination, where the
collaboration is terminated as per contract. We have previously defined one such
termination protocol using WS-BusinessActivity [12]. Other distributed termination
protocols can be used. There are a lot of activities that need to be performed at the
time of termination such as logging, archiving and destroying. The agreed policies for
termination determine what actions need to be taken for which piece of information.
The contract is said to be terminated if all parties agreed to terminate the instantiated
collaboration and the termination protocol is run successfully.

We discussed the four different phases that the contract goes through during a
runtime environment. The discussion of these phases above also raises a number of
research questions such as: determination of both resource and policy satisfaction, the
definition of policies for a party to join an already existing collaboration, and how
exceptions are handled, such as a partner failing to comply with an agreement. We are
actively perusing these issues as part of the future works.

5 Connectivity Service

This section describes a prototype contract based connectivity service that we have
implemented and deployed in order to demonstrate the usage of the proposed contract
language in dynamic collaborations. In our prototype system, we have made an
assumption that this contract service will be provided by a trusted third party, whose
sole business is to provide secured, managed network connectivity to clients for the
purpose of collaboration. One of the main features of this service is that the
connectivity is abstracted to the user level so that any number of users can connect to

556 S. Nepal, J. Zic, and S. Chen

each other by using computer connected to the Internet and can use any collaborative
applications. The connectivity between collaborators is established when they agree to
the terms and conditions specified in the contract.

Figure 4 shows the overall architecture for the implemented prototype connectivity
service driven by contract. Our architecture consists of two services: the contract
service itself, and a VPN service. The contract service provides the management of
the contract and includes a registration and discovery service for the use of its clients.
The VPN service is used by the contract service provider to provide connectivity once
the contract is agreed. All these services as well as users (from different
administrative domain such as home office, university and government office) are
connected to the Internet. Initially, all of them communicate with each other using an
open Internet connection. When all users agreed with the contract and the contract is
deployed into the Internet, a dynamic Intranet is created (the intranet is referred to as
dynamic because the connectivity is established at the user level rather than the
machines used by the users). We next describe the major implemented components of
the architecture and the interactions among them.

Initially, each collaborator resides within its own administrative domain and may
be unknown to the other collaborators. In order to initiate the collaboration, each
collaborator needs a contract service. All collaborators first subscribe to the contract
service so that they can either initiate or be invited to join into a dynamic
collaboration. The collaborators use a service to register themselves and make them
available for collaborations. Once the registration process is completed, the
collaborator then downloads and installs a client application which then enables them
to process the contract through each of the negotiation, validation, instantiation and
termination phases described above.

Fig. 4. Overall architecture of eContract service for dynamic collaborations

U N I V E R S I T YU N I V E R S I T Y

Internet

Dynamic Intranet

Collaborator A
[Home Office]

Collaborator B
[University]

Collaborator C
[Govt Office]

Contract Service
[IT Enterprise]

VPN Service
[IT Enterprise]

 A Contract Language for Service-Oriented Dynamic Collaborations 557

(a) inviting collaboration participants

(b) Signed eContract to be deployed

Fig. 5. The screenshots of the eContract prototype system

We next describe the process of creating a dynamic collaboration between three
parties A, B and C. Suppose A wishes to set up a dynamic collaboration with B and C
and use a document sharing application called Virtual Terminal (VT). First, all three

558 S. Nepal, J. Zic, and S. Chen

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<econtract econtractId="26" Version="1.0" xmlns:ns2="urn:oasis:names:tc:xacml:2.0:policy:schema:os"
xmlns="urn:ccdl:v1" xmlns:ns4="http://www.w3.org/2000/09/xmldsig#"
xmlns:ns3="http://www.w3.org/2004/12/addressing">
 <participants>
 <participant name="Nerolie Oakes">
 <identity id="Ner005">Suppressed</identity>
 <role>initiator</role>
 <organisation name="CSIRO"/>
 <addressing>
 <email emailaddress="Nerolie.Oakes@csiro.au"></email>
 </addressing>
 <section>Software Engineer</section>
 </participant>
 <participant name="Lingbo.Jiang">
 <identity id="Lin089">Suppressed</identity>
 <role>participant</role>
 <organisation name="CSIRO ICT Centre"/>
 <addressing>
 <email emailaddress="Lingbo.Jiang@csiro.au"></email>
 </addressing>
 <section>Software engineer,c/c++,java,perl,linux,macosx</section>
 </participant>
 </participants>

<requirements>
 <collaborationContext time="2008-05-16T10:59:58+10:00" name="To go through the routine"
date="2008-05-16T09:59:58+10:00"/>
 <resources>

<resource>
 <resid id="http://www.xmlspy.com">0002</resid>
 <resname>VT Client</resname>
 </resource>
 </resources>
 <requirements>

<contributions>
 <contribution>
 <id>Lin089</resid>
 <resname>VT Client</resname>

 </contribution>
 <contribution>
 <id>Ner005</resid>
 <resname>VT Client</resname>

 </contribution>
 </contributions>

<agreements>
 <ns4:Signature>
 <ns4:SignedInfo>
 <ns4:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>
 <ns4:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ns4:Reference URI="">
 <ns4:Transforms>
 <ns4:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </ns4:Transforms>
 <ns4:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

Fig. 6. An eContract signed by two participants in our prototype system

 A Contract Language for Service-Oriented Dynamic Collaborations 559

 <ns4:DigestValue>+llp4pVrVBr3h/RnIAdIXTDas+Y=</ns4:DigestValue>
 </ns4:Reference>
 </ns4:SignedInfo>
<ns4:SignatureValue>DZn8HWsXBtc5rUM9Os5SHWpOQ3/gcqGfO1FPtxwk+g8FnU7n3xztLsLubMu
St5BLbP…….</ns4:SignatureValue>
 <ns4:KeyInfo>
 <ns4:X509Data>

<ns4:X509SubjectName>CN=Ner005,OU=Unknown,O=Unknown,L=Unknown,ST=Unknown,C=Unkn
own</ns4:X509SubjectName>

<ns4:X509Certificate>WCZBfPsCl+7r2//Z76DiEFCrLZgDn0GYNPFBBZr2aY4V2MTSAy3xi......</ns
4:X509Certificate>
 </ns4:X509Data>
 </ns4:KeyInfo>
 </ns4:Signature>
 <ns4:Signature>
 <ns4:SignedInfo>
 <ns4:CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315"/>
 <ns4:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 <ns4:Reference URI="">
 <ns4:Transforms>
 <ns4:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
 </ns4:Transforms>
 <ns4:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <ns4:DigestValue>+llp4pVrVBr3h/RnIAdIXTDas+Y=</ns4:DigestValue>
 </ns4:Reference>
 </ns4:SignedInfo>

<ns4:SignatureValue>FlGysAmLkxw/oAFk6I2Y0yig/c3wctle+9pr8xvVpMAZv35DfGQ4nXB……….
</ns4:SignatureValue>
 <ns4:KeyInfo>
 <ns4:X509Data>

<ns4:X509SubjectName>CN=Ner005,OU=Unknown,O=Unknown,L=Unknown,ST=Unknown,C=Unkn
own</ns4:X509SubjectName>

<ns4:X509Certificate>MIICTTCCAbagAwIBAgIESCkMWjANBgkqhkiG9w0BAQUFADBrMRAwDg
Y……</ns4:X509Certificate>
 </ns4:X509Data>
 </ns4:KeyInfo>
 </ns4:Signature>
 </agreements>
</econtract>

Fig. 6. (continued)

collaborators must have previously and successfully registered themselves with the
contract service, and download and install the client application. Collaborator A runs
the client application and initializes contract by first discovering, and then adding the
collaborators B and C as participants as shown in Figure 4 (a).

As an initiator, collaborator A also specifies the resources required for the
collaboration such as the VT application, as well as any of A’s contributed resources in
the contract. Once the requirement and contribution are specified, the contract is

560 S. Nepal, J. Zic, and S. Chen

submitted to the contract service which will then go through the different phases as
discussed earlier. During the negotiation phase, collaborators B and C will be informed
that they are invited to participate in the collaboration and can negotiate the resources
with A. They can decide to accept or decline the invitation. If they decide to join the
collaboration, each can negotiate the content in the eContract with all the other
participants following a negotiation protocol [12]. Once all participants agree upon and
sign the eContract as shown in Figure 4(b), the eContract becomes agreed contract.

The agreed contract then goes through the validation phase, where resources and
policies are checked. It should be noted that we have not yet implemented the
validation part in our prototype system and for the purposes of this prototype, we
assume that all agreed contracts are valid. The validated contract is then executed
during the insanitation phase. As part of the execution, the contract service extracts
the necessary information and sends it to the VPN service. The VPN service then
establishes a dynamic intranet whose behavior is determined by the defined and
agreed upon contract between the participants. The VPN service then automatically
sends and installs a VPN driver into each of the participants’ machines, and if
required, dispatches the VT application as well. The collaborators are then ready to
use VT to share documents and files. Figure 5 shows an example contract generated
by our implemented system. Here, the aim is to establish network connectivity,
allowing the collaboration using the VT between the participants to proceed. When
the collaboration is completed and all parties agreed to terminate the contract, a
termination protocol is executed resulting in the contract being terminated.

In our prototype, there are three major components that are implemented as
follows. We use Sun Glassfish v2.0 to implement the contract Web Service with the
support of MySQL v5.122 as a backend database. The VPN server was implemented
using OpenVPN v2.1. The client application is implemented using Sun’s JDK 1.6,
including Swing and JAXB.

Through the implementation of above discussed connectivity service, we have
shown how one can use our contract language as a template to (a) capture the
requirements of the collaboration, (b) contribute resources as services in the
collaboration, (c) negotiate resources for the collaboration, (d) capture agreements
between collaborators, and (e) instantiate and terminate the collaboration.

6 Conclusions and Future Work

The paper presented a contract language for defining a context for a dynamic
collaboration between partners. The language is used to generate the templates that
can be used to automatically configure the collaboration. The templates, which we
refer as electronic contracts, are also used to negotiate resources (that can be
expressed as Web Services) and policies. Hence, the language is called Web Service
Collaborative Context Definition Language (WS-CCDL). The language has been
defined using XML Schema. We have also developed a service-oriented prototype
system for an instance of a collaborative environment to provide connectivity service
to the collaborating partners. The prototype system provided us evidence that it is
feasible to develop a contract driven dynamic collaboration using our proposed

 A Contract Language for Service-Oriented Dynamic Collaborations 561

language. We have finally devised a runtime framework for the contracts consisting
four phases: negotiation, validation, instantiation and termination.

The proposed language in its current form only captures some core elements for
negotiation, validation and instantiation. We plan to extend the language and propose
a Quality of Service (QoS) model for it. The QoS model is expected to captures
obligations in terms of security, privacy, trust, performance and availability. We then
plan to propose a mechanism for monitoring those obligations. With regard to
validation of contract, we are also working on defining formal models as well as
algorithms for checking resource and policy satisfactions so that all participants’
requirements needed for the completion of tasks within the collaboration are met.
Finally, we are also looking at the specification of different termination protocols
within the contract similar to that of negotiation and agreement protocols.

References

[1] Mowshowitz, A.: Virtual Organization: A vision of management in the information age.
The Information Society 10(4), 267–288 (1994)

[2] Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International Journal of High Performance Computing
Applications 15(3), 200–222 (2001)

[3] Globus, http://www.globus.org/grid_software/monitoring/
[4] Yamazaki, Y.: Dynamic Collaboration: the model of new business that quickly responds

to changes in the market through The integrated IT/Network Solutions provided by NEC.
NEC Journal of Advanced Technology 1(1), 9–16 (2004)

[5] Handley, H.A.H., Wentz, L., Levis, A.H.: Continuity in Dynamic Coalition Operations.
In: Proc. 7th Int’l Command and Control Research and Technology Symposium,
Monterey, CA (June 2002)

[6] Chan, J., Rogers, G., Agahari, D., Moreland, D., Zic, J.: Enterprise Collaborative
Contexts and their Provisioning for Secure Managed Extranets. In: Proc. of IEEE
WETICE 2006, pp. 313–318 (2006)

[7] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J., Rofrano, J.,
Tuecke, S., Xu, M.: Web Services Agreement Negotiation Specification (WS-
AgreementNegotiation), version 1,

 http://forge.ogf.org/sf/go/doc6092?nav=1
[8] Hung, P.C.K., Li, H., Jeng, J.J.: WS-Negotiation: An overview of research issues. In:

Proc. of the 37th Hawaii International Conference on System Sciences (2004)
[9] Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Heiko, L.: WS-Agreement

Specification (2005),
 http://www.gridforum.rg/Meetings/GGF11/Documents/
 draft-ggf-graap-agreement.pdf2005

[10] Ludwig, H., Keller, A., Dan, A., King, R.P., Franck, R.: Web Service Level Agreement
(WSLA) Language Specification (2003),

 http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf
[11] Nepal, S., Chan, J., Chen, S., Moreland, D., Zic, J.: An Infrastructure Virtualisation SOA

for VNO-based Business Models. In: IEEE International Conference on Services
Computing (SCC 2007), July 2007, pp. 41–51 (2007)

562 S. Nepal, J. Zic, and S. Chen

[12] Nepal, S., Zic, J., Chan, J.: A distributed Approach for Negotiating Resource Contributions
in Dynamic Collaboration. In: The Eight International Conference on Parallel and
Distributed Computing, Applications and Technologies (PDCAT 2007), December 3-6,
2007, pp. 82–86 (2007)

[13] Chen, S., Nepal, S., Chan, J., Moreland, D., Zic, J.: Virtual Storage Services for Dynamic
Coalitions. In: Proceedings of IEEE International Workshops on Enabling Technologies:
Infrastructures for Collaborative Enterprises, WETICE (2007)

[14] Khurana, H., Gligor, V.D.: A Model for Access Negotiations in Dynamic Collaborations.
In: Proc. of the 13th IEEE WETICE, 2004, pp. 205–210 (2004)

[15] Freudenthal, E., Pesin, T., Keenan, E., Port, L., Karamcheti, V.: dRBAC: Distributed
Role-Based Access Control for Dynamic Collaboration Environments. In: Proc. of the
ICDCS 2002, pp. 411–420 (2002)

[16] Patz, G., Condell, M., Krishnan, R., Sanchez, L.: Multidimensional Security Policy
Management for Dynamic Collaborations. In: DARPA Information Survivability
Conference and Exposition (2001)

[17] Keller, A., Ludwig, H.: Defining and Monitoring Service-Level Agreements for Dynamic
e-Business. In: 16th System Administration Conference, pp. 189–204 (2002)

[18] Department of Education, Science and Training, Australia. An Australian e-Research
Strategy and Implementation Framework. Report, 4/2006

[19] Ma, D.: The Business Model of “Software-as-a-Service”. In: SCC 2007, pp. 701–702
(2007)

[20] Microsoft Enterprise Collaboration,
 http://download.microsoft.com/download/c/6/0/c6003d74-
 2f58-4868-a8ff-172576303864/CollaborationBizOverview.pdf

[21] Baltic eHealth,
 http://www.ehealthconference.info/
 StockholmConferenceBrochure.pdf

[22] Kentucky eHealth,
 http://ehealth.ky.gov/NR/rdonlyres/DE96BBFC-6AE5-4A80-
 BA62-44B1D233514C/0/PrivacySecurityFinalReport.pdf

[23] ECOSPACE, http://www.ip-ecospace.org/
[24] XACML, http://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=xacml
[25] EPAL,

 http://www.zurich.ibm.com/security/enterprise-privacy/epal/
[26] SecPAL, http://research.microsoft.com/projects/secpal/
[27] Kavantzas, N., Burdett, D., Ritzinger, G.: Web Services Choreography Description

Language, http://www.w3.org/TR/2004/WD-ws-cdl-10-20040427/
[28] Nepal, S., Zic, J., Chen, S.: WSLA+: Web Service Level Agreement Language for

Collaborations. In: IEEE International Conference on Service Computing (SCC), Hawaii,
USA, July 8-11 (2008) (to appear)

[29] Nepal, S., Zic, J., Chen, S.: WS-CCDL: A Framework for Web Service Collaborative
Context Definition Language for Dynamic Collaborations. In: IEEE International
Conference on Web Services (ICWS), Beijing, China, September 23-26 (2008)

	A Contract Language for Service-Oriented Dynamic Collaborations
	Introduction
	Background and Motivation
	WS-CCDL Framework
	WS-CCDL Runtime Framework
	Connectivity Service
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

