
Replication in Overlay Networks: A

Multi-objective Optimization Approach

Osama Al-Haj Hassan, Lakshmish Ramaswamy, John Miller, Khaled Rasheed,
and E. Rodney Canfield

Computer Science Department, University of Georgia,
Athens, GA 30602, USA

{hasan,laks,jam,khaled,erc}@cs.uga.edu

Abstract. Recently, overlay network-based collaborative applications
such as instant messaging, content sharing, and Internet telephony are
becoming increasingly popular. Many of these applications rely upon
data-replication to achieve better performance, scalability, and reliabil-
ity. However, replication entails various costs such as storage for holding
replicas and communication overheads for ensuring replica consistency.
While simple rule-of-thumb strategies are popular for managing the cost-
benefit tradeoffs of replication, they cannot ensure optimal resource uti-
lization. This paper explores a multi-objective optimization approach
for replica management, which is unique in the sense that we view the
various factors influencing replication decisions such as access latency,
storage costs, and data availability as objectives, and not as constraints.
This enables us to search for solutions that yield close to optimal values
for these parameters. We propose two novel algorithms, namely multi-
objective Evolutionary (MOE) algorithm and multi-objective Random-
ized Greedy (MORG) algorithm for deciding the number of replicas as
well as their placement within the overlay. While MOE yields higher
quality solutions, MORG is better in terms of computational efficiency.
The paper reports a series of experiments that demonstrate the effective-
ness of the proposed algorithms.

Keywords: Replication, Multi-Objective Optimization, Evolutionary
Algorithms, Greedy Approach.

1 Introduction

Overlay networks have evolved as scalable and cost-effective platforms for host-
ing several collaborative applications. Examples of overlay-based collaborative
applications include instant messaging [1], content sharing [2] and Internet tele-
phony [3]. However, the very fact that most of the overlays are formed from
personal computers rather than powerful servers implies that collaborative ap-
plications running on top of them have to constantly deal with a variety of re-
source limitations such as storage and bandwidth constraints. Furthermore, the

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 512–528, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

Replication in Overlay Networks 513

overlay networks experience significant churn with end-hosts constantly entering
and exiting the network.

For collaborative applications to yield acceptable quality of service (qos), it is
essential that the individual nodes of the system are able to access data-items in
an efficient, scalable, and reliable manner. Replication of data-item is known to
be an effective strategy for achieving better performance, scalability, and avail-
ability [4], and it has been utilized in a number of applications. However, data
replication does not come for free; it consumes various resources like storage
and network bandwidth. Replication imposes additional storage costs, and these
costs are especially high in environments comprising of memory-scarce devices
such as PDAs and cell phones [5]. Similarly, ensuring that replicas are consis-
tent imposes communication overheads [6]. Thus, designing replication strategies
involves balancing a variety of tradeoffs.

Two important questions in replicating data in overlay networks are: (1) How
many replicas of each data item should be maintained within the overlay?; and (2)
Where (on which nodes of the overlay) should these replicas be placed?. These two
related challenges are collectively referred to as the replica-placement problem.
Although replica placement in overlay networks has been previously studied
[7][8][9][10][11], very few of the existing strategies take a holistic view of the
various costs and benefits of replication. Many of them are limited by the fact
that they consider only a small number of performance parameters. Even the
ones that are sensitive to larger sets of performance factors, use simple rule-of-
thumb strategies to manage the various tradeoffs. These schemes fail to optimally
utilize the various resources available in the overlay.

In this paper, we propose a multi-objective optimization framework for the
overlay replica placement problem. Our framework is characterized by several
unique features. First, it takes into account several factors such as access latency,
storage costs and availability. Second, these factors are regarded as objectives for
optimization rather than constraints. This provides us with the advantage that
we can search for solutions that yield close to optimal values for these parame-
ters instead of just attempting to keep them within certain bounds. Third, our
framework is inspired by evolutionary computing paradigm, and each solution
is represented as a chromosome.

As a part of this framework, we propose two algorithms, namely, multi-
objective Evolutionary (MOE) algorithm and multi-objective Randomized Greedy
(MORG) algorithm. MOE algorithm is based upon the NSGA-II algorithm [13].
While MOE yields higher quality solutions, it is computationally intensive. To
mitigate this concern, we propose the novel MORG algorithm, which is not only
very efficient, but also yields solutions that are comparable in quality to those
produced by the MOE algorithm.

We have performed series of experiments to study the costs and benefits
of the proposed techniques. The results demonstrate the effectiveness of our
multi-objective optimization framework in determining the locations for placing
the replicas.

514 O.A.-H. Hassan et al.

2 Background and Related Work

Replication techniques for overlays have been an active area of research. master-
slave replication model has been adopted by several systems. For example, Sacha
and Dowling [7] utilize a gradient technique for designing a master-slave repli-
cation for peer-to-peer networks. Replica placement problem has also received
considerable research attention in recent years. In the Gnutella P2P system [2],
only the nodes which request and retrieve a data-item hold a copy of that ob-
ject. Freenet [8], however, allows replicas to be created on nodes other than
the ones that requested the data-item. Cohen and Shenker [9] propose the path
replication scheme, wherein replicas are placed along the path traversed by a
data request. They also discuss random placement scheme where the replicas
are placed on randomly chosen nodes in the overlay network. Some researchers
have also addressed the question of how many replicas of a given data-item need
to be maintained in the overlay. Proportional replication, wherein the number
of replicas of a data-item increase with its usage has been discussed by Lv et al.
[10]. They also contrast this scheme with a uniform replication scheme where the
same number of replicas is created for all data-items. Benayoune and Lancieri
[11] survey several replication techniques including the idea of replicating refer-
ences of data-items instead of the data-items themselves.

Some of the existing techniques optimize the number of created replicas [16],
while others optimize the locations in which to place replicas [17]; still others
optimize how often replicas should be updated [18]. However, many of these
techniques have the shortcoming that they only consider a limited set of param-
eters affecting the replication decision. The works by Loukopoulos and Ahmad
[12] has the same objective as ours. They design a genetic algorithm to find the
optimal replication strategy. In that work, two versions of the algorithm, a static
version and a dynamic adaptive version are proposed. However, they model the
problem as a single objective optimization problem. Specifically, they optimize
latency, while storage, bandwidth and other parameters are considered as con-
straints. One of the limitations of this approach is that it can only maintain
the constraint parameters within certain bounds, but cannot explicitly optimize
them. Further, their work did not take into account the reliability of the sys-
tem. Thus, we believe that there is a need for a holistic approach to the overlay
replica placement problem which not only takes all the important factors into ac-
count but also explicitly optimizes them. Motivated by this need, we propose the
MOE and MORG algorithms, both of which are based upon the multi-objective
optimization paradigm.

3 Architectural Overview

Our system is based upon unstructured P2P overlays. Unlike their structured
counterparts, unstructured overlays do not provide distributed hash table (DHT)
support. In these networks, content searching happens purely by ad-hoc messag-
ing among neighbors. In our architecture, a data-item and its replicas are viewed

Replication in Overlay Networks 515

Fig. 1. Logical tree of nodes hosting replicas

as a logical tree. We build a replication tree for each data-item in the system in
which the root would be the owner of the original copy of the data-item , and the
other nodes of the tree would have replicas. Fig. 1 illustrates the replication tree.
The replication tree is constructed using a scheme similar to the one proposed
by Zhang et al. [15].

When a node in the system wants to read a data-item it accesses the closest
replica of the data-item. However, updates of a data-item are always initiated at
root of the tree. A node that wants to update a data-item, sends it to the root,
which is then propagated down the tree-hierarchy. The root node as well as the
other nodes holding replicas collect various statistics such as the frequency at
which a replica is used, frequency at which the data-item is updated, ratio of
reads to writes for a data item, failure statistics of the node holding the replica,
and storage availability and utilization at each node. The information collected
at various nodes will be aggregated at the root of the tree. These statistics
will be fed into our optimization engine which produces solutions to the replica
placement problem, indicating which nodes should hold additional replicas and
which of the existing replicas need to be de-commissioned. The replication tree
is then modified accordingly. Fig. 2 illustrates the functioning of our system.

4 Problem Formulation

The problem on hand consists of optimizing a set of objectives, some of which
might be conflicting with one another. For example, achieving better latency
might require creating additional replicas. However, doing so would invariably
increase storage and consistency maintenance costs. Similarly, placing the repli-
cas on most stable nodes might not be ideal from latency minimization per-
spective. Multi-objective optimization deals with these conflicting objectives by
evolving a set of solutions that compromise these conflicting objectives.

The quality of solutions obtained by multi-objective optimization is inherently
dependent upon how well the objectives are formulated. In this section, we first
model each of the objectives following which we discuss their conflicts.

516 O.A.-H. Hassan et al.

Fig. 2. System functionality overview

4.1 Latency

Minimizing latency is important for any collaborative system. Minimizing la-
tency depends on utilizing high bandwidth channels, as high bandwidth chan-
nels yields lesser latency. Thus, it is better to avoid nodes with low-bandwidth
connections. Furthermore, if a node frequently accesses a data-item, then mini-
mizing its latency in retrieving the data-item should naturally take priority over
those nodes that occasionally access the same data-item. Taking these aspects
into account, we model the latency objective function D as the following:

D = R + W (1)

where

R =
n∑

i=1

m∑

j=1

E(i, sj) ∗ Z(sj)
B(i, H(sj))

∗ RP (i, sj) (2)

and

W =
n∑

i=1

m∑

j=1

(1−E(i, sj))∗ Z(usj)
B(i, O(sj)))

∗WP (i, sj)+
x∑

k=1

Z(usj)
B(O(sj), k)

∗WP (i, sj)

(3)
Where

R: Total read cost in the system
W: Total write cost in the system
i: index for nodes of the system

Replication in Overlay Networks 517

j: index for data-items of the system
x: index for nodes holding replicas of data-item j
sj : is the data-item for which we are trying to find read cost.
E(i,sj): equals to 0 if data-item j exists on host i, otherwise it equals to 1
H(sj): is the machine that hosts replica of data-item j
RP(i, sj): is the percentage of read requests coming from node i asking for data-
item j
WP(i, sj): is the percentage of write requests coming from node i updating data-
item j
usj: is the updated version of data-item j
O(sj): is the owner of data-item j
B(a,b): Minimum bandwidth along the path from node a to node b
Z(s): is the size of the data-item ’s’

We assume that the system is fully active, which means that each node in the
system attempts read and write requests, each node according to its read requests
percentage (RP) and write requests percentage (WP). Basically, what happens
in a read operation is that a data item needs to be transferred in chunks to the
requester; this is determined by dividing the size of the data item on the minimum
bandwidth along the path from source to requester. With regard to write requests,
the first part of the equation before the plus sign models transferring the data item
in chunks to its master copy owner and the second part of the equation after the
plus sign models the propagation of the data item in chunks from the master copy
owner to all nodes holding a replica of the data item.

4.2 System Reliability

Network churn is an inherent characteristic of a P2P overlay. While nodes con-
tinuously enter and exit the network, some nodes are more stable than others.
For example, machines that are connected through wireless links are more likely
to disconnect from the network than those that are on wired connections. Natu-
rally, it is preferable to place replicas on more stable nodes. In our system, replica
reliability is expressed through the failure probability of the node hosting it, and
reliability maximization is achieved by minimizing replica failure probability.
Hosts failure probabilities are drawn randomly and they can be updated by
tracking the history of hosts in the system. Reliability objective function SR is
modeled through the following function:

SR =
n∏

i=1

m∏

j=1

E(i, sj) ∗ F (i) (4)

Where
i: index for nodes of the system
j: index for data-items of the system
E(i,sj): equals to 0 if data-item j exists on host i, otherwise it equals to 1
F(i): failure probability of node i

518 O.A.-H. Hassan et al.

4.3 Storage

In a heterogeneous network, nodes can have different storage capacity con-
straints. Usually each node has an upper limit on the storage that can be utilized
by the overlay applications. This makes our objective here is to minimize stor-
age consumption on each node of the overlay taking into consideration the total
storage available at the node. Storage objective function SC is given by the
following:

SC =
n∑

i=1

SC(i) +
m∑

j=1

(1 − E(i, sj)) ∗ Z(sj) (5)

Where
i: index for nodes of the system
j: index for data-items of the system
SC(i): is the storage consumption on node i.
E(i,sj): equals to 0 if replica j exists on host i, otherwise it equals to 1
Z(s): is the size of the data-item ’s’

4.4 Conflicting Objectives

Multi-objective optimization is most appropriate when the objectives conflict.
If there are no conflicts, we will end up with one solution. Conflict among ob-
jectives results in a set of compromise solutions. Basically, the conflict in our
system occurs whenever we have good values for one objective and bad values
for another objective. If we have good values in both objectives or bad values
in both objectives, then these are the best case and the worst case scenarios
respectively, which do not usually exist in overlay networks. Two types of con-
flicts exist in our system. The first conflict is latency-reliability conflict. The
second conflict is storage-reliability conflict. The former conflict occurs because
as more replicas are installed in the system, latency tends to increase and relia-
bility tends to increase. Latency tends to increase as more replicas are installed
in the system because the propagation update cost resulted by write requests
tends to overwhelm read cost savings resulted by read requests. For sure, relia-
bility increases as more replicas are installed in the system because whenever a
failure occurs, the system functionality is preserved because of the replicas we
have. Fig. 3 shows conflicts between objectives. The cross mark indicates that a
conflict does not exist and a tick mark indicates that a conflict exists.

Fig. 3. Conflicts between objectives

Replication in Overlay Networks 519

Fig. 4. Binary representation of a replication scheme

5 Our Approach: Multi-objective Optimization

Our approach depends on taking the historical system information and feed it to
an engine where we try not only to keep latency, reliability, and storage within
constraints, but in addition we try to optimize latency, reliability, and storage
in order to find different trade offs between these objectives. Since we are using
more than one objective, we are doing multi-objective optimization.

5.1 Solution (Chromosome) Representation

A solution in our system is a combination of nodes that will hold replicas of
a given data-item. We use a binary representation in which a value of 1 means
hosting a replica and the value of zero means no hosting of a replica. Fig. 4 shows
the binary representation of one chromosome for a system of n nodes and m data-
items. The first row has nodes labels, the second row has data-items labels, and
the third row has the general binary representation of the chromosome.

5.2 Multi-objective Evolutionary (MOE) Optimization

In this technique, we apply multi-objective optimization to the problem at hand.
Specifically, we use an existing algorithm called NSGA-II [13]. Multi-objective
optimization is one of several techniques in evolutionary computing. Evolution-
ary computing is the branch of science that takes randomness as a mean of prob-
lem solving; it also considers solutions of the problem as chromosomes. Mating
between different chromosomes could yield a better breed or better solutions.
Using evolutionary computing techniques is very helpful in situation where the
search space of a problem is huge; searching this huge space in sequential search
techniques takes exponential times. Evolutionary computing jumps in the search
space in such away that explores areas in which a potential good solution can
be found. Many of evolutionary computing techniques rely on operators such
as crossover operator which is used for mating between chromosomes, muta-
tion operator which is used to alter genes of the chromosomes, parent selection
operators which is responsible of choosing chromosomes for mating. Doing the
mating process continues over and over until specific conditions are met such as
accuracy of solution or no change over the best solution.

NSGA-II Multi-objective Optimization. This algorithm is a low compu-
tation, elitist approach, parameter-less niching, and simple constraint handling
strategy algorithm. A non-dominated based sorting technique is used in the

520 O.A.-H. Hassan et al.

algorithm. Furthermore, a selection operator that selects parents based on fit-
ness and spread of mating pool members is adopted. Having solutions of the
replication problem as chromosomes, the algorithm selects solution for mating
from a set of previously initialized solution set, the chosen solutions mate to-
gether and produce more solutions, the new solutions are added to the solution
set, the solution set is cut to fronts based on comparisons between solutions,
a solution is better than another if it dominates the other solutions. Solution
’A’ dominates solution ’B’ if solution ’A’ is better or equal to solution ’B’ in
terms of all criterions, namely, delay, reliability, and consumed storage. For our
system, we care about the first front which contains the set of solutions that
are not dominated by any other solutions. This process continues until a specific
number of fitness evaluations are attempted. It can also be set to continuous
execution until a specific time expires or until there is no further improvement.

The core part of NSGA-II algorithm is listed below. The intuition behind using
this algorithm is the ability to find several fronts of solutions using ranking and
crowding. This will give us a variety of solutions, which is done in lines 6,7, and 8
of the while loop. In our experiments we used binary representation of solutions,
binary tournament selection, single point crossover for mating with a probability
of 0.9 to perform crossover and bit flip mutation for mutation operation with a
probability of (1/number of nodes) to make mutation.

The complexity of this algorithm is O(MN2). Where M is number of objectives
and N is the population size.

Chore loop of NSGA-II multi-objective evolutionary approach
set initial population size pSize
set maximum number of evaluations maxEval
for (i iterations from 1 to pSize)
initialize a solution Sol i
calculate Soli fitness
add soli to population pool
evaluations = evaluations + 1

end-for
while (evaluations < maxEvaluations)
select parent P1 from population pool
select parent P2 from population pool
perform crossover between P1 and P2 and get child C1,C2
evaluate C1 fitness and C2 fitness
add C1, C2 to population pool
perform ranking on population pool
assign crowding distance to individuals of population
get the front of individuals of the population pool
add the front to the solution set solSet
evaluations = evaluations + 2

end-while
return solSet

(Chore loop of NSGA-II multi-objective evolutionary approach)

Replication in Overlay Networks 521

5.3 Multi-objective Randomized Greedy (MORG) Optimization

One of the characteristics of the evolutionary multi-objective approach is that it
takes significant time to converge. So, we need algorithms that can converge in
reasonable amount of time. In general, the greedy algorithms are good candidates
when it comes to fast execution. Ordinary greedy algorithms do not use domi-
nance as criteria of deciding the best among individuals. So, we use dominance
to drive the greedy decisions. Also, greedy algorithms generate one solution. But,
in our system, the notion of conflicts between objectives implies that there is no
one best solution, so we use a multiple random starting points to generate differ-
ent solutions. A pseudo code is listed below for the multi-objective randomized
greedy approach. The intuition behind using this algorithm is its fast execution
time which could be necessary sometimes if we need to generate quick solutions
when the network is not in a good shape. The uniqueness of this algorithm re-
lies in the several starting points that give us a variety of solutions and relies
in the use of dominance as criteria of comparing solutions. The first for loop
of the algorithm generates different starting points to generate solutions from.
Each starting point is basically a node in the system. In each starting point,
the algorithm considers replicating on neighbors. Here, two cases may happen, if
replicating on any of the neighbors does not dominate the current solution, then
the current solution is the final solution. Otherwise, we replicate on one of the
neighbors which dominate the current solution and the process will be repeated
from that neighbor until no further improvement can be found.

Multi-objective randomized greedy approach

set number of desired solutions solDesired
for (n iterations from 1 to solDesired)
current node currNode = random node
initialize current solution currSoln by having 1’s on
data-item owners positions.

for(i iterations from 1 to number of data-items)
// Tests if replicating data-item i on currNode is better
than current solution

testResult = dominanceTest(currSoln,currNode,i)
if (testResult = 1)

add replicating data-item i on node currNode to currSoln
end-if
progress=true
while (progress=true)

progress=false
neb = neighbor list of currNode
solk is the solution coming from replicating data-item i
on node nebk

// Tests if replicating data-item i on currNode is
better than current solution

testResult = dominanceTest(currSoln,nebk,i)

522 O.A.-H. Hassan et al.

if (testResult = 1)
save the best nebk of the neighbors in terms of
dominance
progress = ture

end-if
end-while

end-for
add soln to set of final solution solSet

end-for
return solSet

(Multi-objective randomized greedy approach)

6 Experiments and Results

6.1 Experimental Setup

The code we used for NSGA-II implementation is available on jMetal [14] which
is an object-oriented java-based framework that eases the development, test-
ing, and working with metaheuristics for solving multi-objective optimization
problems (MOPs). Our experiments were done over unstructured peer-to-peer
overlay with 50, 75 and 100 nodes and 1 data-item. Experiments can be extended
to incorporate larger numbers of data-items. In each experiment we study the
trade-off between two factors, because it is difficult to clearly visualize the results
if several factors are simultaneously varied in a single experiment.

50 100 150 200 250 300
10

−20

10
−15

10
−10

10
−5

10
0

Latency

R
el

ia
bi

lit
y

Pareto front for Latency VS Reliability (50 Nodes)

MOE
MORG 15% init
MORG 30% init
MORG 45% init
MORG 60% init

Fig. 5. Pareto front of latency VS reliability (50 Nodes)

Replication in Overlay Networks 523

100 200 300 400 500 600 700
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Latency

R
el

ia
bi

lit
y

Pareto front for Latency VS Reliability (75 Nodes)

MOE
MORG 15% init
MORG 30% init
MORG 45% init
MORG 60% init

Fig. 6. Pareto front of latency VS reliability (75 Nodes)

300 400 500 600 700 800 900 1000 1100
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

Latency

R
el

ia
bi

lit
y

Pareto front for Latency VS Reliability (100 Nodes)

MOE
MORG 15% init
MORG 30% init
MORG 45% init
MORG 60% init

Fig. 7. Pareto front of latency VS reliability (100 Nodes)

6.2 Latency-Reliability Tradeoff

Fig. 5, 6 and 7 show the pareto front of latency against reliability in experiments
that involved 50, 75, 100 nodes respectively. latency values are better when they
are low, and because reliability is expressed in terms of node failures, lower
failure values mean better reliability. It is clear how the MOE approach gives
a variety of solutions that include a trade off between latency and reliability.
The system administrator can choose a solution based on the network status.
For example, if the network is not reliable because of nodes departures, he can
pick a replication scheme that increases network reliability. If the network suffers

524 O.A.-H. Hassan et al.

from high latencies, a replication scheme with low latency is good. The MORG
approach gives good values based on the percentage of nodes that get initialized
with replicas in advance of running the algorithm, but still, it does not give as
good values as MOE approach. It is good to use MORG when the network is in
a critical condition that needs a quick solution.

6.3 Storage-Reliability Tradeoff

Fig. 8, 9 and 10 show the pareto front of available storage against reliability
in experiments that involved 50, 75, 100 nodes respectively. Available storage

7.65 7.7 7.75

x 10
6

10
−20

10
−15

10
−10

10
−5

10
0

Storage

R
el

ia
bi

lit
y

Pareto front for Storage VS Reliability (50 Nodes)

MOE
MORG 15% init
MORG 30% init
MORG 45% init
MORG 60% init

Fig. 8. Pareto front of storage VS reliability (50 Nodes)

0 2 4 6 8 10 12 14

x 10
4

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

Storage

R
el

ia
bi

lit
y

Pareto front for Storage VS Reliability (75 Nodes)

MOE
MORG 15% init
MORG 30% init
MORG 45% init
MORG 60% init

Fig. 9. Pareto front of storage VS reliability (75 Nodes)

Replication in Overlay Networks 525

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

x 10
5

10
−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

Storage

R
el

ia
bi

lit
y

Pareto front for Storage VS Reliability (100 Nodes)

MOE
MORG 15% init
MORG 30% init
MORG 45% init
MORG 60% init

Fig. 10. Pareto front of storage VS reliability (100 Nodes)

values are better when they are high, reliability are expressed in terms of node
failures, so lower failure values means better reliability. It is clear how the MOE
approach gives a variety of solutions that include a trade off between available
storage and reliability. The system administrator can choose a solution based on
the network status. For example, if the network is not reliable because of nodes
departures, he can pick a replication scheme that increases network reliability.
If the network nodes suffer from lack of storage, then the priority changes to
selecting a replication scheme with high available storage. The MORG approach

50 Nodes 75 Nodes 100 Nodes
10

0

10
2

10
4

10
6

10
8

10
10

Number of Nodes

M
ili

s
e
c
o
n
d
s

Execution time of Delay VS Reliability experiment

MORG
MOE

Fig. 11. Execution time for MOE and MORG in a latency vs reliability experiment

526 O.A.-H. Hassan et al.

gives good values based on the percentage of nodes that get initialized with
replicas in advance of running the algorithm, but still, it does not give as good
values as MOE approach. It is good to use MORG when the network is in a
critical condition that needs a quick solution.

6.4 Execution Time

Fig. 11 shows the execution time for the 2 algorithms in the 3 experiments.
The downside for the multi-objective evolutionary approach is the long time it
needs to give us good results; this is why we choose to run it overnight when
the network activity is low. Nevertheless, MOE gives better results than MORG
approach with respect to execution time.

7 Discussion

In [12], the authors deal with the replication problem as a single objective opti-
mization; they optimize latency taking into consideration satisfying constraints
related to some parameters like storage availability. Dealing with these param-
eters as constraints will ensure that the constraints are met. But they did not
find the best value for those parameters. This is not the right approach. A jus-
tification of that is the following. In many cases, nodes of the system are not
dedicated to a specific service, and they might host different services. Those
services might consume nodes resources such as storage, each node according to
its behavior. At some point, the system could suffer from lack of storage, which
means that storage in this case is a vital resource, and we should maximize it as
much as possible instead of keeping it under a certain level using a constraint.
This is why the multi-objective optimization approach is better than the single
objective genetic algorithm approach. If we are in a situation where the network
is in a critical condition that requires a quick solution, then the best approach
to be used is MORG. Sometimes, a system can have low traffic during certain
overnight hours, and in this case the best approach to choose is MOE because
of the wide variety of solutions that give us the best optimization for our objec-
tives. Since the multi-objective evolutionary approach takes long execution time,
one thing to be done is to use forecasting techniques that help us to estimate
a good time to execute the algorithm instead of executing the algorithm regu-
larly. Also, in cases where the system administrator is monitoring the network,
he can simply execute the algorithm whenever he finds a necessity to do so and
this can minimize the number of times in which the multi-objective evolutionary
algorithm needs to be executed.

8 Conclusion

While many overlay-based collaborative applications rely upon data-replication
for achieving better scalability and performance, data replication also involves
various overheads. Replica placement is one of the key problems in overlay-based

Replication in Overlay Networks 527

replication schemes. This paper proposes a novel multi-objective optimization
approach for replica-placement in an overlay. One of the key strengths of our
approach is that we view various factors influencing replication decisions such as
access latency, storage costs, and data availability as objectives, and not as con-
straints, which allows us to search for solutions that optimize these parameters.
Specifically, we propose two multi-objective optimization algorithms. The multi-
objective evolutionary (MOE) algorithm is based on the NSGA-II algorithm,
and it has the advantage of providing us with very high quality solutions albeit
a longer execution time. On the other hand, multi-objective randomized greedy
(MORG) algorithm is characterized by its superior computational efficiency, and
it yields solutions that are of comparable quality. We report several experiments
to study the effectiveness and performance of the proposed algorithms.

References

1. Minar, N., Hedlund, M., Shirky, C., O’Reilly, T., Bricklin, D., Anderson, D., et al.:
Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly Media
Inc., Sebastopol (2001)

2. Gnutella Protocol Specification,
www9.limewire.com/developer/gnutella_protocol_0.4.pdf

3. Baset, S., Schulzrinne, H.: An Analysis of the Skype Peer-to-Peer Internet Tele-
phony Protocol. In: 25th IEEE International Conference on Computer Communi-
cations, Spain, pp. 1–11 (2006)

4. Yu, H., Vahdat, A.: The Costs and Limits of Availability for Replicated Services.
In: 18th ACM symposium on Operating systems principles, Canada, pp. 29–42
(2001)

5. Teuhola, J.: Deferred maintenance of replicated objects in single-site databases.
In: 7th International Workshop on Database and Expert Systems Applications,
Finland, p. 476 (1996)

6. Chun, B., Dabek, F., Haeberlen, A., Sit, E., Weatherspoon, H., Kaashoek, M.F.,
Kubiatowicz, J., Morris, R.: Efficient replica maintenance for distributed storage
systems. In: 3rd Symposium on Networked Systems Design and Implementation,
California, p. 4 (2006)

7. Sacha, J., Dowling, J.: The Physiology of the Grid: an Open Grid Services Archi-
tecture for Distributed Systems Integration. In: Databases, Information Systems,
and Peer-to-Peer Computing, International Workshops, pp. 181–184. IEEE Press,
New York (2005)

8. Clarke, I., Sandberg, O., Wiley, B., Hong, T.W.: Freenet: A distributed anonymous
information storage and retrieval system. In: ICSI Workshop on Design Issues in
Anonymity and Unobservability, pp. 181–184. IEEE Press, California (2000)

9. Cohen, E., Shenker, S.: Replication Strategies in Unstructured Peer-to- Peer Net-
works. In: ACM SIGCOMM Computer Communication, pp. 181–184. IEEE Press,
New York (2002)

10. Lv, Q., Cao, E., Cohen, E., Li, K., Shenker, S.: Search and Replication in Unstruc-
tured Peer-to-Peer networks. In: 16th ACM International Conference on Super-
computing, pp. 181–184. IEEE Press, New York (2002)

11. Benayoune, F., Lancieri, L.: Models of Cooperation in Peer-to-Peer Networks, A
Survey. In: 3rd European Conference on Universal Multiservice Networks, pp. 181–
184. IEEE Press, New York (2004)

www9.limewire.com/developer/gnutella_protocol_0.4.pdf

528 O.A.-H. Hassan et al.

12. Loukopoulos, T., Ahmad, I.: Static and Adaptive Distributed Data Replication
using Genetic Algorithms. Journal of Parallel and Distributed Computing 64, 1270–
1285 (2004)

13. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm NSGA-II. IEEE transactions on evolutionary computation 64,
182–197 (2002)

14. Metaheuristic Algorithms in Java,
http://mallba10.lcc.uma.es/wiki/index.php/JMetal

15. Zhang, J., Liu, L., Ramaswamy, L., Zhang, G., Pu, C.: A Utility-Aware Mid-
dleware Architecture for Decentralized Group Communication Applications. In:
ACM/IFIP/USENIX Middleware Conference. New port beach, California (2007)

16. Chen, Y., Katz, R.H., Kubiatowicz, J.D.: Dynamic Replica Placement for Scalable
Content Delivery. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 306–318. Springer, Heidelberg (2002)

17. Mansouri, Y., Monsefi, R.: Optimal Number of Replicas with QoS Assurance in
Data Grid Environment. In: Second Asia International Conference on Modelling
and Simulation, Kuala Lumpur, pp. 168–173 (2008)

18. Tu, M., Tadayon, T., Xia, Z., Lu, E.: A Secure and Scalable Update Protocol for
P2P Data Grids. In: 10th IEEE High Assurance Systems Engineering Symposium,
Texas, pp. 423–424 (2007)

http://mallba10.lcc.uma.es/wiki/index.php/JMetal

	Replication in Overlay Networks: A Multi-objective Optimization Approach
	Introduction
	Background and Related Work
	Architectural Overview
	 Problem Formulation
	Latency
	System Reliability
	Storage
	Conflicting Objectives

	Our Approach: Multi-objective Optimization
	Solution (Chromosome) Representation
	Multi-objective Evolutionary (MOE) Optimization
	Multi-objective Randomized Greedy (MORG) Optimization

	Experiments and Results
	Experimental Setup
	Latency-Reliability Tradeoff
	Storage-Reliability Tradeoff
	Execution Time

	Discussion
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

