
Supporting Agile Development of

Authorization Rules for SME Applications

Steffen Bartsch, Karsten Sohr, and Carsten Bormann

Technologie-Zentrum Informatik TZI,
Universität Bremen, Bibliothekstr. 1, 28359 Bremen, Germany

{sbartsch,sohr,cabo}@tzi.org

Abstract. Custom SME applications for collaboration and workflow
have become affordable when implemented as Web applications employ-
ing Agile methodologies. Security engineering is still difficult with Agile
development, though: heavy-weight processes put the improvements of
Agile development at risk. We propose Agile security engineering and in-
creased end-user involvement to improve Agile development with respect
to authorization policy development. To support the authorization pol-
icy development, we introduce a simple and readable authorization rules
language implemented in a Ruby on Rails authorization plugin that is
employed in a real-world SME collaboration and workflow application.
Also, we report on early findings of the language’s use in authorization
policy development with domain experts.

Keywords: Authorization Policy, Agile Security Engineering, End-User
Development, DSL, SME Applications.

1 Introduction

When Small and Medium Enterprises (SME) deploy collaboration and workflow
applications, the applications need to measure up to the established workflows
in terms of efficiency and flexibility. SMEs are often incapable of investing the
required resources into tailoring commercial off-the-shelf software to match the
established workflows. This is further backed by the observation that it is often
the unique selling point of SMEs to implement unconventional processes when
compared to competing larger companies. With the advent of recent technolog-
ical developments in the Web sector, small and focussed custom applications
have become affordable for implementing SMEs’ specific needs in collaboration
and workflow management in SME applications.

One aspect of the development of custom SME applications is implementing
authorization. A large amount of research has been invested into the authoriza-
tion realm resulting e.g. in Role-based Access Control (RBAC, [9,15,2]). Specific
solutions have been proposed for collaboration and workflow [4,14,18,16] as well
as high flexibility [19]. Still, with respect to SME applications, the established
approaches are not easily implemented in practice.

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 461–471, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

462 S. Bartsch, K. Sohr, and C. Bormann

Typically, SMEs are organisations of limited complexity, but may still de-
pend on task management and collaboration software. When developing custom
software for these domains, a few aspects are different from the task in larger
companies. First of all, most employed processes are informal and may be modi-
fied on a day-to-day basis. Only a fraction of the processes are formally defined.
Instead, the process descriptions are present in form of the employees’ implicit
knowledge. When the processes are captured for requirements engineering, em-
ployees will likely fall prey to process confabulation. Process confabulation causes
domain experts to recount processes not in the way they occur, which is difficult
with daily variations, but idealized versions. Thus, if authorization is employed,
many restrictions are based on the idealized processes and may be hindering in
the execution of day-to-day business. One reason is that employees of SMEs are
often unaccustomed to authorization. Typically, most documents are available to
a large part of the employees before the implementation of an SME application.
On the other hand, with a large amount of data centralized in one application,
management will insist on the implementation of fairly strict authorization rules.

One current trend in application development to overcome the problem of
fuzzy requirements is employing Agile development principles [7]. Agile develop-
ment focuses on customer needs, implementing in short iterations and allowing
modifications of the plan on a regular basis. In Agile development, working
applications are preferred over documentation and domain experts are tightly
integrated into the process. The focus on constant modification and refinement
of requirements makes Agile development suitable for the development of SME
applications.

With continuously changing requirements, development environments need to
provide an adequate amount of flexibility as well as small development and de-
ployment overhead, as provided by Web applications. Ruby on Rails1 is a current
Web development framework that supports Agile development and draws from
the meta-programming features of the programming language Ruby. Through
a plugin architecture, a large community of developers provide other common
features, such as authentication, in Rails plugins.

Even with Agile development using Ruby on Rails, implementing security
in SME applications remains a challenge, in particular the process-dependent
parts of authorization. Flaws in authorization may lead to a loss of efficiency
and a lack of acceptance by the end-users, which might even lead to a premature
end of the application development. In this paper, we describe Agile security
engineering methods to overcome these obstacles. One aspect of our approach
is supporting the end-user development of authorization policies. In particular,
we introduce an authorization rules Domain-specific Language (DSL) for im-
proving authorization policy development. The language is implemented in the
declarative_authorization Rails plugin. We report on the early feedback of
employing the authorization language in a real-world SME application to im-
prove its authorization policy.

1 http://rubyonrails.org/

http://rubyonrails.org/

Supporting Agile Development of Authorization Rules 463

2 Agile Security Engineering

Security engineering in traditional software development is a heavy-weight pro-
cess. For example, the ISO 27001 standard structures security engineering into
the well-known four phases of Plan–Do–Check–Act which are iteratively applied
[1]. The planning phase includes systematic approaches to threat analysis and
risk assessment. Also, the security architecture is to be designed before any im-
plementation takes place. Such a security engineering process does not fit well
into Agile development processes, resulting in several conflicts.

– Security is difficult to retrofit [5], so that security ideally needs to be consid-
ered from the beginning. In Agile development, where having modifications
of the plan is common, the functional requirements are by definition not clear
at the beginning. Thus, security measures cannot be developed initially in
sufficient detail.

– With an anticipated shift in functional requirements, security architectures
designed at one point will become obsolete in the course of the project.
Redoing security engineering as proposed by the classical iterative models
before implementing additional functional requirements is no option, either.
The heavy-weight nature of the process makes it impossible to fit into the
common 2 to 4 week iteration cycle of Agile development.

– Traditional security engineering implies a good measure of security documen-
tation and specification. In Agile development, this is counter-productive with
the application being a moving target, causing a mismatch of documentation
and code to an even larger extent than in traditional software projects.

– Security objectives are non-functional requirements and thus hard to test. In
Agile development, refactoring is an important aspect to constantly adapt to
changing plans. Refactoring relies heavily on testing to ensure that deep
changes do not break the application.Missing tests of the security requirements
could thus lead to the introduction of vulnerabilities through refactoring.

Reviewing the published work on security in Agile development, a few solu-
tions to the above-outlined problems are proposed. A very general proposal is to
increase overall security skills of development teams. Ge et al. argue that in Agile
development even more than in other development processes, security awareness
is necessary for all team members [10]. To comply with formal requirements
of security reviews, a security expert might rotate through programming pairs,
thus implicitly reviewing the code. Aydal et al. report on a case study of secu-
rity through refactoring with good results [3]. Tappenden et al. describe security
tests which could be employed to secure refactoring [17]. Instead of the usual user
stories that provide requirements in many Agile methodologies, abuser or mis-
user stories may be employed [13], describing unwanted situations which may be
tested. This approach might lack the proper completeness, though, as systematic
approaches are needed to capture the wealth of attack vectors. An alternative
but less concrete approach is imposing constraints on every user story.

For security up front, before any development, Ge et al. propose to have
experts agree on overall security principles and a high-level security architecture

464 S. Bartsch, K. Sohr, and C. Bormann

[10]. Still, as indicated above, this might prove either quite complex when a
suitable security architecture is to be found or might arrive in rather useless too
general principles. It is a good idea, though, to begin with system hardening and
penetration tests early in the iteration cycles even if the system is not yet set up
in the target environment. Thus, security issues may be tackled early [11]. Lastly,
Chivers et al. argue that in Agile development, the team should concentrate on
providing good-enough security as, in practice, security is not absolute [5]. It
is arguably correct that even the systematic approaches of traditional security
engineering do not guarantee completeness.

While the listed approaches may not serve as a one-size-fits-all solution, a
few points may be worth stressing. At one point during development, a system-
atic threat analysis and risk assessment should be undertaken to provide a good
understanding of security aspects to focus on. With the addition of further fea-
tures in later iterations, the findings certainly need to be adapted with changes
in assets and additions of attack vectors. Thus, key to effective Agile security
engineering remains the flexibility in implementing changes in the security archi-
tecture. A second aspect is that it is hard to capture security requirements for
processes in a single iteration. Because of process confabulation, authorization
particularly needs adjustment by domain experts later on. Documents derived
directly from the code may come to help in discussions with domain experts
while preventing additional overhead and the risk of outdated documents. In the
next section we describe ways of tightly integrating domain experts into security
engineering and authorization policy development, taking the aforementioned
aspects into account.

3 End-User Development of Authorization Policies

In the development of custom SME applications, it is even more important to
tightly integrate end users into the development process than in software de-
velopment for large enterprises. Usually, there are no current documents on the
company’s processes but only implicit knowledge of the employees. Even if there
has been an ISO 9001 certification, those documents often do not reflect the
actual processes. In Human-Computer Interaction (HCI) research, the growing
field of End-User Development [12] pushes the barrier even further; not only
should end users be integrated into the development process, but in addition
end users should take part in the development, adapting the application to their
needs [6,20].

In the domain of security engineering and authorization policy development,
there are three potential actors to design and implement authorization: end
users, system administrators and developers. One might argue that authoriza-
tion configuration should be carried out by administrators. On the other hand,
domain knowledge is very important for applying the appropriate measure of
restrictions. This means that end users are better suited for the task, at least
supporting the administrator. Developers also play an important role in the pro-
cess by having intimate knowledge of the application. With many authorization

Supporting Agile Development of Authorization Rules 465

decisions being based on the application’s underlying data model, which may
have to be modified to allow specific authorization rules, it is very important to
have the developers take active part in the development. Thus, ideally, an au-
thorization policy development would offer the appropriate level of abstraction
to each of these actors [8]. Therefore, the following mechanisms are needed:

– An authorization language and data model primarily for developers to imple-
ment authorization policies. The language and data model should be simple
enough to help end users to discuss and validate the current policy. It might
even be possible for them to correct and develop authorization rules using
the language.

– Alternative, e.g. graphical, representations of the effective authorization pol-
icy concerning specific objects and users to mitigate the complexity of au-
thorization by offering transparency.

– A UI for overcoming barriers posed by textual specifications to some end
users.

4 The Declarative Authorization Plugin

For supporting Agile security engineering and end-user integration in authoriza-
tion rules development, we developed an authorization rules DSL and support-
ing development tools. We implemented the DSL and the tools as the Ruby
on Rails declarative_authorization plugin2, made available under the MIT
Open Source license. Currently, we use the plugin in a real-world collaboration
and task management Web application that relies on Ruby on Rails as the un-
derlying Web application framework.

The plugin design was guided by the goal of providing the maximum simplicity
and readability of the authorization rules DSL and efficient usage of the plugin in
Web application development. Other available Rails authorization plugins usually
are based on in-line Access Control Lists (ACL) of roles, causing redundant au-
thorization rules in program code. In contrast, the declarative_authorization
plugin separates program and authorization logic, thus offering a declarative ap-
proach to authorization. The DSL describes the policy for authorization while the
application just defines required permissions for specific actions.

4.1 Authorization Rules DSL

The authorization rules DSL was designed for readability and flexibility. The syn-
tax is derived from natural language that can be read in form of sentences, e.g.,
role “admin” has permissions on “employees” to “manage.” Symbols beginning
with :, block delimiters do, end and hash associations through => remain visible
indications that the DSL employs Ruby syntax. We decided to implement the
language in Ruby because of Ruby’s metaprogramming features, which allow a
simple, readable DSL while making use of the benefit of the robust Ruby parser.
2 Available at Github: http://github.com/stffn/declarative authorization

http://github.com/stffn/declarative_authorization

466 S. Bartsch, K. Sohr, and C. Bormann

Fig. 1. Role-based access control model

Also, in the target market of SME applications, applications are increasingly
based on Ruby on Rails. A simple example of an authorization rule assigning
the permission “manage” on objects of type “employee” to role “admin” is given
in the following listing:

authorization do

role :admin do

has permission on :employees , :to => :manage

end

end

The authorization data model behind the DSL is similar to RBAC’s. One of
many extant variations of the RBAC model is shown in figure 1. The model
defines users, which are assigned to roles in an n:m relation. On the other hand,
permissions are assigned to roles in an n:m relation as well. Permissions are
often described as a combination of activities on objects. Thus, to evaluate the
authorization of a user with respect to a specific object, permissions assigned to
the user’s roles need to be checked.

Instead of defining permissions as activities on objects, the declarative
authorization data model (figure 2) uses activities on types of objects, such
as “employees”, to increase maintainability. Permissions on individual objects
are realized through context authorization constraints [4]. E.g., for restricting
“branch admins” to only manage employees of their branch, the statement shown
in listing 1.1 in line 9 is employed. Constraints may be nested for more complex
cases. A custom language is used for specifying the constraints so that the same
conditions may be used not only to restrict access but also to derive the resulting

Fig. 2. Authorization rules DSL data model

Supporting Agile Development of Authorization Rules 467

Listing 1.1. Example authorization rules

1 authorization do

2 role :admin do

3 has permission on :employees , :to => :manage

4 end

5

6 role :branch_admin do

7 includes :employee

8 has permission on :employees , :to => :manage do

9 i f attr ibute :branch => is {user.branch}
10 end

11 end

12

13 role :employee do

14 # ...

15 end

16 end

Fig. 3. Graphical representation of authorization rules

constraints on database queries. Role hierarchies are realized using the “includes”
statement as demonstrated in listing 1.1 in line 7.

To further improve the usability of the authorization rules language in Ag-
ile security engineering, development tools have been implemented. Inside the
application, the syntax-highlighted textual representation of the current rules
is provided to authorized users. Also, graphical representations have been de-
veloped for domain experts to be able to drill down on specific aspects of the
authorization rules, as shown in figure 3, while keeping an overview at hand. In
the diagram, filled arrows indicate the assignment of permissions to roles, with
circles on arrows symbolizing constraints on the assignment. The role hierar-
chy of “branch admin” including the permissions of “employees” is shown by
an unfilled arrow, demonstrating the efficiency of graphical representation for
analyzing hierarchical structures.

468 S. Bartsch, K. Sohr, and C. Bormann

4.2 Usage in Application Code

In order to support Agile development, ease of implementation in the application
is important. Early in the development process, authorization rarely is of high
priority. Thus, imposing minimal overhead allows for authorization infrastruc-
ture to be integrated early-on, resulting in less refactoring being required later.
In Rails, so-called controllers are responsible for responding to HTTP requests.
Each URI is routed to a controller’s action. Thus, for a first line of defense,
restrictions may be imposed on each action. To enable this with the plugin, only
a filter_access_to statement in a controller is required to cause all requests
to that controller to be checked for authorization.

class EmployeesController

filter_access_to :all

def index

...

end

end

When the “index” action in the EmployeesController is called by an HTTP
request, the authorization rules are consulted. The declarative_authorization
plugin considers the roles of the user, which is bound to the current request through
separate authentication measures, to decide on allowing the request. If the permis-
sions for “index” have not been assigned to any of the user’s roles, the request is
denied. If the permission is assigned with additional authorization constraints, ob-
jects might be examined to evaluate the constraints.

The “index” action in the EmployeesControllerwill provide a list of employ-
ees, causing a check of “read” permissions according to a preconfigured mapping.
To only display those employees that the current user may read, constraints need
to be imposed on a database query for some roles, according to the authorization
policy. To enable these automatic constraints, the developer only has to use a
with_permissions_to call instead of manually constructing the database query
conditions, as shown in the following example.

class EmployeesController

filter_access_to :all

def index

@employees = Employee .find (:all , :conditions => ...)

@employees = Employee .with_permissions_to (: read)

end

end

Thus, with the authorization rules shown in listing 1.1, users of role “branch
admin” would only see the intended list of employees in their branch while
minimal extra effort is needed in application development. More importantly,
the code does not need to be changed when authorization conditions change,
allowing developers to focus on functional and security requirements at different
points in time.

Supporting Agile Development of Authorization Rules 469

5 Early Feedback

In order to evaluate the authorization rules language with respect to its use
in Agile security engineering, we employed the declarative_authorization
plugin in a real-world SME application. The application currently has nine roles
and permissions on objects of 35 types. It is a collaboration and task management
application that is employed in quality management of automotive parts.

We used the applications authorization rules in discussions with two domain
experts. The domain experts use the application regularly as end-users but have
not taken part in the programming of the application. In addition to the dis-
cussions, we conducted interviews with the domain experts to capture their
subjective views on the viability of using textual authorization rules and graph-
ical representations for helping in discussion, finding policy flaws, and allowing
end-user modifications.

In both discussions, the textual representation of the authorization rules
proved very helpful in improving the current rules. Two flaws within the au-
thorization rules were identified. E.g., an overly narrow restriction on the role
of quality inspectors would have prevented their flexible operation for different
branches of the SME. The flaws might have hindered the workflow in specific
situations by being overly restrictive. In the interviews, the domain experts ac-
knowledged the helpfulness of the textual and graphical representation of the
actual authorization rules that are being enforced. Still, for modifications or
additions by themselves, both would prefer a user interface.

6 Conclusion and Future Work

When considering custom-built applications for task management and collabora-
tion, Agile development of Web applications helps in efficiently fulfilling SMEs’
requirements. To design appropriate security mechanisms, traditional security
engineering does not fit well with its heavy-weight processes, though. Agile secu-
rity engineering processes, as described in this paper, provide an alternative ap-
proach by integrating domain experts more tightly into the security engineering
process. One important aspect of Agile security engineering is the development of
authorization policies. We introduced a tool to support the Agile authorization
policy development through a simple and readable authorization rules language
and its implementation in the Rails declarative_authorization plugin. While
certainly not applicable to every kind of application, authorization policies may
gain in precision through more intense integration of domain experts and thus
improve the effectiveness of the application with only minimal development over-
head. Early positive feedback from the evaluation of the authorization language
on a real-world SME project demonstrated the potential of our approach.

In addition to broader empirical work, future work will include the develop-
ment of user interfaces to complement the existing tools. Following the domain
experts’ suggestions, the UIs should work on a high layer of abstraction, e.g. only
allowing the assignment of permissions to existing roles. In another attempt to

470 S. Bartsch, K. Sohr, and C. Bormann

improve end-user involvement, we will provide measures for test-driven develop-
ment of authorization rules and an authorization policy development workflow,
thus increasing the reliability of authorization policy development.

Taking into account the required flexibility in SME applications’ task man-
agement, even improved authorization policy development may not prevent oc-
casional missing permissions that degrade efficiency, though. In order to follow
the practice of informal processes in SMEs, we will look into a self-regulatory
authorization approach that we call Self-service Authorization. This mechanism
allows end-users to increase their permissions according to certain restrictions
on their own while actions are then appropriately audited.

References

1. ISO/IEC 27001:2005. Information technology – Security techniques – Information
security management systems – Requirements. ISO, Geneva, Switzerland

2. ANSI INCITS 359-2004. Role-Based Access Control. American Nat’l Standard for
Information Technology (2004)

3. Aydal, E.G., Paige, R.F., Chivers, H., Brooke, P.J.: Security planning and refactor-
ing in extreme programming. In: Abrahamsson, P., Marchesi, M., Succi, G. (eds.)
XP 2006. LNCS, vol. 4044, pp. 154–163. Springer, Heidelberg (2006)

4. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of autho-
rization constraints in workflow management systems. ACM Trans. Inf. Syst. Se-
cur. 2(1), 65–104 (1999)

5. Chivers, H., Paige, R.F., Ge, X.: Agile security using an incremental security archi-
tecture. In: Baumeister, H., Marchesi, M., Holcombe, M. (eds.) XP 2005. LNCS,
vol. 3556, pp. 57–65. Springer, Heidelberg (2005)

6. Church, L.: End user security: The democratisation of security usability. In: Secu-
rity and Human Behaviour (2008)

7. Cockburn, A.: Agile Software Development. Addison-Wesley Professional, Reading
(2001)

8. Dai, J., Alves-Foss, J.: Logic based authorization policy engineering. In: The 6th
World Multiconference on Systemics, Cybernetics and Informatics (2002)

9. Ferraiolo, D., Kuhn, R.: Role-based access controls. In: 15th NIST-NCSC National
Computer Security Conference, pp. 554–563 (1992)

10. Ge, X., Paige, R.F., Polack, F., Brooke, P.J.: Extreme programming security prac-
tices. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS,
vol. 4536, pp. 226–230. Springer, Heidelberg (2007)

11. Kongsli, V.: Towards agile security in web applications. In: OOPSLA 2006: Com-
panion to the 21st ACM SIGPLAN symposium on Object-oriented programming
systems, languages, and applications, pp. 805–808. ACM, New York (2006)

12. Lieberman, H.: End user development. Springer, Heidelberg (2006)
13. McDermott, J., Fox, C.: Using abuse case models for security requirements analysis.

In: ACSAC 1999: Proceedings of the 15th Annual Computer Security Applications
Conference, Washington, DC, USA, p. 55. IEEE Computer Society, Los Alamitos
(1999)

14. Oh, S., Park, S.: Task-role-based access control model. Inf. Syst. 28(6), 533–562
(2003)

15. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

Supporting Agile Development of Authorization Rules 471

16. Sun, Y., Meng, X., Liu, S., Pan, P.: Flexible workflow incorporated with RBAC.
In: Shen, W.-m., Chao, K.-M., Lin, Z., Barthès, J.-P.A., James, A. (eds.) CSCWD
2005. LNCS, vol. 3865, pp. 525–534. Springer, Heidelberg (2006)

17. Tappenden, A., Beatty, P., Miller, J.: Agile security testing of web-based systems
via httpunit. In: AGILE, pp. 29–38. IEEE Computer Society Press, Los Alamitos
(2005)

18. Thomas, R.K., Sandhu, R.S.: Thomas and Ravi S. Sandhu. Task-based authoriza-
tion controls (TBAC): A family of models for active and enterprise-oriented autor-
ization management. In: Proceedings of the IFIP TC11 WG11.3 Eleventh Interna-
tional Conference on Database Securty XI, London, UK, pp. 166–181. Chapman
& Hall, Ltd., Boca Raton (1998)

19. Wainer, J., Barthelmess, P., Kumar, A.: W-RBAC - a workflow security model in-
corporating controlled overriding of constraints. Int. J. Cooperative Inf. Syst. 12(4),
455–485 (2003)

20. Zurko, M.E., Simon, R.T.: User-centered security. In: NSPW 1996: Proceedings of
the 1996 workshop on New security paradigms, pp. 27–33. ACM, New York (1996)

	Supporting Agile Development of Authorization Rules for SME Applications
	Introduction
	Agile Security Engineering
	End-User Development of Authorization Policies
	The Declarative Authorization Plugin
	Authorization Rules DSL
	Usage in Application Code

	Early Feedback
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

