
A Constraint and Attribute Based Security

Framework for Dynamic Role Assignment in
Collaborative Environments�

Isabel F. Cruz, Rigel Gjomemo, Benjamin Lin, and Mirko Orsini��

ADVIS Lab – Department of Computer Science – University of Illinois at Chicago
{ifc,rgjomemo,plin,orsinim}@cs.uic.edu

Abstract. We investigate a security framework for collaborative appli-
cations that relies on the role-based access control (RBAC) model. In
our framework, roles are pre-defined and organized in a hierarchy (par-
tial order). However, we assume that users are not previously identified,
therefore the actions that they can perform are dynamically determined
based on their own attribute values and on the attribute values associ-
ated with the resources. Those values can vary over time (e.g., the user’s
location or whether the resource is open for visiting) thus enabling or
disabling a user’s ability to perform an action on a particular resource.
In our framework, constraint values form partial orders and determine
the association of actions with the resources and of users with roles.
We have implemented our framework by exploring the capabilities of se-
mantic web technologies, and in particular of OWL 1.1, to model both
our framework and the domain of interest and to perform several types
of reasoning. In addition, we have implemented a user interface whose
purpose is twofold: (1) to offer a visual explanation of the underlying
reasoning by displaying roles and their associations with users (e.g., as
the user’s locations vary); and (2) to enable monitoring of users that are
involved in a collaborative application. Our interface uses the Google
Maps API and is particularly suited to collaborative applications where
the users’ geospatial locations are of interest.

Keywords: role-based access control, collaborative applications, dy-
namic environments, Semantic Web, reasoning.

1 Introduction

With the latest trends in collaborative environments, such as Web 2.0 and coop-
erative projects on grids, more and more resources are being shared by different

� Work partially supported by NSF Awards ITR IIS-0326284, IIS-0513553, and IIS-
0812258.

�� Primary affiliation: Dipartimento di Ingegneria dell’Informazione, Università di Mod-
ena e Reggio Emilia, Italy. Work partially supported by MUR FIRB Network Peer for
Business project (http://www.dbgroup.unimo.it/nep4b) and Confindustria Modena.

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 322–339, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

A Constraint and Attribute Based Security Framework 323

groups and organizations in order to support common tasks. Depending on sev-
eral factors such as the task, the participants, and data sensitivity, access to these
shared resources needs to be controlled and enforced by security policies. The
role-based access control (RBAC) model defines roles that have specific privi-
leges on resources and decouples the identity of the users from the resources [15].
In the RBAC model and its variations, constraints can be placed for example on
the associations of users with roles or of roles with permissions. When the num-
ber of users is high in comparison with the number of roles [1, 2], an automated
way to grant permissions is desirable in order to eliminate the burden of manu-
ally assigning roles to users. The RBAC model is particularly suited to dynamic
task-oriented environments due to its flexibility and policy-neutrality [14], which
enables it to express a large range of policies.

In our paper, we investigate a security framework for collaborative applica-
tions that relies on the RBAC model. Roles are pre-defined and organized in
a hierarchy (partial order). However, we assume that users are not previously
identified. Thus, the actions that they can perform are dynamically determined
based on their own attribute values and on the values of the attributes associ-
ated with the resources. The user’s attribute values can vary over time during a
session (e.g., the user’s location), thus enabling or disabling the user’s roles.

We will focus on a scenario associated with the Olympic Games, where not
only the venues directly associated with the Olympic Games (e.g., stadiums,
gymnasiums) but also tourist attractions in the area (e.g., museums, parks) are
resources of interest in our framework. Access to venues and specific places inside
the venues depend on the users’ types. For example, some spectators can only
take part in the opening ceremony, whereas others can access all swimming events
or all track and field events, depending on the tickets they have purchased. In
addition to visitors, there are many organizations collaborating with one another
and sharing information and services (including police forces, hosting companies,
media, and sport organizations) who ultimately serve a large range of visitors as
well as the competing athletes and their support teams.

Privileges granted to users depend not only on each particular organization
but can also differ among members of the same organization. For example, some
members of the escort service for teams and athletes may be restricted to escort
out of a specific venue but not out of other venues (a situation similar to taxi
drivers in some cities, where a taxi that transports passengers from the city to
the airport cannot subsequently pick up passengers at the airport).

Different people will have different privileges depending on their status. For
example, members of the Olympic Committee, who have VIP status, will have
reserved seating in all competitions, while top officials of the local organizing
committee, who also enjoy VIP status, may have non-assigned seating. Police
officers will be able to enter any area, but without seating privileges. Children or
students under a certain age may be able to join tours of the Olympic Stadium
for free, while other people will have to pay a fee. For security reasons access
to the Olympic Village is restricted to few people besides the athletes and their

324 I.F. Cruz et al.

immediate support teams: for example, employees and volunteers specifically
assigned to work in that particular area.

In our approach, the roles of each different collaborating organization are
structured in a dominance hierarchy where “higher” roles have all the privileges
of “lower” roles. The roles associated with all the organizations can be repre-
sented as the union of the hierarchies of roles of the single organizations. Some
of the roles have fixed and previously known sets of users, such as police, mem-
bers of the local organizing committee, or the athletes. Other roles have a large
number of possible users that cannot be known a priori, for instance journalists,
volunteers, and visitors. In this case, constraints on user attribute values can
be used to assign the correct role to each user, based on the values of different
attributes (e.g., status, credentials, location, organization). Roles are assigned
to users depending on the actual values of their attributes (e.g., VIP, journalist,
main stadium, NBC). Constraint values in our framework form partial orders
and determine the association of actions with the resources and of users with
roles. Therefore, users’ actions are dynamically determined based on their own
attribute values and on the values of the attributes associated with the resources.

We have designed and implemented a prototype of our access control frame-
work using semantic web technologies. The roles and other entities defined in
the RBAC model are represented using the OWL 1.1 language [11], which is a
standard language based on Description Logic (DL). Based on previous work,
we use two ontologies: the first ontology describes the domain and the second
ontology describes the RBAC entities and is partly derived from the first [4].
Reasoning is performed using the Pellet reasoner [5] and is used to implement
several functions, such as user to role assignment, separation of duty constraints,
symmetry, and class equivalence.

Our model shares some similarities with other approaches including RB-
RBAC [1, 2], GEO-RBAC [3, 8], and ROWLBAC [10]. A notable difference is
that it has been fully implemented, while the other approaches have not. There-
fore, we have leveraged the expressiveness of an actual reasoning mechanism.
However, all the other approaches also propose some sort of reasoning. In partic-
ular, RB-RBAC uses rules to determine hierarchical roles starting from a partial
order of constraints, while GEO-RBAC uses propagation of constraints along the
role hierarchy. We extend RB-BAC by starting from individual partial orders of
attribute constraints and then unifying them. In comparison with GEO-RBAC,
our framework is more general in that it targets all types of constraints, not only
spatial constraints. We also consider resource attribute constraints, whose satis-
faction enables or disables the privileges defined on the resources. ROWLBAC,
even if not implemented, proposes reasoning as performed by OWL. The most
similar approach to our current approach is our former approach, which was
also fully implemented using semantic web technologies [4]. However, in that ap-
proach, we used a simpler constraint framework and did not explicitly consider
spatial constraints.

The paper is organized as follows. In Section 2, we present the security model
and in particular, the attribute constraints arranged in partially ordered sets

A Constraint and Attribute Based Security Framework 325

and their correspondence with the roles. In Section 3, we describe the different
types of entailment that our model supports and give examples of some rules of
Description Logic that can be used to express security policies. We also show
the process by which users are assigned the correct roles by taking into account
constraints. In Section 4 we describe the implementation of the access control
model including the design choices we have made. Related work is mentioned in
Section 5 and conclusions and future work are discussed in Section 6.

2 Security Model

In this section, we describe the different components that make up our frame-
work. We start by extending our scenario and then we describe the different com-
ponents that are present in our model. Those components, modeled as classes
and as constraints, extend the usual RBAC components.

2.1 Scenario

In our scenario, which is a much simplified version of the kind of considera-
tions needed for the Olympic Games, there are four collaborating organizations:
Media, Sports, HostingCity, and Visitors. The organizations share the same re-
sources and each of them can be modeled separately. The first organization,
Media, comprises MediaOperator and Journalist, where MediaOperator has priv-
ilege EnterMediaVillage, to enter a resource that is reserved for media operators
and Journalist inherits the privileges of MediaOperator. Journalist has one ad-
ditional privilege, EnterPhotoZone, to enter a special area that is particularly
suitable for taking close up pictures of the athletes.

The second organization, Sports, comprises TeamMember and Athlete. The
third organization, HostingCity, comprises people who take care of all local or-
ganizational tasks. The fourth organization, Visitors, comprises all the different
people who attend the Olympic Games. We model them as an organization so
that we can deal with them similarly to the other groups of people. Visitors can
have different degrees of importance, spanning from “VIP” (e.g., members of
the Olympic Committee) to “normal” (e.g., common spectators). These differ-
ent degrees of importance correspond to different privileges. Privileges and the
overall role hierarchy of our collaboration scenario is shown in Figure 1. The
roles that carry more privileges are shown higher in the hierarchy: for example,
the Manager role contains all the privileges of the roles that are its descendants
in addition to its own, while the role Volunteer, which is not a descendant of
Manager, comprises all the roles of Employee and of NormalVisitor in addition
to its own.

We consider that each organization determines how the roles are assigned
to their users depending on their attribute values. For instance, in our scenario,
visitors have attributes Importance, Age, and Location. The Visitor organization
assigns the role SpecialVisitor depending on the values of these attributes, for
instance if somebody’s Importance attribute is equal to VIP, Age is greater than

326 I.F. Cruz et al.

Fig. 1. Roles and privileges for the Olympic Games organizations

21, and Location is inside VIPArea. In our model, Location is both an attribute
of users, which is used to associate roles with users, and of resources.

The final role hierarchy shown in Figure 1 is derived using simple inference on
a description of the organizations and resources using ontologies. The security
administrator checks and validates the inference results. Further description of
this step will be given in Section 3.

2.2 Framework Components

In this section, we explain the conceptual components of our system.
Resource class. This class represents the entities on which different actions
are or not allowed (e.g., SeatingArea). Resources have associated attributes (e.g.,
Capacity of the Olympic Stadium).
Action class. This class represents the actions that can be performed by users
on the resources (e.g., Enter).
Privilege class. Objects of this class are pairs 〈Action, Resource 〉. For example,
the privilege 〈Enter, SeatingArea 〉 allows some users to enter the seating area.
Privilege attribute constraints. These constraints are pairs 〈p,a 〉, where p is a
privilege (e.g., 〈Enter, SeatingArea 〉) and a is a pair 〈attribute,attributeconstraint 〉
(e.g., 〈isOpen, = true 〉) associated with the resource that is part of the privilege
(in this case, SeatingArea). Attribute constraints are recursively defined as follows:

attributeconstraint ::= (attributeconstraint)

| RELATIONALOPERATOR constant

| NEGATION (attributeconstraint)

| attributeconstraint BINARYBOOLEANOPERATOR

attributeconstraint

where a constant can be of different types (e.g., string, number, Boolean, area)
and therefore the relational operator (e.g., =, ≤)) is polymorphic in that it is
able to compare different types (for example, ≤, when used for areas will be

A Constraint and Attribute Based Security Framework 327

equivalent to set containment, ⊆). Examples of attribute constraints include:
≥ 10 ∧ ≤ 18, and ¬(≥ 10 ∧ ≤ 18) and ≤ SeatedArea. The definition of attribute
constraint can be further extended.
Role class. This class is a placeholder for all the roles that are defined. Con-
ceptually, a role is a set of privileges. Roles are assigned to users via sessions.
Role attribute constraints. These constraints are pairs 〈r,a 〉, where r is a role
(e.g., SpecialVisitor), and a is an attribute pair 〈attribute, attributeconstraint 〉
(e.g., 〈Importance, = VIP 〉), where attributeconstraint is defined as previously.
There is a many-to-many relationship between roles and attribute pairs. The
role SpecialVisitor is assigned to a user if the attribute Importance has value
=VIP. When a role attribute constraint refers to spatial attributes, for example,
〈Journalist, 〈Location, ≤MediaVillage 〉〉 the role Journalist is activated when
the user is in the MediaV illage (provided that other attribute pairs, if any, are
also satisfied).
Session. A user is assigned a session upon entering the system (e.g.,
John 680481). A session is owned by a single user and has a set of roles as-
sociated with it. We assume that attribute values associated with resources are
not allowed to change during a session. However, attribute values associated
with users can change. For example, the location of a user can change during a
session, therefore the corresponding attribute Location value changes.

2.3 Attribute Constraints

As presented in Section 2.2, role attribute constraints denote a many-to-many
relationship between roles and attribute pairs. For a role to be assigned to a user,
the user’s attribute values must satisfy the attribute constraints. As previously
described, the constraints can be expressed in different ways. For instance, a
constraint on Age can be expressed as a range, for example, ≥ 21, or a constraint
on Importance can be expressed as a single value, for example =VIP. The former
constraint would have to be satisfied for someone to have the privilege to enter
a bar, whereas the second one would have to be satisfied for someone to access
a VIP area.

It is possible to establish a partial order among attribute constraints in the
case where an attribute constraint dominates another one. For example, for at-
tribute age, ≥ 21 dominates ≥ 18 as someone who is older than 21 is also older
than 18. Likewise, for attribute importance, =VIP should dominate = normal.
In our approach, we interpret the dominance relationship between attribute con-
straints as a satisfiability relationship. Thus, to say that a constraint a dominates
a constraint b, written b � a is tantamount to saying that when a is satisfied, b
is also satisfied.

Examples of partial orders are shown in Figure 2. Figure 2.1 shows the con-
straint for user attribute Age. The constraint B3 is dominated by the constraint
B2, and the constraint B2 is dominated by the constraint B1 ((≥ 5) � (≥
18) � (≥ 21)). Therefore, if the constraint B1 is satisfied, then the constraints
B2 and B3 are also satisfied. Figure 2.2 shows the constraint for user attribute

328 I.F. Cruz et al.

Fig. 2. 1. Age partial order 2. Location partial order 3. Importance partial order

Location, that is, if the coordinates of a user fall inside one of the regions, then
the user is located inside the region. In this case, the dominance relationship
represents the spatial containment between regions. If the constraint ≤VIPArea
is satisfied, meaning if the user is inside location VIPArea, then the constraints
≤SeatingArea and ≤ Stadium are also satisfied ((≤ Stadium) � (≤ SeatingArea)
� (≤ VIPArea)). If the constraint ≤ AthleteArea is satisfied, only the constraint
≤ Stadium is also satisfied ((≤ Stadium) � (≤ AthleteArea)). Figure 2.3 shows
the constraint for attribute Importance. The constraint D3 is dominated by D2,
which is in turn dominated by D1 (D3 � D2 � D1). Therefore, if the constraint
D1 is satisfied by the user Importance value, then the constraints D2 and D3

are also satisfied.
We argue that in a scenario with different collaborating organizations, each

having a different role hierarchy, the definition of partial orders of constraints can
play an important role. Each organization will have its attributes and respective
constraints. However, some of the attributes may be the same, but with different
constraints on them. For instance, with respect to Figure 2.1 it is not difficult to
imagine different constraints on the Age attribute. If these organizations share
their role hierarchies, then they would also share their role attribute constraints.
In the next subsection, we discuss the integration of different partially ordered
sets of role attribute constraints into one partially ordered set.

2.4 Role-Constraints Partial Order

A role r can be associated with a tuple A of user attribute constraints over
distinct attributes. The pair 〈r, A〉 represents the constraints that must be sat-
isfied to activate the role. Roles are assigned to users, based on the constraints
that the user’s attribute values satisfy. In Figure 3 we show three roles and
their associate attribute constraints, whose partial orders are shown in Figure 2.
The role Journalist is the dominant role represented in the table. Also, each

A Constraint and Attribute Based Security Framework 329

Fig. 3. Attribute constraints and roles

attribute constraint of Journalist dominates the corresponding attribute con-
straint of the other roles, that is, the sets of attribute constraints represented
in each row are in componentwise order [9]. This type of order can be defined
on the tuples of the Cartesian product of partially ordered sets. A tuple of
the Cartesian product (e.g., 〈 ≥ 21,≤VIPArea, =VIP 〉) dominates another tu-
ple (e.g., 〈 ≥ 21,≤VIPArea, =Special 〉) if each element of the first tuple domi-
nates the corresponding element of the second tuple (that is, ≥ 21 � ≥ 21,
≤VIPArea � ≤VIPArea, and =Special � =VIP).

The cardinality of the Cartesian product of the partially ordered sets of con-
straints can be much higher than the cardinality of the set of roles. For instance,
in the example of Figure 2, there are 3 ∗ 4 ∗ 3 = 36 possible combinations of
the different attribute constraints, but likely fewer roles. Therefore, a user may
satisfy a set of attribute constraints that does not correspond to any role. For
instance, in Figure 3, a user may satisfy the constraints Age ≥ 18, Location ≤
SeatingArea, and Importance = VIP, which does not correspond to any role.
Nonetheless, the user should be assigned the most dominant role possible, that
is, NormalVisitor [2].

We will discuss later in the implementation part how this feature has been
implemented in our framework.

2.5 Transformation Functions

A transformation function can be defined on an attribute to associate the at-
tribute values defined in a certain domain with values on a different domain. For
example, given the integer attribute Age, the transformation function child :
Age → Boolean associates values greater than 5 to the Boolean false and values
up to 5 to the Boolean true. Transformation functions are total functions. The
domain of a transformation function can be the Cartesian product of several
attribute domains, associating a set of attributes values with a single attribute
value. As in the GEO-RBAC model [3], an example of a transformation function
is a location transformation that associates the geographic coordinates of a user
with a logical location (e.g., OlympicStadiumArea).

With transformation functions applied to a set of user attributes, the con-
straints can be defined on the target of the transformation function. Applying
transformation functions to the user attributes can help in simplifying the com-
putation of the constraints and in preserving privacy [7]. Indeed, if a transfor-
mation function is applied on an attribute, only the transformed values (logical

330 I.F. Cruz et al.

values) will be computed over the constraints. The real values will be in a cer-
tain sense masked. Moreover, through transformation functions, it is possible to
map a set of constraints defined on several attributes into simpler constraints,
for example into constraints on Boolean values. In our framework we have im-
plemented only the location transformation function.

3 Reasoning

In the last few years there has been a good amount of research in modeling
security models for dynamic environments with the use of Description Logic
[4, 10, 17]. Toninelli et al. [17] use the OWL language and Logic Programming
to model the security policies of a pervasive computing environment. Finin et al.
consider two approaches for modeling the RBAC model with OWL [10]. Cirio
et al., whose work we continue, leverage semantic web technologies to help the
security administrator define security policies [4].

The expressiveness of OWL allows for a rich representation of rules and rela-
tionships between domain entities and for expressing policies. In particular, it is
possible to express:

– Equivalence or disjointness between classes of objects. For instance, it is
possible to say that two classes are equivalent and therefore they inherit the
properties of each other, or disjoint, therefore an object cannot be an instance
of both classes. We use the disjointness feature to implement separation of
duty constraints. For instance, it is possible to say that an object belonging
to class TaxiDriver cannot belong to class Police.

– Subclass hierarchies, with multiple inheritance. The subclass inherits the
properties of the superclass. We use this feature in two ways: 1) to implement
the role constraint hierarchy; 2) to create sets of classes in order to specify
a common policy for all of them. The classes of a set are placed under a
superclass, to which privileges are attached. Through inheritance, the set of
the subclasses inherits the privileges attached to the superclass.

– Properties can be of two types: datatype properties and object properties.
We use datatype properties to model the constraints and object properties to
assign the privileges to the roles. Object properties, in turn, can also be di-
vided into symmetric, anti-symmetric, transitive, anti-transitive, functional
and inverse functional properties.

– New classes can be combined from existing classes using intersection, union,
and negation.

– Axioms can be written to express policies. For example, to express the fact
that some members of the escort service for teams and athletes may be
restricted to escort out of a specific venue but not out of other venues.

We use two types of ontologies in our model: the domain ontology and the
RBAC ontology.

The domain ontology represents the relationships that hold between the enti-
ties of the domain. It can be an existing ontology that describes a particular orga-
nization. The domain ontology can contain any of the OWL constructs described

A Constraint and Attribute Based Security Framework 331

Fig. 4. Domain ontology (portion)

Fig. 5. RBAC ontology

above. We give an example of a portion of our domain ontology in Figure 4. In
the figure, we show the ontology classes Manager, BuildingOperator, Employee,
that are in a class/subclass relationship. Some of the relationships between the
different classes are represented by object properties, such as works. The RBAC
ontology (see Figure 5) has four main classes that represent the main concepts
of the RBAC model: Roles, Privileges, Actions, and Resources [4]. These main
classes are related to one another by object properties. For example the class
Role has a relationship named grants with the class Privilege. These properties
are useful during reasoning, because they guide the reasoner in classifying each
concept of the ontology under the appropriate class of the RBAC ontology.

Two classification tasks are performed: of the user session and of the classes
of the domain ontology into classes of the RBAC ontology. A user session is
represented as an instance of the class Thing and its attribute values are used
by the reasoner to classify the user session in the correct role. The classification
of the domain ontology can be performed either by the security administrator
or by the the DL reasoner. The latter will classify the different classes of the
domain ontology under the classes of the RBAC ontology, following predefined
axioms. The axioms are specifications of relationships that must hold between
resources [4]. For example, the following rule classifies entities of the domain
ontology as subclasses of class Action (therefore not in the Resource, Privilege
or Role classes):

∃assign.Privilege� ¬{Resource, Privilege, Role}

332 I.F. Cruz et al.

where assign is a property in the domain ontology; therefore, given the assertion
assign(Enter, FreeEnter), the reasoner classifies Enter as a subclass of Action.

4 Prototype

We implemented the security model described in Section 2 relying on semantic
web technologies. In particular, the access control model and the features of
the application domain are modeled using OWL-DL ontologies. The inference
capabilities supported by the OWL-DL language enable the association of the
ontology with the Pellet reasoner to perform the classification and reasoning
tasks described in Section 3. We used Protege 4.0 to write the ontologies, and the
Jena API, as an interface to the ontologies. We used the OWL 1.1 language for
complex user-defined data types by means of the new DataRange constructors.
The Pellet reasoner 1.5.2 supports reasoning on the new constructors. In what
follows, we describe the classes that we used in the domain ontologies and in the
RBAC ontology.

4.1 Domain Ontology

In the domain ontology, the entities of the domain are described with OWL
classes, data type, and object properties. A figure of a portion of our domain
ontology was shown in the previous section.

As mentioned in Section 3, the security administrator defines privileges in the
domain ontology. Conceptually, the privileges are pairs of actions and resources.
From a practical point of view, this means augmenting the domain ontology by
adding new classes to represent the privileges and actions unless they are already
in the domain ontology. The security administrator also creates relationships be-
tween the classes of the domain ontology and the new added classes. In Figure 6,
we show a portion of this process. The figure has three parts. The RBAC on-
tology is shown at the top. In the beginning, this is a very simple ontology.
The domain ontology is shown on the left and on the right is the ontology that
specifies the privileges and actions. The latter can be created by the security
administrator or be an existing specification of privileges and actions.

In our example, the security administrator creates two OWL classes: Employ-
eeEnter, to represent a privilege, and FreeEnter, to represent the associated action.
Object property to connects the privilege with its action. PrivilegeEmployeeEnter
is associated through the object property on to the class Stadium in the domain
ontology. The last object property that is added is the grants property that con-
nects a class of the domain ontology, Employee, to the privilege EmployeeEnter
class. As mentioned in Section 3, the reasoner uses the object properties grants,
on, to to classify each domain ontology class under the correct RBAC ontology
class. For instance, Employee is classified as a subclass of Role and the reasoner
places under Role the subclasses of Employee as well. In this way, the RBAC on-
tology is extended with all the classes of the domain ontology. The different roles
are associated to their privileges through the grants object property.

A Constraint and Attribute Based Security Framework 333

Fig. 6. Domain and RBAC ontology

4.2 RBAC Ontology

We describe now the additions to the RBAC ontology after the reasoning process.
The privileges and actions remain the same as before the reasoning process.
Next, we show how we model the attribute constraints on the user and resource
attributes and how the ontology is used to assign a session to its roles.

– Constraints. As mentioned in Section 2 we have attribute, attribute con-
straint pairs such as (Importance, =VIP) or (Age, ≥ 21). Since the con-
straints are always used in connection with resources or roles (that is, they
cannot exist by themselves) there are two steps in modeling them:

(1) Declaration of the attribute as an OWL data type property and
definition of its domain. The domain is the union of the role classes to which
the constraint is associated. The range is the XML data type to which the
constraint value belongs. We have considered only string and integer data
types for now. For instance, to model the constraints on the Importance
attribute, we first declare a data type property named Importance, whose
domain is the union of all the roles that have Importance as a constraint, e.g.,
the set {SpecialVisitor, NormalVisitor}. We declare the range of Importance
to be the string data type.

(2) Restriction of the values that the attribute can have inside the classes
that represent roles or resources. For example, in the class for role SpecialVis-
itor, we restrict property Importance to assume only value special.

– RoleConstraint class. As was mentioned in Section 2, the RoleConstraint
represents a role and its constraints. We model every RoleConstraint as an
OWL class. The name of the RoleConstraint class is the same as the name of
the role, for instance, SpecialVisitor. The value of the attribute Importance

334 I.F. Cruz et al.

Fig. 7. SpecialVisitor role constraint

Fig. 8. User session classification

is restricted to assume only the value special for the class SpecialVisitor. In
other words, we are saying that the class SpecialVisitor is the class of all
objects, whose Importance attribute has value special. The OWL code for
the SpecialVisitor class is shown in Figure 7.

– Session. At runtime, we add sessions as instances of the OWL class Thing,
which is the superclass of all the classes of the domain. These instances
are augmented with the attributes and values available from the user. The
attributes and values of the instance guide the reasoner in the classification.
For instance, in Figure 8 we show an instance of the user session with two
attributes Importance, Corporation and values special, HostingCity, that is
classified by the reasoner under the RoleConstraint class Volunteer.

A Constraint and Attribute Based Security Framework 335

– Resource constraints. With constraints on resource attributes, we have
to be able to deal with individual instances, and not with classes of objects
anymore. Since each subclass of the class Resource can have different in-
stances with different attribute values, we have to identify at instance level
the resources that satisfy the constraints. If such resources exist then we
can associate them with the instance of the user session. This association
happens after the instance of the user session has been classified under a
role constraint. OWL-DL does not allow for the specification of conditions
about actual instances to identify the resources whose attributes satisfy the
constraints. Therefore, we use SPARQL queries to verify that such resources
exist [4].

4.3 Transformation Functions

We have implemented the transformation function for the location attribute
using the Google Maps API, which allows to define named areas on the map
and symbols to represent people. The symbols can be moved around on the
map to simulate the movement of people. If a symbol is inside one of the areas,
the API returns the area name, which is used as the Location attribute of the
user. The transformation functions serve also another purpose in masking from
the real attribute values of the user. The access decision is performed on the
transformed values and not on the real ones, increasing in this way the privacy of
the user. For instance, the location attribute values on which the access decision
is made do not show the real coordinates of a user, but a larger area. The location
privacy of the user is thus increased [3]. Other transformation functions will be
implemented in the future.

4.4 Graphical User Interface

For the Olympic Games scenario, we implemented a user interface to illustrate
our framework, as shown in Figure 9. It is composed of two parts, the map on
the left and a form to retrieve attribute values when new sessions are created
on the right. We have defined eight different areas in the map, associated with
different values for the Location attribute. The form is used to enter attributes
and their values. First, the attribute Organization is entered and next a pull
down menu allows to choose another attribute for which a value will be entered.

Each session is represented by an icon displaying a person. When a session
is created, a unique identifier is appended to the session name. The icon can
be dragged and dropped in the map, thus changing the location attribute. The
other values of the attributes can also be changed and the session attributes
updated. Depending on the values of the attributes, the roles in the session may
change. Each time the icon is dropped, the dialog window, which can be seen in
the figure, is used to show the enabled and disabled roles associated with that
person and the privileges associated with that role.

336 I.F. Cruz et al.

Fig. 9. User interface

4.5 Client Server Architecture

The framework has been implemented in a four-tier client-server architecture:

– Tier 1: Application web page. It has been developedwith JavaScript tech-
nology and integrates with the Google Maps API, which also runs JavaScript.

– Tier 2: JavaTMApplet Program. It is downloaded from the server side
and runs on the user’s browser. It is responsible for handling the network
traffic with the server.

– Tier 3: Server Side JavaTMProgram. It is essentially a network server
program, and it is responsible for network server functions, loading the on-
tology files, and interpreting and processing user requests.

– Tier 4: Ontologies. Ontologies are stored in this tier and modeled and
maintained independently of the rest of the application.

5 Related Work

Geo-RBAC proposes a model for associating roles with logical location [3, 8].
Logical locations are regions of space defined by real world coordinates and a
user can only assume roles that are associated with the location the user is in.
In our model, location can be expressed as an attribute of the user along with
other attributes, whose values determine the possible roles.

The Proteus system is intended for pervasive computing environments [17]. In
Proteus, contexts are defined as intermediaries between entities and operations
that they can perform on resources. Contexts are created by data sensed from the
environment and reasoning is used to activate permissions on specific resources.
Contexts can also inherit constraints from each other. However, Proteus is not
role-based.

A Constraint and Attribute Based Security Framework 337

Kulkarni and Tripathi [13] devise a context-aware access control model. Con-
straints are defined on different entities of the model, for instance, resources and
user attributes. Users can activate personalized permissions in addition to their
roles, thus having a somewhat dynamic Role-Permission assignment. Role revo-
cation is also supported, when values of the user attributes no longer satisfy the
constraints. Attribute constraints are not arranged in lattices.

ROWLBAC proposes modeling RBAC with OWL [10]. Two different ap-
proaches for modeling roles are shown, one where roles are represented as classes
and another one where roles are represented as instances. Attribute constraints
on role assignments are not modeled, however, and there is no associated system.

RB-RBAC (Rule-Based RBAC) shares some similarity with our approach in
that a hierarchy of constraints is mapped to a hierarchy of roles [1, 2]. The
rules that associate attributes to roles are arranged in a hierarchy of seniority.
When a senior rule is satisfied, the junior rules are automatically satisfied and
all the roles produced by the senior rule and the junior ones are assigned to
the user. Several other aspects are also considered, including the concept of role
hierarchies that are induced by rules. However, they consider just one hierarchy
of constraints.

6 Conclusions

The contributions of our paper are summarized as follows:

– We decouple the constraints on the attributes of users from the roles and
investigate the relations between hierarchies of attribute constraints and of
the roles. Likewise, we decouple the constraints on the resources from their
privileges. This simplifies the process of reasoning about users, resources,
roles, and privileges.

– We consider dynamic attributes for users, whose values can vary during the
same user session. An example includes location, though we offer a unified
approach to any attribute type.

– Our model is expressive enough to capture hierarchies both of constraints
and of roles and the associated inheritance reasoning as well as reasoning to
combine constraints and to infer roles and user sessions.

– We have implemented our framework by exploring the capabilities of seman-
tic web technologies and namely of OWL 1.1 [11] to model our framework
and the domain, and to perform reasoning using the Pellet reasoner [5].

– We have adopted a client-server architecture and implemented a user in-
terface whose purpose it twofold: (1) to offer a visual explanation of the
underlying reasoning by displaying roles and their associations with users
(e.g., as the user’s locations vary); (2) to enable monitoring of the users that
are involved in a collaborative application. Our interface, which uses the
Google Maps API, is particularly suited to collaborative applications where
the users’ geospatial location is of interest.

338 I.F. Cruz et al.

Future work includes:

– Adding expressiveness to our framework by allowing other types of con-
straints, namely temporal [12] or more complex constraints. In addition, fur-
ther exploration of the consequences of componentwise order (or lack thereof)
and of the implementation of transformation functions for attributes other
than location can be undertaken.

– Investigating reasoning, conflict resolution, and other aspects of merging
ontologies of constraints and roles.

– Considering other privacy aspects, in particular when revealing to other or-
ganizations the structure of one’s own. Work in privacy-preserving ontology
matching [6, 16] needs to be investigated in our particular context.

– Designing a framework for the evaluation of dynamic constraint approaches
that will take into account security metrics and the complexity of the evalu-
ation [3] as well as the efficiency of the implementation using semantic web
languages and reasoning [10].

References

[1] Al-Kahtani, M.A., Sandhu, R.: A Model for Attribute-Based User- Role Assign-
ment. In: Annual Computer Security Applications Conference (ACSAC), pp. 353–
364. IEEE Computer Society, Los Alamitos (2002)

[2] Al-Kahtani, M.A., Sandhu, R.: Induced role hierarchies with attributebased
RBAC. In: ACM Symposium on Access Control Models and Technologies (SAC-
MAT), pp. 142–148 (2003)

[3] Bertino, E., Catania, B., Damiani, M.L., Perlasca, P.: GEO-RBAC: A Spatially
Aware RBAC. In: ACM Symposium on Access Control Models and Technologies
(SACMAT), pp. 29–37 (2005)

[4] Cirio, L., Cruz, I.F., Tamassia, R.: A Role and Attribute Based Access Control
System Using Semantic Web Technologies. In: Meersman, R., Tari, Z., Herrero,
P. (eds.) OTM-WS 2007, Part II. LNCS, vol. 4806, pp. 1256–1266. Springer, Hei-
delberg (2007)

[5] Clark & Parsia, LLC. Pellet, http://pellet.owldl.com
[6] Cruz, I.F., Tamassia, R., Yao, D.: Privacy-Preserving Schema Matching Using Mu-

tual Information. In: Barker, S., Ahn, G.-J. (eds.) Data and Applications Security
2007. LNCS, vol. 4602, pp. 93–94. Springer, Heidelberg (2007)

[7] Damiani, M.L., Bertino, E.: Access Control and Privacy in Location- Aware Ser-
vices for Mobile Organizations. In: International Conference on Mobile Data Man-
agement (MDM), pp. 11–20 (2006)

[8] Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: A Spatially
Aware RBAC. ACM Transactions on Information and System Security (TIS-
SEC) 10(1), 2 (2007)

[9] Darnel, M.R.: Theory of Lattice-Ordered Groups, p. 10016. CRC Press, New York
(1995)

[10] Finin, T.W., Joshi, A., Kagal, L., Niu, J., Sandhu, R.S., Winsborough, W.H., Thu-
raisingham, B.M.: ROWLBAC: Representing Role Based Access Control in OWL.
In: ACM Symposium on Access Control Models and Technologies (SACMAT), pp.
73–82 (2008)

http://pellet.owldl.com

A Constraint and Attribute Based Security Framework 339

[11] Horrocks, I., Patel-Schneider, P.F., Motik, B.: OWL 1.1 Web Ontology Language
Structural Specification and Functional-Style Syntax (2007)

[12] Joshi, J., Bertino, E., Latif, U., Ghafoor, A.: A Generalized Temporal Role-Based
Access Control Model. IEEE Transactions on Knowledge and Data Engineer-
ing 17(1), 4–23 (2005)

[13] Kulkarni, D., Tripathi, A.: Context-aware Role-based Access Control in Perva-
sive Computing Systems. In: ACM Symposium on Access Control Models and
Technologies (SACMAT), pp. 113–122 (2008)

[14] Osborn, S.L., Sandhu, R.S., Munawer, Q.: Configuring Role-based Access Control
to Enforce Mandatory and Discretionary Access Control Policies. ACM Transac-
tions on Information and System Security (TISSEC) 3(2), 85–106 (2000)

[15] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-Based Access
Control Models. Computer 29(2), 38–47 (1996)

[16] Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A.K.: Privacy Preserv-
ing Schema and Data Matching. In: ACM SIGMOD International Conference on
Management of Data, pp. 653–664 (2007)

[17] Toninelli, A., Montanari, R., Kagal, L., Lassila, O.: Proteus: A Semantic Context-
Aware Adaptive Policy Model. In: IEEE International Workshop on Policies for
Distributed Systems and Networks, pp. 129–140 (2007)

	A Constraint and Attribute Based Security Framework for Dynamic Role Assignment in Collaborative Environments
	Introduction
	Security Model
	Scenario
	Framework Components
	Attribute Constraints
	Role-Constraints Partial Order
	Transformation Functions

	Reasoning
	Prototype
	Domain Ontology
	RBAC Ontology
	Transformation Functions
	Graphical User Interface
	Client Server Architecture

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

