

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 304 – 321, 2009.
© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

RiBAC: Role Interaction Based Access Control Model for
Community Computing

Youna Jung1, Amirreza Masoumzadeh1, James B.D Joshi1, and Minkoo Kim2

1 School of Information Sciences, University of Pittsburgh
{yjung,amirreza,jjoshi}@sis.pitt.edu

2 College of Information Technology, Ajou University, Korea
minkoo@ajou.ac.kr

Abstract. Community computing is an agent-based development paradigm for
ubiquitous computing systems. In a community computing system, ubiquitous
services are provided by cooperation among agents. While agents cooperate,
they interact with each other continuously to access data of other agents and/or to
execute other agent’s actions. However, in cases of security-critical ubiquitous
services such as medical or military services, an access control mechanism is
necessary to prevent unauthorized access to critical data or action. In this paper,
we propose a family of Role interaction Based Access Control (RiBAC) models
for Community Computing, by extending the existing RBAC model to consider
role interactions. As a basic model, we propose the core RiBAC model. For the
convenience of management and to provide more fine-grained access control, we
propose Hierarchical RiBAC (H-RiBAC), Constrained RiBAC (C-RiBAC), and
Constrained Hierarchical RiBAC (CH-RiBAC) models. Finally, we extend the
existing community computing framework to accommodate the specification and
enforcement of RiBAC policies.

Keywords: Cooperation, Community computing, Role interaction, Role-based
Access Control, Multiagent system.

1 Introduction and Motivation

The capacity and intelligence of newly developed computing elements are growing
day by day. For highly complex problems requiring diverse capabilities, an approach
based on cooperation among elements can be an efficient solution [1]. Many
researchers have tried to fulfill application requirements using cooperation among
individual computing elements. For example, ubiquitous computing systems are often
developed using cooperation among computing elements because such systems
require, in general, many different capabilities of various computing elements.
Because such a cooperation based approach involves continuous and rich interactions,
multiagent technology is frequently used to design and develop cooperation based
ubiquitous computing systems. In addition, agents’ characteristics such as intelligence
and autonomy are suitable for developing intelligent ubiquitous computing systems
that can adapt to dynamically changing situations.

 RiBAC: Role Interaction Based Access Control Model for Community Computing 305

Jung et al. [2] propose Community Computing (CC) as an agent-based development
paradigm for ubiquitous computing systems. The objective of CC framework is to
provide ubiquitous services through dynamic cooperation among agents. The CC ap-
proach focuses more on cooperation compared to the other multiagent methodologies.
As part of the CC approach, Jung et al. have proposed a cooperation model and two
different CC models. However, security of such a CC based multiagent system has not
been addressed in the literature.

Ubiquitous services are currently being expanded to various applications such as u-
healthcare, u-government, u-city, etc. Security and performance issues are some key
challenges to the deployment of such emerging ubiquitous systems, and hence a CC
system for ubiquitous applications should incorporate efficient security mechanisms.
In order to guarantee a secure CC system, first of all, the system should authenticate
agents. During cooperation, agents interact with other agents to get information or
request execution of other agents’ actions, which may be critical. To ensure security
of such critical actions or data, we need a proper access control mechanism to ensure
that agents are engaged in only authorized activities.

In this paper, we propose a family of role interaction based access control (RiBAC)
models that extend the standard RBAC models by incorporating authorized role-based
interactions among agents. We define two types of interaction permissions to capture
authorized interactions among agents. Moreover, we extend the CC specification
framework to include the RiBAC policy specification and enforcement capabilities.

The remainder of this paper is organized as follows. In Section 2, we present the
background on the CC model. In section 3, we propose the family of RiBAC models.
In Section 4, we present the extended CC framework that includes the core RiBAC
policy specification for communities. In Section 5, we discuss related work and in
Section 6, we present our conclusions and discuss future work.

2 Community Computing

In this section, we briefly introduce the CC approach used for developing ubiquitous
systems, where cooperation among agents is a basic issue. In order to design and
develop a CC system, we have earlier proposed two CC models: the simple
community computing (SCC) model [2] and community situation based static CC
model [3]. In this paper, we focus on an extension of the SCC model to incorporate
access control requirements.

2.1 Related Cooperation Based Approaches

Many cooperation based approaches have been proposed in the literature with the goal of
solving emerging large and complex problems. Several groupwares to support CSCW
(Computer Supported Cooperative Work) have been proposed in the literature that
effectively perform common tasks through information sharing among all users [4, 5].

Multiagent based approaches have been frequently used to develop complex and
intelligent systems. Agents in multiagent systems have features such as flexibility and
autonomous problem solving behavior, and the richness of interactions that are useful
for solving complex problems. In a typical multiagent system, agents interact with each
other in order to achieve their common goals. Zambonelli et al. [6] propose Gaia

306 Y. Jung et al.

methodology in which a multiagent system is regarded as a collection of computational
organizations consisting of various interacting roles, and the cooperation among agents
playing different roles aimed towards fulfilling the requirements of the system. PICO
(Pervasive Information Community Organization) is a middleware framework for
dynamically creating mission-oriented communities of autonomous and ubiquitous
software objects, called delegents, that offer ubiquitous services [7].

In [8], Ishida et al. introduce the notion of community computing to support the
process of organizing diverse and amorphous people who are willing to share
knowledge and experiences. The objective of their approach is to make a city-scale
supporting system to assist a human’s everyday life – by creating a community that
represents a real human community. Their work supports the process of sharing
member’s preferences and knowledge so that they can reach consensus.

In [10], Blau emphasizes community computing as an essential emerging
technological environment where users share each other’s computing capabilities and
their identities are spread all over various devices, and points out the need for
significant research in this area.

2.2 Community Computing Model

As a cooperative approach to provide ubiquitous services, we have earlier developed
an agent based approach called the Community Computing (CC) model [2, 3]. The
model helps to realize ubiquitous services by utilizing cooperation among intelligent
agents in a ubiquitous environment. In CC approach, services are provided by
communities of agents having a common goal. This approach helps to intuitively
design ubiquitous services based on agent cooperation. A community consists of
agents cooperating with other agents in order to achieve the community’s goals, and
the problems of ubiquitous computing systems are solved by such communities. We
introduce the essential concepts of community computing below.

 Community - it is a metaphor to abstract a proactive organization that comprises
members cooperating with each others to achieve a particular set of goals. A
community has goals, necessary roles, cooperation, and role-member binding
information. In the CC model, different types of communities are represented as
different community templates. At the execution time, a community instance is
dynamically created according to the corresponding community template.

 Role - it is a well-defined position in a community, with an associated set of
expected capabilities. A role represents a particular responsibility necessary to
achieve a community’s goal. The capability of a role is represented by actions.

 Cooperation - it is a set of cooperative interactions among members assuming the
roles defined for a community in order to achieve community’s goal(s).

 Member - it is a metaphor that abstracts an individual agent involved in a CC
system. We can consider a human user as a member by using the agent of his/her
personal device. An agent can play different roles in different communities
simultaneously.

 Role-member binding - in order to create a community instance, we have to find
most appropriate members for each role. We refer to this process as role-member
binding.

 Society - it is a metaphor to abstract a CC system.

 RiBAC: Role Interaction Based Access Control Model for Community Computing 307

Platform Independent Community Implementation Description {
Community EmergencyService {

Role PATIENT {
Attribute: LOCATION; BLOOD_PRESSURE; PULSE; BODY_TEMPERATURE;
Context: EMERGENCY;
Cast: EMERGENCY; }

Role AMBULANCE {
Attribute: AVAILABILITY; DRIVER; LOCATION; PATIENT_LOCATION;HOSPITAL_LOCATION;
Context: ARRIVE_ON_PATIENT; ARRIVE_ON_HOSPITAL;
Action: transfer_patient_to_hospital; adjust_temperature; adjust_ambulance_speed;
Cast: AVAILABILITY=AVAILABLE; LOCATION= nearest(PATIENT.LOCATION);}

Role MEDICAL_DOCTOR {
Attribute: AVAILABILITY; MAJOR; FIRSTAID_TREATMENT;
Action: remote_examine; make_prescripton;
Cast: AVAILABILITY=AVAILABLE; MAJOR=EMERGENCY; }

Role PARAMEDIC {
Attribute: AVAILABILITY; LOCATION;
Action: save_firstaid_treatment; give_firstaid; bring_patient_to_ambulance; bring_patient_to_hospital;
Cast: AVAILABILITY=AVAILABLE; LOCATION= nearest(AMBULANCE.LOCATION);}

Role HOSPITAL_MANAGER {
Attribute: EMERGENCY_ACCEPTABILITY; LOCATION;
Action: ready_for_emergency_patient;
Cast: EMERGENCY_ACCEPTABILITY=ACCEPTABLE; LOCATION= nearest(PATIENT.LOCATION);}

 Role-MemberType Mapping {
PATIENT:Personal_agent;AMBULANCE:Ambulance_agent;

MEDICAL_DOCTOR:Personal_doctor_agent;
PARAMEDIC:Personal_paramedic_agent; HOSPITAL_MANAGER:Hospital_agent; }

Goal Providing_emergency_service(initiator:PATIENT; participant:AMBULANCE,MEDICAL_DOCTOR,
PARAMEDIC,HOSPITAL) {
PATIENT{

PAR{SEND(MsgType="request", ToWhom=AMBULANCE, certificate(Location));
SEND(MsgType="request", ToWhom=MEDICAL_DOCTOR, certificate(Healthinfo);) }

AMBULANCE{
IF(RECEIVE(MsgType="request", ToWhom=AMBULANCE, certificate(Location)))

transfer_patient_to_hospital; }
MEDICAL_DOCTOR{

IF(RECEIVE(MsgType="request", ToWhom=MEDICAL_DOCTOR, certificate(Healthinfo)))
SEQ{
 remote_examine;make_prescripton;
 PAR{

SEND(MsgType="request", ToWhom=PARAMEDIC, certificate(firstaid_treatment));
SEND(MsgType="request", ToWhom=HOSPITAL_MANAGER, certificate(firstaid_treatment));}}}

PARAMEDIC{
IF(RECEIVE(MsgType="request", ToWhom=PARAMEDIC, certificate(firstaid_treatment)))

save_firstaid_treatment;
IF(AMBULANCE.ARRIVE_ON_PATIENT){

bring_patient_to_ambulance;
give_firstaid; }

IF(AMBULANCE.ARRIVE_ON_HOSPITAL;)
bring_patient_to_hospital;
IF(PATIENT.LOCATION = HOSPITAL.LOCATION) { SUCCESS; }

HOSPITAL_MANAGER{
IF(RECEIVE(MsgType="request", ToWhom=HOSPITAL, certificate(firstaid_treatment))

ready_for_emergency_patient; } } }

Fig. 1. A part of description for ‘EmergencyService’ community in a simple community
computing model

308 Y. Jung et al.

In the SCC model, a community has a set of roles, one goal, and mapping
information between roles and member agents’ types. Each role has attributes,
contexts, actions, and the condition for membership assignment. A context of a role is
implicitly defined by attributes of the role. The role-membertype mapping indicates
which agent types can take which roles defined for a community. The goal description
part indicates the initiator role and participant roles of cooperation, and the
cooperation itself. To describe a cooperation, the SCC framework uses constructs of
OCCAM, a parallel computing language, such as SEQ, PAR, ALT, IF, etc.

As a running example, we explain a part of a community description in a simple
CC model (see Fig. 1). The example community is based on an emergency service
scenario as follows. While an old man is walking in a street, he suddenly falls down.
In order to provide an emergency service to him, an instance of ‘EmergencyService’
community is created. This community type consists of five roles; patient, ambulance,
paramedic, medical doctor, and hospital manager. For each role, agents are selected
by the casting condition and the role-membertype mapping condition described in the
SCC model. After the creation of a community instance, all member agents cooperate
to provide the first-aid service to the patient while the patient is transferred to a close
by hospital. When the patient falls down on a street, the patient agent interacts with
ambulance agent and medical doctor’s agent. The patient agent calls the nearest
ambulance and requests help for a doctor. At this time, the patient agent should grant
the access to patient’s information to doctor and ambulance. After obtaining the
patient’s location, the ambulance moves to where the patient is located. At the same
time, a doctor makes a prescription for the emergency patient using patient’s health
information, and sends it to the paramedic and the hospital. When ambulance arrives,
the paramedic brings the patient into the ambulance and then provides first-aid
treatment according to the doctor’s prescription. Finally, the patient is transferred to
the hospital, and the goal of ‘EmergencyService’ community instance is achieved.

3 Role Interaction-Based Access Control Model

In this section, we propose role interaction based access control (RiBAC) models for
the SCC model. Note that agent interaction is a key issue in a CC model.
Furthermore, interactions authorized for agents are basically defined by what roles
within the community the interacting agents are playing. Such interactions can hence
be cast as accesses authorized for agents playing specific roles. For fine-grained role-
based policy specification, we categorize agent interactions within a community into
two types, as depicted in Fig. 2.

Role-action interaction, shown in Fig.2.a, involves an initiator role (ri) interacting
with a target role (rt) to indicate that the target role should perform some action it is
capable of – in other words, we model this as the initiator role authorized to invoke
the target role’s action. The pair role and its action invocable by other roles can be
considered as a role-action permission.

In Operation-role interaction, depicted in Fig.2.b, an initiator role can interact with
a target role by performing some operation on the target role itself. In this paper, the
pair operation and a target role is termed as a role-oriented permission; we use the
term object-oriented permission to describe traditional RBAC permission that
represents an operation over an object.

 RiBAC: Role Interaction Based Access Control Model for Community Computing 309

Ri

Role-
Action

Role-Action
Permission

Capable-of

Rt

Role-
Operation

Role-Oriented
Permission

Capable-of

Ri

Rt

Exercises
Permission

(a) Role-Action Interaction (b) Operation-Role Interaction

Performed
on

Invokes

Exercises
PermissionPerforms

Fig. 2. Two types of Interaction Permissions in Role-based Agent Interaction

It is important to note that in a typical scenario there could exist interdependencies
among different types of interactions and object-oriented permissions. For instance, a
particular role-action permission may include several object-oriented permissions
needed to complete the defined action. If such permission interdependency details
could be provided by the underlying environment model, it can be used for access
control policy analysis.

In the following subsections, we define the core RiBAC model that extends
traditional RBAC with the notion of interaction permissions. We also provide a
hierarchical version of the model to leverage hierarchical structures for permission
inheritance. It is followed by a constrained RiBAC model.

3.1 Core RiBAC Model

Fig. 3 illustrates the core RiBAC model. Instead of users in standard RBAC model,
agents (AGENTS) are the entities that can request for access in a MAS environment.
Agents are assigned to roles (ROLES) and can exercise the permissions assigned to
the roles by activating them in a session (SESSIONS).

Depending on the application, various objects could exist in the environment which
needs to be accessed by agents. The valid pairs objects (OBS) and operations on them
(OPS) form the object-oriented permissions (OOPRMS). Roles are authorized for
object-oriented permissions that are assigned to them through the object-oriented
permission assignment relation (OOPA).

Interaction permissions include role-action and role-oriented permissions. The
valid pairs of roles and their actions (ROLE-ACTIONS) invocable by other roles form
the role-action permissions (RAPRMS). Role-action permissions are assigned to
initiator roles according to the policy through role-action permission assignment
relation (RAPA). An agent that has activated a role is authorized to exercise the
assigned role-action permissions (to its role) on any agent that is assuming the target
role in the permission. The valid pairs of an operation (Role-OPS) and a target role
that the operation can be performed on form role-oriented permissions (ROPRMS).

310 Y. Jung et al.

OOPRMS

AGENTS ROLES

ROLE-
ACTIONS

OPS OBS

SESSIONS

OOPAAA

ROPA ROLE-
OPS

RAPRMS

ROPRMS

RAPA

RH

Core RiBAC
Hierarchical RiBAC

Fig. 3. RiBAC Model

Role-oriented permissions are assigned to authorized initiators using the role-oriented
permission assignment relation (ROPA).

Note an interaction permission related to a role can also be assigned to the same
role; this will allow agents with the same role in the community to interact with each
other. For instance, a guarding agent in a patrol community should be able to ask for
help from other guarding agents.

The formal definition of the core RiBAC model follows. It consists of the
following basic sets:

− AGENTS: the set of all participating agents in a community
− ROLES: the set of all roles available in a community
− SESSIONS: the set of all sessions created for agents in a community
− OBS: the set of all objects in the environment
− OPS: the set of all applicable operations on objects in the environment
− OOPRMS ⊆ OPS × OBS, the set of all object-oriented permissions
− ROLE-ACTIONS: the set of all actions that are defined for community roles and

can be invoked through interactions
− RAPRMS ⊆ ROLES × ROLE-ACTIONS, the set of all role-action permissions
− ROLE-OPS: the set of all operations that are performable on roles through

interactions
− ROPRMS ⊆ ROLE-OPS × ROLES, the set of all role-oriented permissions

The following relations define the access policy in RiBAC:

− AA ⊆ AGENTS × ROLES, the agent to role assignment
− OOPA ⊆ OOPRMS × ROLES, the object-oriented permission to role assignment
− RAPA ⊆ RAPRMS × ROLES, the role-action permission to role assignment
− ROPA ⊆ ROPRMS × ROLES, the role-oriented permission to role assignment

 RiBAC: Role Interaction Based Access Control Model for Community Computing 311

The following relations capture the runtime state of access control through
sessions:

− SessionAgent(s: SESSIONS) → AGENTS, the mapping of session s to its
corresponding agent

− SessionRoles(s: SESSIONS) → 2ROLES, the mapping of session s to the set of active
roles in it

The following functions retrieve the authorization information according to the
policy:

− authorized_roles(a: AGENTS) → 2ROLES, the mapping of agent a to the set of its
authorized roles that it can activate

− authorized_ooprms(r: ROLES) → 2OOPRMS, the mapping of role r to the set of its
authorized object-oriented permissions

− authorized_raprms(r: ROLES) → 2RAPRMS, the mapping of role r to the set of its
authorized role-action permissions

− authorized_roprms(r: ROLES) → 2ROPRMS, the mapping of role r to the set of its
authorized role-oriented permissions

− authorized_prms(r: ROLES) → 2OOPRMS∪RAPRMS∪ROPRMS, the mapping of role r to
the set of its authorized object-oriented and interaction permissions. Formally:
authorized_prms(r) = authorized_ooprms(r) ∪ authorized_raprms(r) ∪
authorized_roprms(r)

In order to demonstrate the usage of core RiBAC model, we revisit the the
‘EmergencyService’ community explained in Section 2 (Fig. 1) in Fig. 4. Fig. 5
illustrates the same example policy using graphical notations.

ROLES = {Patient, Doctor, Paramedic, Hospital, Ambulance}
OBS = {hospital_medical_equipment, termometer, ambulance_medical_equipment,

ambulance_vehicle}
OPS = {operate, read}
OOPRMS = {OOP1=(operate,hospital_medical_equipment), OOP2=(read,termometer),

OOP3=(operate,ambulance_medical_equipment), OOP4=(operate,ambulance_vehicle)}
ROLE-ACTIONS={give_health_status, give_location, remote_examine, give_prescription,

provide_firstaid, prepare_for_patient, transfer_patient}
RAPRMS={RAP1=(Patient,give_health_status), RAP2=(Patient,give_location),

RAP3=(Doctor,remote_examine), RAP4=(Doctor,give_prescription),
RAP5=(Paramedic,provide_firstaid), RAP6=(Hospital,prepare_for_patient),
RAP7=(Ambulance,transfer_patient)}

ROLE-OPS={bring_into_ambulance, provide_firstaid}
ROPRMS={ROP1=(bring_into_ambulance,Patient), ROP2=(provide_firstaid,Patient)}
OOPA={(OOP1,Doctor), (OOP2,Doctor), (OOP3,Paramedic), (OOP4,Ambulance)}
RAPA={(RAP1,Doctor), (RAP1,Paramedic), (RAP1,Ambulance), (RAP2,Ambulance), (RAP3,Patient),

(RAP4,Paramedic), (RAP4,Hospital), (RAP5,Doctor), (RAP6,Doctor), (RAP7,Patient)}
ROPA={(ROP1,Paramedic), (ROP2,Paramedic)}

Fig. 4. An example core RiBAC policy specification for ‘EmergencyService’ community

312 Y. Jung et al.

bring _into_ambulance

(read, temperature)

transfer_patient

give_location

remote_examine

prepare_for_patient

provide_firstaid

provide_firstaid

RAPRM access
ARPRM access
OPRM access

Role’s action

Role

(ops, obj) OPRM

(operate, ambulance_
medical_equipment)

(operate, hospital_medical_equipment)

give_prescription

Doctor

Hospital

Paramedic

Ambulance

Patient

give_health_status

(operate, ambulance_vehicle)

transfer_patient

Fig. 5. Graphical representation of the example core RiBAC policy for ‘EmergencyService’
community

3.2 Hierarchical RiBAC Model (H-RiBAC)

In this section, we propose the hierarchical RiBAC model. One advantage of RBAC
model is its ability to leverage hierarchical structure of roles for better permission
management. Analogous to standard RBAC, permissions in RiBAC (including object-
oriented and interaction permissions) can be inherited through a role hierarchy. We
define the role hierarchy RH and override the authorization functions in core RiBAC
to cope with it as follows:

− RH ⊆ ROLES × ROLES is a partial order relation on ROLES, denoted as ≥, where
r ≥ r' only if all permissions of r' are inherited by r and agents assigned to r can
also activate r'. Formally: r ≥ r' ⇒ authorized_prms(r')⊆ authorized_prms(r) ∧
[r'⊆authorized_roles(a); (a,r)∈AA]

− authorized_roles(a: AGENTS) → 2ROLES, the mapping of agent a to the set of its
authorized roles that it can activate in presence of role hierarchy. Formally:
authorized_roles(a: AGENTS) = { r∈ROLES | (a,r')∈AA, r'≥r}

− authorized_ooprms(r: ROLES) → 2OOPRMS, the mapping of role r to the set of its
authorized object-oriented permissions in presence of role hierarchy. Formally:
authorized_ooprms(r) = {p∈OOPRMS | r ≥ r', (r',p)∈OOPA}

− authorized_raprms(r: ROLES) → 2RAPRMS, the mapping of role r to the set of its
authorized role-action permissions in presence of role hierarchy. Formally:
authorized_raprms(r) = {p∈RAPRMS | r ≥ r', (r',p)∈RAPA}

− authorized_roprms(r: ROLES) → 2ROPRMS, the mapping of role r to the set of its
authorized role-oriented permissions in presence of role hierarchy. Formally:
authorized_roprms(r) = {p∈ROPRMS | r ≥ r', (r',p)∈ ROPA}

 RiBAC: Role Interaction Based Access Control Model for Community Computing 313

We modify our example to form a role hierarchy among paramedic, doctor, and
ambulance, also introducing two new roles. Fig. 6 illustrates a graphical presentation
of the hierarchy relation among roles and their assigned permissions. In the hierarchy,
the role ‘Basic_Medical_Service’ and the role ‘Medical_Staff’ are intermediate roles
that are not assigned directly to agents. According to the role hierarchy, ‘Paramedic’
and ‘Doctor’ have permissions of ‘Medical_Staff’ and ‘Basic_Medical_Service’.
‘Ambulance’ also inherits the permission of basic medical service to get the patient
health status. Using such patient’s health information, an ambulance adjusts the
temperature and speed of the vehicle in order to minimize risks to the patient’s health.
The formal specification of the example policy is shown in Fig 7.

(provide_firstaid, Patient)

(bring_into_ambulance ,Patient)

ARPRMS

RAPRMS

(operate, ambulance_medical_equipment) (operate, hospital_medical_equipment)

(Doctor, provide_firstaid) (provide_professional_treatment, Patient)

Medical
Staff

Paramedic Doctor

Basic
Medical
Service

(read, medical_history)

Ambulance

(Patient, give_health_status)

OPRMS

Permission Inheritance
Relationship

Junior-role Senior-role

Fig. 6. A role hierarchy example for the ‘EmergencyService’ community

ROLES = {Patient, Doctor, Paramedic, Hospital, Ambulance, Medical_Staff, Basic_Medical_Service}
RH={(Medical-Staff,Basic-Medical-Service), (Ambulance,Basic-Medical-Service),

(Doctor,Medical-Staff), (Paramedic,Medical-Staff)}
OBS = {hospital_medical_equipment, ambulance_medical_equipment, medical_history}
OPS = {operate, read}
OOPRMS={OOP1=(operate,hospital_medical_equipment),

OOP2=(operate,ambulance_medical_equipment), OOP3=(read,medical_history)}
ROLE-ACTIONS={give_health_status, provide_firstaid}
RAPRMS= { RAP1=(Patient,give_health_status), RAP2=(Paramedic,provide_firstaid)}
ROLE-OPS={bring_into_ambulance, provide_firstaid, provide_professional_treatement}
ROPRMS={ROP1=(bring_into_ambulance,Patient), ROP2=(provide_firstaid,Patient),

ROP3=(provide_professional_treatement,Patient)}
OOPA={(OOP1,Doctor), (OOP2,Paramedic), (OOP3,Medical-Staff)}
RAPA={(RAP1,Basic-Medical-Service), (RAP2,Paramedic)}
ROPA={(ROP1,Medical-Staff), (ROP2, Medical-Staff), (ROP3, Doctor)}

Fig. 7. An example policy of H-RiBAC for ‘EmergencyService’ community

314 Y. Jung et al.

3.3 Constrained RiBAC Model (C-RiBAC)

Constrained RiBAC (C-RiBAC) adds separation of duty and cardinality constraints to
the core RiBAC model. Separation of duty (SoD) constraints have been discussed in
the RBAC literature as a mechanism to minimize the likelihood of fraud and major
errors through simultaneous access of users to key organizational tasks or deliberate
collusion of users. Community computing environments have similar vulnerabilities
as organizations. We propose static and dynamic SoD constraints for RiBAC. In static
SoD, no agent can be assigned to a specific number or more of roles in a role set. The
SSoD relation is defined as follows:

- SSoD ⊆ 2ROLES × N, a collection of pairs (rs,n) that defines static SoDs, where
for each (rs,n) no agent should be assigned to n or more roles from the set rs.
Formally: (rs,n)∈SSoD⇒∄a∈AGENTS, |authorized_roles(a)∩rs|≥n .

In contrast to static SoD, dynamic SoD enforces the SoD constraint on role
activations instead of agent-role assignments. As a consequence an agent cannot
activate certain roles together in one session. The DSoD relation is defined as follows:

- DSoD ⊆ 2ROLES × N, a collection of pairs (rs,n) that defines dynamic SoDs,
where for each (rs,n) no agent can activate n or more roles from the set rs
together in one session. Formally:
(rs,n)∈DSoD⇒∄s∈SESSIONS, |{r∈SessionRoles(s)|r∈rs}|≥n .

In addition to SoD constraints, an access control mechanism can enforce cardinality
constraints. For instance, a community can require a minimum/maximum number of
agents to play some particular role in the community; otherwise the community may
fail to achieve its goal. Cardinality constraints can be static or dynamic. Static
cardinality constraints are applicable on agent-role assignment relation, while dynamic
cardinality constraints are enforced on active roles in agents’ sessions. We define four
different cardinality constraints as follows:

- SMinCardinality ⊆ ROLES × N, a collection of pairs (r,n) that defines static
minimum cardinality for roles, where for each (r,n) at least n agents should be
assigned to the role r. Formally:
(r,n)∈SMinCardinality ⇒ |{a∈AGENTS|r∈authorized_roles(a)}|≥n .

- SMaxCardinality ⊆ ROLES × N, a collection of pairs (r,n) that defines static
maximum cardinality for roles, where for each (r,n) at most n agents should be
assigned to the role r. Formally:
(r,n)∈SMaxCardinality ⇒ |{a∈AGENTS|r∈authorized_roles(a)}|≤n .

- DMinCardinality ⊆ ROLES × N, a collection of pairs (r,n) that defines
dynamic minimum cardinality for roles, where for each (r,n) at least n agents
should have activated the role r at a particular time. Formally: (r,n)∈
DMinCardinality ⇒ |{s∈SESSIONS|r∈SessionRoles(s)}|≥n .

- DMaxCardinality ⊆ ROLES × N, a collection of pairs (r,n) that defines
dynamic maximum cardinality for roles, where for each (r,n) at most n agents
should be allowed to activate the role r at a particular time. Formally: (r,n)∈
DMaxCardinality ⇒ |{s∈SESSIONS|r∈SessionRoles(s)}|≤n .

 RiBAC: Role Interaction Based Access Control Model for Community Computing 315

In the presence of various constraints, it is important to ensure that a RiBAC policy
is consistent. A static minimum cardinality of m and a static maximum cardinality of
n (n<m) for the same role are impossible to be enforced at the same time. Respecting
the following rule by the model prevents such a conflict:

- ∀r∈ROLES∀m,n∈N, (r,m)∈SMinCardinality ∧ (r,n)∈SMaxCardinality
⇒ m≤n

If we assume the same situation above however with dynamic constraints instead,
role r cannot be activated at all. Although, in the latter case the role r becomes
useless, but there is no consistency issue for policy enforcement.

The two types of static cardinality and the dynamic maximum cardinality are easily
enforceable by keeping a track of assigned or activated roles in a community and
avoiding the violation of them. However, the dynamic minimum cardinality is a little
tricky to enforce depending on the environment. We assume that there is a proper
enforcement mechanism employed in the community to force agents to keep the
minimum active roles according to the dynamic minimum cardinality. For instance
upon creation of the community, the system can force some agents to activate their
roles (even without their discretion), and otherwise can fail the creation.

Cloning

Technician1

Technician2

Technician3

assign

assign

assign

Activation rule: “At most , one user can activate”

a) With ‘activation ‘ concept

Cloning

Cloning

Cloning

A

assign

assign

assign

b) Without ‘activation’ concept

Three users assigned to the role
Change user-role assignment
One user assigned to the role,

Technician1

Technician2

Technician3

Fig. 8. Need for the ‘activation’ concept in community

In fact, the SCC model does not include explicit notion of activation since it
assumes that the assigned roles are activated as soon as the agents take the roles. We
believe that such an assumption is not adequate enough and need to be removed to
support scenarios where explicit notion of activation is required. As an example,
consider a biotechnology project community in which there is a role for cloning body
tissues and three technicians are able to take the role as shown in Fig. 8. In this case,
three technicians can be assigned to the ‘cloning’ role. However, this job should be
performed by a totally isolated technician because it is a very delicate job. If one
technician does perform cloning, then we should prevent accesses to cloning task
from another technician. In order to enforce that, we can specify a policy that allows
at most one user to activate the ‘cloning’ role at a time (dynamic maximum
cardinality constraint). Although an alternative way is to change the role assignments
every time a user wants to access the ‘cloning’ role according to the community’s

316 Y. Jung et al.

situation as shown in Fig. 8, such an approach would be very cumbersome due to
frequent changes in the policy.

3.4 Constrained Hierarchical RiBAC Model (CH-RiBAC)

A comprehensive RiBAC model is formed by combination of hierarchical and
constrained RiBAC models. However, the implications of such combination should
be precisely captured. For instance, consider role r1 has dynamic maximum
cardinality constraint of 3, and there exist role r2 which is senior to r1 (r2 ≥ r1). In such
a configuration, if more than 3 agents activate role r2 it can be interpreted as violation
of the cardinality constraint because agents assigned to r2 can also assume r1 through
the role hierarchy. However, agents acting as role r2 may not necessarily act as role r1
all the time (only sometimes require r1’s permissions), which makes the mentioned
interpretation too rigid.

In order to provide more flexibility and truly capture the behavior of constraints in
the presence of role hierarchy, we adopt the notion of hybrid hierarchy that is
originally defined in the context of Generalized Temporal RBAC (GTRBAC) [11]. A
hybrid hierarchy differentiates between permission usage and role activation
capability in a hierarchy, by taking into account three possible relations: permission
inheritance (I), activation (A), and inheritance-activation (IA). If role r1 is I-senior to
role r2 (r1 ≥I r2), it inherits all the permissions r2 has. If role r1 is A-senior to role r2 (r1
≥A r2), then a user assigned to r1 can activate r2 but the role r1 does not inherit r2's
permissions. Finally, r1 is IA-senior to r2 if and only if r1 is both I-senior and A-
Senior to r2 (r1 ≥IA r2). Formal definitions for semantics of hybrid hierarchy in RiBAC
involve minor changes to the overridden functions in Section 3.2. The hierarchy
relation (≥) in the definition of function authorized_roles should be replaced with
activation relation (≥A), and the hierarchy relation (≥) in the definition of other
authorization functions should be replaced with permission inheritance relation (≥I).

By leveraging the activation and permission inheritance relationships, we achieve
more flexibility in policy specification. For instance, to resolve the problem
mentioned in the above example we can specify r2 A-senior to r1. Therefore,
whenever an agent activates the role r2, the cardinality constraint is respected, and an
agent can also activate the role r1 when it needs but according to the cardinality
constraint.

The definitions for dynamic constraints in presence of hybrid hierarchy are
overridden as follows (static constraint definitions remain valid):

- DSoD ⊆ 2ROLES × N, a collection of pairs (rs,n) that defines dynamic SoDs in
presence of hybrid hierarchy, where for each (rs,n) no user can activate or use
permissions of n or more roles from the set rs together in one session.
Formally:
(rs,n)∈DSoD⇒∄s∈SESSIONS, |{r|r'≥I r, r'∈rs, r'∈SessionRoles(s)}|≥ n .

- DMinCardinality ⊆ ROLES × N, a collection of pairs (r,n) that defines
dynamic minimum cardinality for roles in presence of hybrid hierarchy, where
for each (r,n) at least n agents should have activated the role r or its I-senior at
a particular time. Formally:
(r,n)∈DMinCardinality⇒ |{s∈SESSIONS|r'≥I r, r'∈SessionRoles(s)}|≥ n .

 RiBAC: Role Interaction Based Access Control Model for Community Computing 317

- DMaxCardinality ⊆ ROLES × N, a collection of pairs (r,n) that defines
dynamic maximum cardinality for roles in presence of hybrid hierarchy, where
for each (r,n) at most n agents should be allowed to activate the role r at a
particular time. Formally:
(r,n)∈DMaxCardinality⇒ |{s∈SESSIONS| r'≥I r, r'∈SessionRoles(s)}|≤ n.

4 Extended Simple Community Computing Model

In this section, we extend the SCC specification framework to allow specifying core
RiBAC policies as shown in Fig. 8. We refer the readers to [2] for the complete
details of SCC specification language. Based on the formal definition described in
Fig. 9, we represent an example of SCC model involving core RiBAC policies for the
emergency service scenario in Fig. 10.

<RiBAC_policy_description>:= RiBAC Policy { <Role_Policy>* }
<Role_Policy>:= <Role_Name> { <Role_OOPRMSs>*, <Role_ROPRMSs>*, <Role_RAPRMSs>* }
<Role_OOPRMSs>:= OOPRMSs = { <OOPRM>+ },
<OOPRM>:=(<OPS>,<OBS>) , <OPS>:=<String>, <OBS>:=<String>
<Role_ROPRMSs>:=ROPRMS = { <ROPRMS>+ }, <ROPRMS>:= (<Action_Name>,<Role_Name>)
<Role_RAPRMSs>:=RAPRMS = { <RAPRMS>+ }, <RAPRMS>:= (<Role_Name>,<Action_Name>)

Fig. 9. BNF definition for describing core RiBAC Policy in the SCC model

Platform Independent Community Implementation Description {
Community EmergencyService {

Role PATIENT { …}
 ……….

 Role-MemberType Mapping { …. }
Goal Providing_emergency_service(….. }
RiBAC Policy {
 DOCTOR {

OOPRMSs={(operate,hospital_medical_equipment), (read, temperature)},
RAPRMSs={(PATIENT,give_health_status),(PARAMEDIC,provide_firstaid),

(HOSPITAL,prepare_for_patient)} }
PATIENT {

RAPRMSs={(DOCTOR,remote_examine),(AMBULANCE,transfer_patient)} }
AMBULANCE {

OOPRMSs={(operate,ambulance_vehicle) },
ROPRMSs={(transfer_patient,PATIENT)}
RAPRMSs={(PATIENT,give_health_status),(PATIENT,give_location)} }

PARAMEDIC {
OOPRMSs={(operate,ambulance_medical_equipment) },
ROPRMSs={(bring_into_ambulance,PATIENT), (provide_firstaid,PATIENT)}
RAPRMSs={(PATIENT,give_health_status),(DOCTOR,give_prescription)} }

HOSPITAL_MANAGER {
RAPRMSs={(DOCTOR,give_prescription)} }

 } }

Fig. 10. An example of the simple community computing model employing core RiBAC

318 Y. Jung et al.

Note that the access control policies for agent interactions are derived from the
cooperation definition of communities. Therefore changes in cooperation results in
change of access control policies. For the current extension, based on the underlying
assumptions in SCC, we consider only predefined cooperation and therefore
predefined access control policy. As one of our future works, we leave room for
developing more advanced extensions in which policies can be dynamically
reconfigured based on changes in cooperation.

In order to enforce RiBAC policies in a CC system, we propose an extension to our
existing computation model [2]. In the extended model, policies regarding object-
oriented permissions are enforced in a centralized way by the society manager. For
policies related to agent interactions, we enforce them in a distributed way. Agents
receive the interaction permission specifications in which they are interaction targets
from community manager. Based on such specifications, target agents can enforce
control over interactions targeted to them. Also note that agents may receive
specification about all the permissions they have from community manager, in order
to be able to plan based on their accesses. Fig. 11 shows the extended computational
model of a community computing system to enforce RiBAC policies.

Fig. 11. Enforcement Architecture for core RiBAC

 RiBAC: Role Interaction Based Access Control Model for Community Computing 319

5 Related Works

Many researchers have investigated the security requirements and challenges in multi-
agent systems, and pointed out the need for access control in these environments
[12, 13]. However, most solutions proposed for access control in MAS are mainly
concerned about distributing authorization information using trust management
frameworks [14, 15, 16], and less about the access control model itself. These proposals
usually adopt SPKI/SDSI (simple public key infrastructure/simple distributed security
infrastructure), which is able to manage authorization in a distributed manner using
authorization certificates. For instance in [16], Wen et al. propose semi-distributed
authorization scheme, where agents acquire authorization certificates from an authoriza-
tion server based on the role certificates their corresponding human users provide.

The closest work to the theme of this paper has been done by Omicini et al. in the
context of an infrastructure for coordination support in agent-based systems, called
TuCSoN [17]. In [18], the authors integrate simple access matrix model (based on
agent identity) in a decentralized fashion to authorize exchange of communication
tuples among agents. As mentioned, only simple access control lists are allowed by
this scheme with an added dimension for controlling tree-structured agents. Later,
Omcini et al. explore the integration of RBAC into the TuCSoN infrastructure [19]. In
order to control the coordination protocol, the authors define a prolog-like role policy
definition language. The policies can specify the authorized actions considering the
current state of the role and conditions, while determining the next state. The states
are managed as part of an alternative for RBAC session. While their approach seems
flexible and powerful, the definition of a state-based policy can be very impractical.
Also their approach does not include explicit semantics for authorized role
interactions, which has been emphasized in this paper, and provides no formal
semantics for SoDs and role hierarchy.

Gaia methodology [6] involves role concept and an interaction model among agents.
In Gaia, some access control concepts are discussed such as role permissions (on
objects), or organizational safety rules that could act as separation of duty constraints.
However, we have a more specific approach to specify authorized interaction
compared to the interaction notion in Gaia. Our interaction modeling approach is more
practical to enable specification and control over interactions in detail. In addition, we
provide hierarchical relations among roles to enable more manageable access control
policies.

6 Conclusion and Future Work

In order to control accesses to critical data or actions of other agents, , we have
proposed a family of RiBAC (Role interaction Based Access Control) models
including core RiBAC, H-RiBAC that incorporates role hierarchy, C-RiBAC that
incorporates SoD and cardinality constraints, and CH-RiBAC that incorporates
constraints and hybrid hierarchy. These are extensions of the standard RBAC models
and cover the role interaction as one of the important aspects of MAS. RiBAC models
are useful for securing ubiquitous systems characterized by significant agent
interactions. We have extended the earlier proposed simple community computing
modeling framework to incorporate the proposed RiBAC models.

320 Y. Jung et al.

As future work, we plan to extend the proposed work to cope with context-aware
ubiquitous environments by integrating it with time and location based RBAC
(LoTRBAC) model [20]. We are currently implementing a working prototype of the
proposed work. Moreover, we will investigate models that could support administra-
tion and delegation of role interaction permissions in the context of community
computing. We also plan to explore security analysis and policy verification method,
as well as efficient enforcement techniques for RiBAC policies.

Acknowledgments. This research is supported by Foundation of ubiquitous computing
and networking project (UCN) Project, the Ministry of Knowledge Economy (MKE)
21st Century Frontier R&D Program in Korea and a result of subproject UCN 08B3-
S2-10M, and by the US National Science Foundation award IIS-0545912.

References

1. Wooldridge, M., Jennings, N.R.: The Cooperative Problem-Solving Process. Journal of
Logic Computation 9(4), 563–592 (1999)

2. Jung, Y., Lee, J., Kim, M.: Multi-agent based Community Computing System Development
with the Model Driven Architecture. In: Proc. of 5th International Joint conference on
Autonomous Agents and Multiagent Systems (AAMAS 2006), pp. 1329–1331 (2006)

3. Jung, Y., Lee, J., Kim, M.: Community Computing Model supporting Community
Situation based Cooperation and Conflict Resolution. In: Obermaisser, R., Nah, Y.,
Puschner, P., Rammig, F.J. (eds.) SEUS 2007. LNCS, vol. 4761, pp. 47–56. Springer,
Heidelberg (2007)

4. Wilson, P., et al.: Computer Supported Cooperative Work. Intellect Books, Oxford (1991)
5. Borghoff, U.M., Schlichter, J.H.: Computer-Supported Cooperative Work: Introduction to

Distributed Applications. Springer, Berlin (2000)
6. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: The

Gaia Methodology. ACM Transactions on Software Engineering and Methodology 12(3),
317–370 (2003)

7. Kumar, M., Shirazi, B., Das, S.K., Singhal, M., Sung, B., Levine, D.: Pervasive
Information Communities Organization PICO: A Middleware Framework for Pervasive
Computing. IEEE Pervasive Computing 2(3), 72–79 (2003)

8. Ishida, T. (ed.): Community Computing and Support Systems. LNCS, vol. 1519. Springer,
Heidelberg (1998)

9. Van den Besselaar, P., Tanabe, M., Ishida, T.: Introduction: Digital Cities Research and
Open Issues. In: Tanabe, M., van den Besselaar, P., Ishida, T. (eds.) Digital Cities 2001.
LNCS, vol. 2362, pp. 1–9. Springer, Heidelberg (2002)

10. Blau, J.: Microsoft: Community Computing is On the Way. InfoWorld Magazine,
 http://www.infoworld.com/article/05/11/22/
 HNcommunitycomputing_1.html

11. Joshi, J.B.D., Bertino, E., Latif, U., Ghafoor, A.: A Generalized Temporal Role-Based
Access Control Model. IEEE Transactions on Knowledge and Data Engineering 17(1), 4–23
(2005)

12. Beydoun, G., Low, G., Mouratidis, H., Henderson, B.: Modelling MAS-Specific Security
Features. In: IEEE 2nd Symposium on Multi-Agent Security and Survivability, pp. 75–84
(2005)

 RiBAC: Role Interaction Based Access Control Model for Community Computing 321

13. Mouratidis, H., Giorgini, P., Manson, G.: Modeling Secure Multiagent Systems. In: Proc.
of AAMAS 2003, pp. 859–866 (2003)

14. Hu, Y., Tang, C.: Agent-Oriented Public Key Infrastructure for Multi-agent E-service. In:
Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2773, pp. 1215–1221.
Springer, Heidelberg (2003)

15. Poggi, A., Tomaiuolo, M., Vitaglione, G.: A Security Infrastructure for Trust Management
in Multi-agent Systems. In: Falcone, R., Barber, S., Sabater-Mir, J., Singh, M.P. (eds.)
Trusting Agents for Trusting Electronic Societies. LNCS, vol. 3577, pp. 162–179.
Springer, Heidelberg (2005)

16. Wen, W., Mizoguchi, F.: An Authorization-based Trust Model for Multiagent Systems.
Applied Artificial Intelligence 14(9), 909–925 (2000)

17. Omicini, A., Zambonelli, F.: Coordination for Internet Application Development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

18. Cremonini, M., Omicini, A., Zambonelli, F.: Coordination and access control in open
distributed agent systems: The tuCSoN approach. In: Porto, A., Roman, G.-C. (eds.)
COORDINATION 2000. LNCS, vol. 1906, pp. 99–114. Springer, Heidelberg (2000)

19. Omicini, A., Ricci, A., Viroli, M.: RBAC for Organisation and Security in an Agent
Coordination Infrastructure. In: Proc. of the 2nd International Workshop on Security Issues
in Coordination Models, Languages, and Systems, pp. 65–85 (2004)

20. Chandran, S.M., Joshi, J.B.D.: LoT-RBAC: A Location and Time-based RBAC Model. In:
Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE
2005. LNCS, vol. 3806, pp. 361–375. Springer, Heidelberg (2005)

	RiBAC: Role Interaction Based Access Control Model for Community Computing
	Introduction and Motivation
	Community Computing
	Related Cooperation Based Approaches
	Community Computing Model

	Role Interaction-Based Access Control Model
	Core RiBAC Model
	Hierarchical RiBAC Model (H-RiBAC)
	Constrained RiBAC Model (C-RiBAC)
	Constrained Hierarchical RiBAC Model (CH-RiBAC)

	Extended Simple Community Computing Model
	Related Works
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

