
Secure and Conditional Resource Coordination for
Successful Collaborations

Dongxi Liu, Surya Nepal, David Moreland, Shiping Chen, Chen Wang, and John Zic

Networking Technologies Lab, CSIRO ICT Center, Marsfield, NSW 2122, Australia
firstname.lastname@csiro.au

Abstract. Successful completion of collaborations is necessary for collaborat-
ing participants to achieve their prescribed collaboration purposes. In this paper,
we address the problem of successful completion of collaborations under a new
model, called collaborative resource model. This model is graph-based, allow-
ing participants to describe different ways to contribute and require resources for
collaborations and the dependency relations among these resources. Resources in
this model are protected by access control policies declared not only by resource
providers but also by resource requestors. The requestors policies state how they
will redistribute the acquired resources and thus increase the confidence of the
providers to share resources. Except access control policies, resources are also
constrained by usage conditions to reflect the fact, for instance, that a resource
might be available only at some time. Based on this model, we present a coor-
dination mechanism. Successful coordination means that all participants can get
the necessary resources to complete their collaborations.

Keywords: Secure Resource Model, Robust Collaboration, Resource Coordi-
nation, Access Policies.

1 Introduction

Recently, a communication trend has clearly emerged for resources to be able to dynam-
ically collaborate with each other within a distributed environment for various applica-
tion scenarios, such as health, education and emergencies. This type of collaborative
environment is rapidly becoming a commonplace means for enabling a collective of
entities to deliver significantly bigger, better and more beneficial outcomes than they
otherwise could by themselves. All collaborations are established for certain beneficial
purposes. In order to achieve these purposes, it is necessary to guarantee the collabora-
tions can be completed successfully by all participants. In particular for mission-critical
collaborations, such as collaborative medical operations and collaborative military ac-
tions, the failure of such collaborations may cause great damages or losses.

The failures of collaboration can be caused by various reasons based on the fact
that collaborations always involve resource sharing among participants with particular
business protocols. For example, a failure can happen if one participant uses a protocol
mismatched with the protocol used by other participants [1,2]. However, in this paper,
we focus on the reason where some participants fail to get the necessary resources for
continuing the current collaboration either because the resources are not available or

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 287–303, 2009.
c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

288 D. Liu et al.

they do not have the privileges to access the resources. For example, suppose an opera-
tion is being collaborated by doctors from several hospitals. If during this operation one
doctor from outside needs to access the medical records managed by the local hospital,
but without enough rights, then the operation may have to get stopped. This will be a
disaster for the patient.

In this paper, we first propose a collaborative resource model, and then based on
this model we give a secure resource coordination mechanism. Before a collaboration
begins, the involved resources are coordinated. A successful coordination guarantees
that all participants can obtain the necessary resources to complete their collaboration.

1.1 Overview of the Collaborative Resource Model

In our collaborative resource model, participants not only contribute resources, but also
require resources from other participants to complete collaborations. The resources con-
tributed or required may be dependent on each other and the model allows participants
to express such dependency relations among resources. For example, participants can
express in this model what resources they will contribute according to what resources
they can acquire from other participants. There are different reasons for this: the con-
tributed resources cannot function correctly unless the dependent resources can be ac-
quired, or participants do not feel fair if they think they contribute valuable resources,
but others do not. For another example, when some resource is offered, a participant
may want to offer another resource because these two resources must be used together
and the second resource is dependent on the first one. This model is graph-based so that
the dependency relations among resources can be captured naturally. Collaborations
based on this model are said resource centric.

On the other hand, even though participants would like to contribute resources for
collaborations, it does not mean that they would like every participant to access their
resources freely since some participants may be competitors. Our model allows par-
ticipants to protect their resources by specifying certificate-based policies and the au-
thorization is based on the certificates the resource requestor can provide. This access
control mechanism follows the widely accepted principle of trust management [3,4] for
the distributed environment where participants belong to different administrative do-
mains and maybe do not know each other in advance. It is worth mentioning that in
our access control mechanism not only the resource providers but also the resource re-
questors can or need to define access control policies. For example, when a hospital
requires the medical records from a patient, it needs to specify policies to show who
in the hospital can access these data, and the patient releases the medical records only
when the policies of the hospital are strong enough for the patient.

Another aspect about the collaborative resource model is that each resource has some
conditions to restrict the usage of resources. For example, in a dynamic collaboration,
a resource is available only from Monday to Tuesday, and the usage condition of this
resource can help reflect this fact.

1.2 Overview of the Resource Coordination Mechanism

For a collaboration, we hope all participants can get their needed resource, so that
the collaboration is robust and can complete successfully. A collaboration becomes

Secure and Conditional Resource Coordination 289

Fig. 1. The Framework of Resource Coordination

complex if it involves a lot of participants and the resources contributed and required by
each participant have complex dependency relations and are protected and restricted by
complex policies and usage conditions. For a complex collaboration, it is not straight-
forward to check manually whether this collaboration can complete successfully or not.
To address this problem, we give an automatic resource coordination mechanism based
on the collaborative resource model, shown in Figure 1. The coordination service is used
to check whether the resource requirements of all participants are satisfied before col-
laborations begin. The coordination service takes as input the certificates and resource
descriptions of all participants. As introduced before, the resources of a participant is
described in a graph. If the coordination succeeds, a set of resource links is returned to
each participant. A resource link connects a resource requirement to a set of available
resources, implying that the requestor has enough rights to access the resources and
the usage conditions of these resources are satisfied by the requestor. For example, a
resource link may state that a requirement for a special medical device can be satisfied
by two such devices, each covering different time periods. Resource links can be in-
corporated into eContracts [5,6] to express resource agreements among participants. If
the coordination fails, the coordination service specifies the unsatisfied resources to the
participants requiring such resources. However, this paper focuses on the coordination
mechanism and algorithm, and how to effectively use resource links as agreements and
how to resolve the coordination failure are our future work.

The remainder of this paper is organized as follows. In Section 2, we introduce a sce-
nario to motivate the resource centric collaborations. The collaborative resource model
is introduced in Section 3 and a coordination mechanism based on state-space explo-
ration is presented in Section 4. Section 5 gives an implementation algorithm for the
coordination mechanism. Section 6 discusses the related work and finally Section 7
concludes the paper.

2 A Scenario for Resource Centric Collaboration

The collaborations we concern here are resource centric in the sense that all collabo-
rating participants focus on what resources they will provide and what resources they
can get from other participants to achieve their collaboration purposes. The following
scenario illustrates this kind of collaborations.

290 D. Liu et al.

Suppose in a collaborative medial diagnosis, the participants include a patient, a
hospital and a medical lab. The patient has a lot of medical records, some of which
are sensitive; the hospital would like to appoint senior or junior doctors for this col-
laboration; the medical lab can provide expensive equipments to process medical data,
and different equipments have different features and may be available at different time.
That is, every participant has multiple choices to contribute resources for the collab-
oration. For a participant, what resources to contribute may depend on the resources
available from other participants. For example, the patient would like to release his sen-
sitive medical records if he is treated by a senior doctor, otherwise he wants to provide
only the insensitive medical records; the hospital would like to assign a senior doctor
if the medical lab can offer an equipment with advanced features at the working time
of the senior doctor, otherwise a junior doctor is assigned; the medical lab provides its
equipments according to what data to be processed. The resources shared in collabora-
tion are protected by security policies and restricted by usage constraints. For example,
the patient wants to protect his sensitive medical records before and even after these
data are released to the hospital. The usage constrains of resources impose conditions
of using the resources. For example, the medical lab may ask an equipment must be run
under certain temperature.

3 The Collaborative Resource Model

In this section, we present the collaborative resource model. A collaboration is always
carried on by participants. In our model, these participants collaboratively contribute or
require resources to achieve their collaboration purposes. The resources contributed or
required by a participant may have dependency relations.

The model is compromised of a set of tuples, each of which describes a participant.
Each tuple has the form of (p,Cert ,ResG), where p is a participant, Cert a set of cer-
tificate instances describing the profile of p, and ResG a graph describing the resources
contributed or required by p and the dependency relations among these resources. Note
that a participant p in our work can be an individual or an organization, and if p is an
organization, it can redistribute the acquired resources to its members. In what follows,
we will describe the certificates and the resource dependency graph in this model.

3.1 Certificates and Certificate Patterns

Collaborations may occur among participants belonging to different administrative do-
mains. In order to regulate access to resources in collaborations, we should make au-
thorization decisions according to requestors’ attributes [3,4]. As usual, this model uses
certificates to characterize the attributes of participants.

A certificate is defined with the form certp(p′), meaning that the principal p (may or
may not be a participant in the current collaboration) issues the certificate cert about the
participant p′. For example, the certificate doctorH(Tom) means that Tom is a doctor
certified by the hospital H; the certificate nurseTom(Alice) means that Tom certifies
Alice as his nurse. Certificates can be extended to include more information, such as
Alice’s address and telephone. For brevity, we ignore such extensions in this work.

Secure and Conditional Resource Coordination 291

Certificates represent certified attributes of principals, as shown by the above exam-
ples. They are however too rigid when used to express access policies (defined later).
For example, if we want to formulate a policy to allow any doctor to access some con-
fidential data, then we have to explicitly grant each doctor this privilege based on his
or her doctor certificate. In this model, we use certificate patterns (like parameterized
roles [4]) to make policy definition more convenient.

For a certificate certp(p′), if any of its parts cert, p or p′ is replaced by a vari-
able (represented by x, y or z), then it becomes a certificate pattern. A certificate pat-
tern denotes a set of certificates which match this pattern. For example, the certificate
doctorH(Tom) matches the pattern doctorH(x), which means any doctor x certified
by the hospital H , and also matches the pattern doctory(x), which means any doctor
x certified by any hospital y.

Certificate patterns can be ordered in terms of the number of certificates they can
include. The order relation of certificate patterns will be used later to check whether the
policies specified by the resource requestors are stronger than the policies given by the
resource providers. The largest certificate pattern is zy(x), which can be matched by
any certificate, and a certificate is also a pattern containing only itself. In the following
definition, three placeholders �, � and � are used to describe the shape of certificate
patterns, where � is either a certificate or a variable, and� and � are either a participant
or a variable. For simplicity, we assume �, � and �, if they are variables, are different
variables in a certificate pattern.

Definition 1 (Order of Certificate Patterns). Suppose CP1 and CP2 are two certifi-
cate patterns with the shapes ��(�) and �′�′

(�′), respectively. We say CP2 is larger
than CP1, written as CP1 �Θ CP2, if � �Θ1 �′, � �Θ2 �′ and � �Θ3 �′, with
Θ = Θ1 ∪ Θ2 ∪ Θ3. The relation �Θ are determined by the following rules.

– cert �∅ cert, or cert �{x/cert} x;
– p �∅ p, or p �{x/p} x;
– y �{x/y} x .

In the above definition, Θ is a set of substitutions generated when comparing two pat-
terns. The substitution x/cert means the variable x is to be replaced with cert, and
similarly for the substitutions x/p and x/y . The substitutions will be used in Sec-
tion 3.3 when comparing two policies. A policy is defined with a set of certificate
patterns, and using substitutions can help check whether the link information cap-
tured by the same variables among patterns in the policy of resource providers is also
kept by certificate patterns in the policy of resource requestors. For example, a policy
consisting of patterns {nursex(y), doctorH(x)} means that y is the nurse of x who
is a doctor of the hospital H. When it is compared with a policy containing patterns
{nurseTom(y), doctorH(Tom)}, we obtain nurseTom(y) �{x/Tom,y/y} nursex(y)
and doctorH(Tom) �{x/Tom} dcotorH(x), which indicate that the link information
captured by x is kept by the second policy since both x are replaced with the same value
Tom in the second policy. In later sections, we will not distinguish between certificates
and certificate patterns; when we want to mean certificates we say certificate instances.

292 D. Liu et al.

3.2 Resource Dependency Graph

Participants always need to contribute resources and at the same time require resources
from other participants to achieve their collaboration purposes. The resources a partici-
pant would like to contribute or require may depend on what resources he can contribute
or acquire during collaborations. For example, in a collaboration between a patient and
a hospital about medical consultation, the patient may contribute all his medical records
if a medical expert is appointed for his consultation, or he may contribute only a part of
his medical records if a doctor just graduated is appointed.

The usage of resources, whether they are being contributed or required, is controlled
by access polices and conditions in our model. An interesting point is that when par-
ticipants require resources they also need to specify policies for these resources. These
policies tell the resource provider how these resources will be used by the requestor (and
its members if the requestor is an organization). For example, a hospital may specify a
policy that says only senior doctors are permitted to access the medical records acquired
from a patient. In order to get a resource from a provider, the requestor’s policies must
be stronger than the the provider’s policies. This increases the confidence of participants
about how their resources are used by other participant during collaborations.

In our model, the resources contributed and required by a participant, their depen-
dency relations, and their access policies and conditions are all captured by the resource
dependency graph, which is a directed acyclic graph. Before defining resource depen-
dency graphs, we first describe the resources in our model.

A resource is specified by a pair (r, Att), where r is the name of the resource and Att
is a set of attributes characterizing the resource. An attribute has a name and a value. For
example, a resource doctor could have a position attribute with the value senior.
Attributes are needed when checking whether an offered resource matches the required
resource. We use R to denote the pair (r,Att). The operator � is overloaded to reresent
resource match (and other order relations later).

Definition 2 (Resource Match). Let R1 = (r1,Att1) and R2 = (r2,Att2). If r2 = r1

and Att2 ⊆ Att1, then R1 matches R2, denoted as R2 � R1.

A resource dependency graph ResG is described by a pair (N,→), where N is a set of
nodes, and → is a set of directed edges. The details of nodes and edges are given below.

A node n ∈ N has two forms (−, R,Pol , con), or (+, R,Pol , con). That is, n is
either a negative node or a positive node. The negative node means that the resource R is
being required, while the positive node means R is being contributed. The policies Pol
are used to protect the required or contributed resources, and the condition con specifies
the condition of using the resource. The polices and conditions are introduced in the
next two sections, respectively. For a node n, we write sign(n) = − or sign(n) =
+, depending on whether n is a negative node or a positive node. For each resource
dependency graph, we specify a special node sta as the start node and a special node
end as the end node. The unique start and end nodes make it convenient later to define
the initial and the final states for the coordinating mechanism.

An edge (n1, n2) ∈→ means that only after the resource described in n1 is con-
tributed or acquired, the participant would like to contribute or needs to require the re-
source in n2. We also write n1 → n2 for (n1, n2) ∈→. For example, if sign(n1) = −

Secure and Conditional Resource Coordination 293

and sign(n2) = +, the edge n1 → n2 means the participant first needs a resource in
n1, and then contributes the resource in n2. Note that positive nodes and negative nodes
in a resource dependency graph do not necessarily appear alternately. For example, if
sign(n1) = − and sign(n2) = −, the edge n1 → n2 means the participant first wants
a resource in n1, and then another resource in n2.

A node n may have more than one child nodes and parent nodes. We write cnodes(n)
for the set of child nodes of n, and pnodes(n) for the set of its parent nodes. Suppose
cnodes(n) = {n1, ..., nm}. Then after the resource in n is contributed or required,
any node ni (1 ≤ i ≤ m) can be chosen to let the collaboration proceed. That is, the
edges n → ni (1 ≤ i ≤ m) are mutually exclusive for one collaboration; choosing
different edges implies collaborations with different resources involved. Similarly, if
pnodes(n) = {n1, ..., nm}, then the resource in n is processed when any parent node
ni(1 ≤ i ≤ m) is chosen to provide or require resources. Therefore, each path in
a resource dependency graph represents a possible way of contributing and requiring
resources for a participant in a collaboration.

3.3 Access Polices

In our model, resources, whether they are being contributed or being required, are all
protected by a set of policies Pol, specified in each node of resource graphs. In the
following, we assume the policies Pol is specified in a node n for the resource R.

A policy pol ∈ Pol has the form Cert → (op,Cert ′), meaning that the participants
with certificates Cert have the right to access the resource R and after getting R they
can delegate the operation op on R to users having certificates Cert ′. If Cert and
Cert ′ are the same certificates, then the participants getting and using the resources
are the same. This special case corresponds to the traditional access policies, where
the authorized users get and use resource by themselves. One operation op may be
protected by more than one policies in Pol for different authorization cases. A resource
user can execute op on R if there exists a policy pol ∈ Pol that authorizes the user for
this operation. For example, suppose a patient defines the following two policies in the
policy set Pol to protect his medical records:

{hospitalGov(H)} → (read, {doctorH(x)})
{hospitalGov(H)} → (read, {nursex(y), doctorH(x), seniorH(x)})

The first policy means the hospital H can access the medical records and let its doc-
tors to read these data, and similarly for the second policy.

When a participant obtains resources during collaboration, this participant may re-
distribute this resource to other users. This case is common when the participant is an
organization, such as a hospital, and it needs its affiliated members to use the resources
to carry on the current collaboration, as shown in Figure 2. Hence, in order to let re-
source providers be willing to release their resources for successful collaborations, the
resource requestors must have not only enough certificates to get themselves authorized,
but also policies stronger than the polices desired by resource providers. Thus, if a user
can provide certificates to access resources from the participant who is redistributing
resources, then the certificates provided by this user are also enough to pass the policies
of the resource provider. A stronger policy is defined with a set of stronger certificates,
which is defined below.

294 D. Liu et al.

Fig. 2. Redistribution of Acquired Resources

Definition 3 (Order of Certificate Sets). Suppose Cert1 and Cert2 are two sets of
certificates. We say Cert1 is stronger than Cert2, written as Cert1 � Cert2, if the
following two conditions hold.

– Cert2 = ∅;
– Let Cert2 = {cert2}∪Cert ′2. Then, there exists cert1 ∈ Cert1, such that cert1 �Θ

cert2 and Cert ′1 � Θ(Cert ′2), where Cert ′1 = Cert1 \ {cert1}.

In the above definition, the notation Θ(Cert ′2) denotes a set of certificates obtained by
applying all substitutions in Θ to all certificates in Cert ′2.

Definition 4 (Order of Policies). Suppose pol1 and pol2 are two policies, and Cert is
a set of certificate instances. Let pol1 = Cert1 → (op1,Cert ′1) and pol2 = Cert2 →
(op2,Cert ′2). If op1 = op2, Cert1 � Cert2,Cert � Cert2 and Cert ′1 � Cert ′2, then
pol1 is stronger than pol2 when enhanced with Cert, written as pol1 �Cert pol2.

In the relation pol1 �Cert pol2, pol1 and pol2 are policies specified by the resource
requestor and providers, respectively, and Cert is the profile certificates of the requestor.
Two policies are comparable only when they both concern the same operation.

In order to get the needed resource, each policy specified by resource requestors must
have a corresponding policy specified by resource providers, with the former stronger
than the latter, so that resource providers have the confidence that their resource will be
redistributed in ways not violating their polices. Two sets of policies are compared by
the following definition.

Definition 5 (Order of Policy Sets). Suppose Pol1 and Pol2 are two sets of policies,
and Cert is a set of certificate instances. If for every pol1 ∈ Pol1 there exists pol2 ∈
Pol2, such that pol1 �Cert pol2, then Pol1 is stronger than Pol2 when enhanced with
Cert, written as Pol1 �Cert Pol2.

Continuing with the above example, we suppose the patient wants to collaborate with
the hospital H. The hospital knows Tom is a doctor and owns the certificate
hospitalGov(H), and defines the following policies to protect the medical records of
the patient:

hospitalGov(H) → (read, {doctorH(Tom)})
hospitalGov(H) → (read, {nurseTom(y), doctorH(Tom), seniorH(Tom)})
According to the above definition, these policies are stronger than the policies spec-

ified by the patient since they only allow the doctor Tom and the nurse of Tom to access
the patient’s medical records. And when the hospital acquires the medical records, it
does not release to other organizations as specified in these polcies.

Secure and Conditional Resource Coordination 295

3.4 Access Conditions

In our model, each resource is attached with a condition con, which imposes restric-
tions to resource accesses based on collaboration context parameters. For example, a
condition may state that a resource is accessible between Monday and Tuesday or on
Friday. A condition is a logical formula. True is a condition that is always satisfied,
and False is a condition that cannot be satisfied. So if a resource is attached with
True, then this resource can be used under any condition; if it is attached with False,
then it actually cannot be used by anybody.

We use a differentiation operator diff to manipulate conditions. Given two condi-
tions, con1 and con2, the operation diff(con1, con2) returns a new condition con ,
meaning that if the condition con2 holds, then con implies con1. The definition of
diff depends on particular collaboration contexts. However, the following laws hold
in all collaboration contexts:

diff(con, con) = True, if con 	= False
diff(con ∨ con ′, con ′′) = diff(con , con ′′) ∨ diff(con ′, con ′′)
diff(con ∧ con ′, con ′′) = diff(con , con ′′) ∧ diff(con ′, con ′′)
diff(False, con) = False
diff(con, False) = con
diff(con, True) = True, if con 	= False

For example, in a collaboration, suppose a participant needs a device from 10am to
5pm (con1). If such a device is offered with the condition True (i.e., it can be used
anytime), then diff(con1, True) returns True, meaning that the participant’s require-
ment can be satisfied by this offer; if such a device can be used from 11am to 1pm
(con2), then diff(con1, con2) returns a conjunctive condition, specifying the time pe-
riods from 10am to 11am and from 1pm to 5pm. That is, if there are the same devices
available during these two periods, the participant’s requirement can be satisfied. Note
that not all conditions can be divided. For example, if a condition specifies a tempera-
ture of 1000◦C, we may not divide it into two 500◦Cs. If a condition con1 is indivisi-
ble, then diff(con1, con2) simply returns con1 if con2 cannot cover con1. That is, the
availability of resources with the condition con2 has nothing to do with the requirement
of the same resources with the condition con1.

3.5 Resource Satisfaction

For a successful collaboration, all participants must be able to get their needed re-
sources. In the following, we introduce step by step what resource satisfaction means
for collaborations in our model.

A collaboration generally involves many resource requests from all participants. Here,
we starts from the satisfaction problem of a single request. If a request of one partici-
pant is possible to be satisfied, then there must be other participants who contribute the
requested resources. The predicatesupport defined below captures the necessary con-
ditions on a set of positive nodes for satisfying a request in a negative node.

Definition 6 (Support Nodes). Given a negative node n and a set of certificate in-
stances Cert, a set of nodes N = {n1, ..., nk} is a set of support nodes of n with
respect to Cert, written as support(N, n,Cert), if the following conditions hold:

296 D. Liu et al.

– sign(n′) = + for all n′ ∈ N ;
– n.R � n′.R for all n′ ∈ N ;
– n.Pol �Cert n′.Pol for all n′ ∈ N ;
– diff(n.con , n1.con ∨ ... ∨ nk.con) = True.

Having support nodes does not mean a negative node can be satisfied definitely. This
is because its support nodes may have negative parent or ancestor nodes that need to
be satisfied first. Recall that a path in a resource graph represents a possible way to
contribute and require resources for a participant in a collaboration. A well supported
node n defined coinductively below asks every support node n′ to be in a path from a
resource graph with all negative parent and ancestor nodes also well supported. Thus,
a well supported node can be satisfied definitely by its support nodes. In the definition
below, pnodes+ means the transitive closure of pnodes. Note that a node has only one
parent node on a path.

Definition 7 (Well Supported Nodes). Given a set of paths P from resource graphs
and a set of certificate instances Cert , a negative node n is well supported in the set
P with respect to Cert if there exists a set of nodes N from P such that support
(N, n,Cert) and the following conditions hold for all n′ ∈ N .

– for all n′′ ∈ pnodes+(n′), if sign(n′′) = −, then n′′ is well supported.

Finally, based on the concept of well supported nodes, the resource satisfaction for
collaborations in our model is defined below.

Definition 8 (Resource Satisfaction). Suppose a collaboration consists of m partic-
ipants (pi,Cert i,ResGi) (1 ≤ i ≤ m). The resource requests in this collaboration
are satisfiable if there exists a set of paths {pathi|1 ≤ i ≤ m}, where pathi comes
from the graph ResGi with sta and end as its start and end nodes respectively, such
that for all j (1 ≤ j ≤ m) all negative nodes on pathj are well supported in the set
{pathi|1 ≤ i ≤ m} with respect to Certj .

The following two sections will give the mechanism and algorithm to find the paths in
a set of resource graphs that all have well supported negative nodes.

4 Coordination Based on State-Space Exploration

In this section, we present the coordinating mechanism to check whether collaborations
in our model can be completed successfully or not. In our model, the reason for col-
laboration failures is that some participants fail to obtain the resources necessary for
continuing the current collaboration. Since a resource in our model may be contributed
depending on the availability of other resources and protected by access policies and
conditions, we cannot simply say it is available to other participants because of its
positive presence in some resource graphs. Our coordination mechanism is based on
state-space exploration, which is widely used for computer-aided verification. A state
represents a resource coordinating status, like what resources have been contributed and
what resource requirements have been satisfied or are being proposed. A state transi-
tion indicates the coordination enters a new state because a resource is contributed or a
resource requirement is satisfied.

Secure and Conditional Resource Coordination 297

4.1 States

A coordinating state has the form (RB ,PS ,RL), where RB is the resource base con-
taining all resources currently offered by participants, PS describes the resource status
of each participant and RL means resource links indicating how resource requirements
are satisfied at this state. An element in RB has the form (p, n), where sign(n) = +,
meaning that the participant p contributes the resource described by the node n in p′s
resource dependency graph. The status of each participant in PS is also described by
the pair (p, n), where sign(n) = + or sign(n) = −, meaning that p is waiting to con-
tribute or require the resource in n, a node in p′s resource dependency graph. Note that
we can move to the children nodes of n by using the cnodes operator when changing
p′s status. A resource link in RL has the form ((p, n), {(p1, n1), ..., (pm, nm)}), where
sign(n) = − and sign(ni) = + (1 ≤ i ≤ m), meaning that the resource requirement
n of p can be satisfied by combining the resources n1,..., nm offered by participants
p1,..., pm. For example, suppose p wants a device from 1pm to 5 pm. Then this require-
ment is satisfiable if p1 and p2 can collaboratively provide the device from 1pm to 2pm
and from 2pm to 5pm, respectively.

The coordination procedure starts from an initial state. Suppose a model consists of
(pi,Cert i,ResGi) (1 ≤ i ≤ m) for m participants. Then the initial state for this model
is (∅, {(p1, sta), ..., (pm, sta)}, ∅). Recall that every resource graph ResGi starts with
the special node sta. In the initial state, each participant has not begun to contribute
and require resources, so there is no contributed resources, nor resource links.

For a collaboration, if the resources involved cannot be coordinated to a final state,
then this collaboration will not be possible to complete. A final state has the form
(RB , {(p1, end), ..., (pm, end)},RL), where no participant has resources to contribute
and require. The resource links RL contain the information of how to satisfy all re-
source requirements in collaborations. This information can be used at collaboration
time to route resource requests. Hence, in a final state, if a resource appears in RB but
not referred to in RL, then this resource is redundant for this collaboration and can be
removed safely.

4.2 State Transitions

The state transitions of coordination are caused by the status change of participants.
For example, a state changes when a participant contributes a resource or have a re-
source request satisfied. To help define how state transitions occur, the operator reduce
(RB , p, n) in Figure 3 is used to check whether the resource request in the negative
node n from the resource graph of p can be satisfied by the resource base RB . In this
definition, certs(p) means the certificate instances for the profile of p. This operator
returns a pair with its first component being a node or a special value ε and its sec-
ond component being a set of nodes. If the first component is ε, then it means that the
requested resource of n can be satisfied and the second component contains the sup-
port nodes of n, otherwise the first component is a node whose satisfaction implies the
satisfaction of n.

298 D. Liu et al.

reduce(∅, p, n) = (n, ∅)

reduce({(p′, n′)} ∪ RB, p, n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

reduce(RB, p, n) if n.R �� n′.R or n.Pol ��certs(p) n′.Pol
reduce(RB, p, n) if n.R � n′.R, n.Pol �certs(p) n′.Pol,

diff(n.con, n′.con) = n.con
(n′′, {(p′, n′)} ∪ S) if n.R � n′.R, n.Pol �certs(p) n′.Pol,

diff(n.con, n′.con) = con′ and con′ �= n.con
with (n′′, S) = reduce(RB, p, (−, n.R, n.Pol, con′))

(ε, {(p′, n′)}) if n.R � n′.R, n.Pol �certs(p) n′.Pol
and diff(n.con, n′.con) = True

Fig. 3. The reduce Operator

Proposition 1. Given a resource base RB and a node n from the resource graph of par-
ticipant p with sign(n) = −, if reduce(RB , p, n) = (ε, S) and let N = {n′|(p′, n′) ∈
S}, then N is a set of support nodes of n, that is, support(N, n, certs(p)) holds.

In the following, we describe first from the perspective of a participant how state tran-
sitions occur, and then from the perspective of all participants.

Suppose the current state is st = (RB ,PS ,RL) and (p, n) ∈ PS . The next states
caused by the status change of p, denoted as next(p,n)(st), are generated according to
the following rules.

– Rule 1: n = sta. next(p,n)(st) = {(RB ,PS ′ ∪ {(p, n′)},RL)|n′ ∈ cnodes(n)},
where PS ′ = PS \ {(p, n)}.

– Rule 2:sign(n) = +. next(p,n)(st) = {(RB ′, PS ′ ∪ {(p, n′)},RL)|n′ ∈ cnodes(n)},
where RB ′ = RB ∪ {(p, n)} and PS ′ = PS \ {(p, n)}.

– Rule 3: sign(n) = −, reduce(RB , p, n) = (n′, S) and n′ 	= ε. next(p,n)(st) =
{st}.

– Rule 4: sign(n)=− and reduce(RB , p, n)=(ε, S) . next(p,n)(st) = {(RB ,PS ′

∪{(p, n′)},RL′)|n′ ∈ cnodes(n)}, where RL′ = RL∪{((p, n), S)} and PS ′ =
PS \ {(p, n)}.

– Rule 5: n = end. next(p,n)(st) = {st}.

For a state st = (RB ,PS ,RL), its next states from the perspective of all participants,
written as next(st), are obtained by composing all next states from the perspective of
each participant.

next(st) =
⋃

(p,n)∈PS

next(p,n)(st)

4.3 Correctness

In this section, we show that the correctness of the above coordination mechanism for
checking the resource satisfaction in collaborations. For this purpose, we need to extend
the use of next operator in the following two aspects.

First, the next operator is extended to a set of states ST.

next(ST) =
⋃

st∈ST

next(st)

Secure and Conditional Resource Coordination 299

Second, the next operator can be applied iteratively many times, say m times, to a
state st (or a set of states), written as nextm(st).

next1(st) = next(st)
nextm+1(st) = next(nextm(st))

Theorem 1 (Correctness of Coordination). Given an initial state st for a collabora-
tion, there exists some integer m such that nextm+1(st) = nextm(st), that is, nextm

(st) is a fixed point of the operator next. If there is a final state in nextm(st), then the
resource requests in this collaboration are satisfiable.

The next section will give an algorithm to compute the fixed point of the next operator,
which is then used to check the resource consistency in collaborations.

5 A Coordination Algorithm

In this section, we present an algorithm that implements the previous coordination
mechanism. The main code of the algorithm is SPExplore, shown in Figure 4, which
computes the fixed point of the next operator by iteratively calling the subroutine
ONext in the same figure. The code ONext implements the transition rules of next
operator defined in the previous section but with some optimization. By this optimiza-
tion, when a negative node is checked against a resource base RB to test its satisfaction
with the reduce operator, the current check arguments and results are memoized if
its request is not satisfied completely by the current resource base RB. And then, if
RB is extended with new contributed resources in the later stage of coordination, it is
not needed to check this negative node against the whole resource base, and instead
the result of last check is reused and only the newly contributed resources are tested.
Hence, this optimization can avoid repeating comparisons of resources, access policies
and usage conditions during state transitions.

The optimization used in this implementation is based on the following proposition,
which lays the foundation of using the resource base incrementally to test the satisfac-
tion of resource requests.

Proposition 2. Let RB = RB1 ∪ RB2. For a node n from the resource graph of
participant p with sign(n) = −, if reduce(RB , p, n) = (n′, S), reduce(RB1, p, n)
= (n1, S1) and reduce(RB2, p, n1) = (n2, S2), then n′ = n2 and S = S1 ∪ S2.

In the following, we will introduce how this optimization is implemented. The point
of this optimization is to memoize the intermediate check results and reuse them for
the further checks when the resource base is extended. The memoization is imple-
mented by a mapping, called RBMemo or RBMemo′ in the code, which maps p and
n to (RB, (n′, S)) if the mapping is defined on p and n. It means that the request in
n has been tested against the existing resource RB but not satisfied completely, and if
the request in n′ can be satisfied by some newly contributed resources, then the re-
quest in n will be completely satisfied and S is a part of the final support nodes for n.
An empty mapping is denoted by •, which is undefined for every p and n. The notation
RBMemo[(p, n) �→ (RB, (n′, S))] means a new mapping obtained by updating the value

300 D. Liu et al.

Function SPExplore(st)
Input:

st=(∅, PS, ∅): an initial state
Output:

WL: a set of states
begin

WL = {(st, •)}
OldWL = WL
NewWL = ∅

while OldWL �= NewWL do
NewWL = ∅
ST = ∅
for each (st′, RBMemo) ∈ WL do
AST = ONext(st′, RBMemo)
NewWL = NewWL ∪ AST
ST = ST ∪ { st′}
endfor
OldWL = WL
WL = NewWL

endwhile
return ST
end
Function ONext(st, RBMemo)
Input:

st=(RB, PS, RL): a state
RBMemo: a mapping from (p, n) to (RB, (n, S))

Output:
AST: a set of pairs of state and RB memo

begin
AST = ∅
for each (p, n) ∈ PS do

PS′ = PS \ (p, n)
if n = sta then

ST′ = {(RB, PS’ ∪ {(p, n′)}, RL)|n′ ∈ child(n)}
AST′ = ST′ × { RBMemo}

else if sign(n) = + then
RB′ = RB ∪ {(p, n)}
ST′ = {(RB′, PS′ ∪ {(p, n′)}, RL)|n′ ∈ child(n)}
AST′ = ST′ × { RBMemo}

else if sign(n) = − then
if RBMemo(p, n) = (RB′, (n′, S′)) then
(n′′, S) = reduce(RB\RB′, p, n′)
if n′′ �= ε then

RBMemo′= RBMemo[(p, n) 	→ (RB, (n′′, S ∪ S′))]
AST′ = {(st, RBMemo′)}

else
RBMemo′= RBMemo[(p, n) 	→ undefined]
RL′ = RL ∪ {((p, n), S ∪ S′)}
ST′ = {(RB, PS′ ∪ {(p, n′)}, RL′)|n′ ∈ child(n)}
AST′ = ST′ × { RBMemo′}

else if RBMemo(p, n) = undefined then
if reduce(RB, p, n) = (n′, S)&&n′ �= ε then

RBMemo′= RBMemo[(p, n) 	→ (RB, (n′, S))]
AST′ = {(st, RBMemo′)}

else if reduce(RB, p, n) = (ε, S) then
RL′ = RL ∪ {((p, n), S)}
ST′ = {(RB, PS′ ∪ {(p, n′)}, RL′)|n′ ∈ child(n)}
AST′ = ST′ × { RBMemo}

else if n = end then
AST′ = {(st, RBMemo)}

endif
AST = AST ∪ AST′

endfor
return AST
end

Fig. 4. The Coordination Algorithm

Secure and Conditional Resource Coordination 301

of (p, n) in RBMemo to (RB, (n′, S)), that is, the new mapping returns (RB, (n′, S)) for
(p, n), and returns RBMemo(p, n) otherwise.

The subroutine ONext implements all rules of state transitions for the next op-
erator. Only in the rule concerning negative nodes, the mapping RBMemo is updated
and referenced. For example, for a negative node n of participant p, if (p, n) is mapped
to (RB′, (n′, S′)) in RBMemo, then the request test is done by the operation reduce
(RB\RB′

, p, n′), that is, only part of the whole resource base RB is checked and the
check works on the node n′ from last check. Based on this check, if the request of n is
still not satisfied, that is reduce(RB\RB′, p, n′) = (n′′, S) and n′′ 	= ε, then the mapping
RBMemo on (p, n) is updated by RBMemo[(p, n) �→ (RB, (n′′, S ∪ S′))] to incorporate
the result of this check, otherwise the mapping of (p, n) is changed into undefined
in RBMemo.

6 Related Work

The collaboration failures can also be caused by mismatched business protocols be-
tween participants. This problem can be addressed by adapting interactions among par-
ticipants [1,2]. Our work is complementary to these work since we focus on resource
satisfaction for collaborating participants, rather than on protocol consistency.

There are various access control mechanisms for collaborations among different or-
ganizations [7,8,9,10]. However, these mechanisms do not consider how they affect
the successful completion of collaborations. For example, maybe a participant defines
too strong security policies, and hence there are actually no possibility for other par-
ticipants to access its resources intended for sharing. It is also similar for the work
of enhancing business processes with authorization constraints [11]. Two process may
collaborate well, but after enhanced with authorization constraints, they probably fail to
work together.

The work [12,13] studies how to specify and solve authorization constraints on work-
flow systems, so as to make sure there are possible successful executions of workflow
patterns. Their work focuses on tasks, concerning workflow tasks in the same orga-
nization, while our work focuses on resources, coordinating resources from different
organizations.

The work [14] proposes an architecture to protect an object (or a resource) by en-
forcing the object owner’s policy in the requestor’s platform. This architecture is based
on the special hardware for trusted computing. It is not clear whether this architecture
can be scaled to the distributed collaboration environments where some participants
may not have such special platforms. Access control in our resource has no special re-
quirements on platforms by trusting the requestors faithfully enforce the policies they
declare for requiring resources.

As surveyed in [15], graphs can be used to represent the allocation and request status
of resources at a system state for checking deadlocks. For that purpose, those graphs
have only one kind of nodes representing the resources being allocated and requested.
The resources being offered for collaborations cannot be represented in those graphs.

For participants, offering resources can be regarded as their obligations for making
collaborations successful. A centralized model has been proposed in [16] to analyze

302 D. Liu et al.

whether a system state can lead to another system state in which a subject cannot fulfill
his obligation within the time window or at the deadline of the obligation. Our col-
laborative resource model is distributed in the sense that each participant has his own
obligations to fulfill and his obligations may affect the ability of other participants to
perform their obligations.

7 Conclusion

In this paper, we address the problem of whether collaborations can be completed suc-
cessfully, so as to achieve the prescribed collaboration purposes. The collaborations we
concern here is resource centric and we proposed a collaborative resource model for
this kind of collaborations. This model can capture the dependency relations among
resources offered or required by participants. This feature gives participants flexible
strategies to choose resources for collaborations. Resources in this model are protected
by security policies based on certificates and restricted by usage conditions. The certifi-
cates based access control mechanism is suitable for participants who do not know each
other in advance in a distributed environment. Moreover, this model allows the resource
requestors to declare policies, stating how the requestors will redistribute the acquired
resources, and thus enables the resource owners to gain more confidence to contribute
their resources. The usage condition can be used to model, for instance, dynamic collab-
orations, where participants may join and leave in the middle of collaborations. Based
on the collaborative resource model, we proposed the coordination mechanism. Suc-
cessful coordination means that there must be a possible way to satisfy the resource
requirements of all participants during collaborations.

In the future, we will consider other principles of access control mechanisms, such
as separation of duty and binding of duty, and other kind of resources, like consumable
resources.

References

1. Nezhad, H.R.M., Benatallah, B., Martens, A., Curbera, F., Casati, F.: Semi-automated adap-
tation of service interactions. In: WWW 2007: Proceedings of the 16th International Confer-
ence on World Wide Web, pp. 993–1002 (2007)

2. Desai, N., Chopra, A.K., Singh, M.P.: Business process adaptations via protocols. In: SCC
2006: Proceedings of the IEEE International Conference on Services Computing, pp. 103–
110. IEEE Computer Society, Los Alamitos (2006)

3. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. In: Proceedings of the
1996 IEEE Symposium on Security and Privacy, pp. 164–173 (1996)

4. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust-management frame-
work. In: SP 2002: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp.
114–130. IEEE Computer Society, Los Alamitos (2002)

5. Chan, J., Rogers, G., Agahari, D., Moreland, D., Zic, J.: Enterprise collaborative contexts and
their provisioning for secure managed extranets. In: WETICE 2006: Proceedings of the 15th
IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises, pp. 313–318. IEEE Computer Society, Los Alamitos (2006)

Secure and Conditional Resource Coordination 303

6. Chan, J., Nepal, S., Moreland, D., Hwang, H., Chen, S., Zic, J.: User-controlled collabora-
tions in the context of trust extended environments. In: WETICE 2007: Proceedings of the
16th IEEE International Workshops on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises, pp. 389–394. IEEE Computer Society, Los Alamitos (2007)

7. Gong, L., Qian, X.: The complexity and composability of secure interoperation. In: Proceed-
ings of the 1994 IEEE Symposium on Security and Privacy, p. 190 (1994)

8. Shehab, M., Bertino, E., Ghafoor, A.: Secure collaboration in mediator-free environments.
In: CCS 2005: Proceedings of the 12th ACM Conference on Computer and Communications
Security, pp. 58–67 (2005)

9. Warner, J., Atluri, V., Mukkamala, R., Vaidya, J.: Using semantics for automatic enforcement
of access control policies among dynamic coalitions. In: SACMAT 2007: Proceedings of the
12th ACM Symposium on Access Control Models and Technologies, pp. 235–244 (2007)

10. Zhang, X., Nakae, M., Covington, M.J., Sandhu, R.: A usage-based authorization framework
for collaborative computing systems. In: Proceedings of the eleventh ACM symposium on
Access Control Models and Technologies, pp. 180–189 (2006)

11. Bertino, E., Crampton, J., Paci, F.: Access control and authorization constraints for ws-bpel.
In: ICWS 2006: Proceedings of the IEEE International Conference on Web Services, pp.
275–284 (2006)

12. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authorization con-
straints in workflow management systems. ACM Trans. Inf. Syst. Secur. 2(1), 65–104 (1999)

13. Tan, K., Crampton, J., Gunter, C.A.: The consistency of task-based authorization constraints
in workflow systems. In: CSFW 2004: Proceedings of the 17th IEEE workshop on Computer
Security Foundations, p. 155. IEEE Computer Society, Los Alamitos (2004)

14. Sandhu, R., Zhang, X.: Peer-to-peer access control architecture using trusted computing tech-
nology. In: SACMAT 2005: Proceedings of the tenth ACM symposium on Access control
models and technologies, pp. 147–158 (2005)

15. Coffman, E.G., Elphick, M., Shoshani, A.: System deadlocks. ACM Comput. Surv. 3(2),
67–78 (1971)

16. Irwin, K., Yu, T., Winsborough, W.H.: On the modeling and analysis of obligations. In: Pro-
ceedings of the 13th ACM Conference on Computer and Communications Security (2006)

	Secure and Conditional Resource Coordination for Successful Collaborations
	Introduction
	Overview of the Collaborative Resource Model
	Overview of the Resource Coordination Mechanism

	A Scenario for Resource Centric Collaboration
	The Collaborative Resource Model
	Certificates and Certificate Patterns
	Resource Dependency Graph
	Access Polices
	Access Conditions
	Resource Satisfaction

	Coordination Based on State-Space Exploration
	States
	State Transitions
	Correctness

	A Coordination Algorithm
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

