
Informa: An Extensible Framework for Group

Response Systems

Matthias Hauswirth

University of Lugano, 6904 Lugano, Switzerland
Matthias.Hauswirth@unisi.ch

http://www.inf.unisi.ch/faculty/hauswirth

Abstract. Classroom clickers, also called group response systems, rep-
resent a form of technology-enhanced learning. An instructor can pose a
question to the class during a lecture, and students can use their clicker
devices to submit their answers. The system immediately aggregates the
submissions and presents feedback to the instructor (and possibly the
class).

This paper describes Informa, an extensible framework for building
software-based group response systems. Informa is implemented as a dis-
tributed Java RMI application and distinguishes itself from traditional
clickers in two key aspects: First, it allows for plug-ins to define the kinds
of problems that can be posted (beyond the common multiple-choice).
Second, it provides several levels of session anonymity, from completely
anonymous sessions where the teacher does not know which student sub-
mitted which answer, all the way to authenticated sessions where stu-
dents need to login when they join.

We have evaluated Informa in a pilot study during an undergraduate
programming course, and we have found it to greatly enhance our insight
into the students’ understanding of the material.

Keywords: technology-enhanced learning, classroom response systems.

1 Introduction

Lecturing is probably the most often used teaching method in higher education.
However, lecturing is not easy, and many lectures are evaluated as largely inef-
fective by students [1]. In his seminal book [2], Penner states that the problem
is not the lecturing method, but its poor execution. In particular, he emphasizes
the importance of continuous feedback from students to the lecturer. He goes as
far as declaring invalid the methodology of a study, where (for the purpose of
repeatability) taped lectures were played back to students, thereby completely
inhibiting any feedback (“Blind flight” scenario in Figure 1).

The effectiveness of a lecture greatly depends on the education (in the subject
matter as well as in pedagogy) and the personality of the teacher. Teachers often
solicit feedback from students by asking questions (“Question” in Figure 1).
However, even a well educated teacher with a well-suited personality is limited in

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 271–286, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

http://www.inf.unisi.ch/faculty/hauswirth

272 M. Hauswirth

Instructor

Student

Informa

Blind Flight Question

Clicker

No or shallow feedback Deep feedback

N
o

o
r

fe
w

s
tu

d
e

n
ts

A
ll

s
tu

d
e

n
ts

Fig. 1. Four Scenarios for Feedback in a Classroom

getting representative feedback. The problem in continuously evaluating how well
the students understand the presented material is twofold. (1) With a large class
size, there generally is not enough time to continuously assess every student’s
understanding, and (2) some students are reluctant to let the instructor or fellow
students know that they have problems following the presentation.

Recent innovations in educational technology address these two issues. Group
response systems [3,4], also called “classroom clickers”, are a technological inter-
vention for the continuous gathering and evaluation of feedback about student
learning (“Clicker” in Figure 1). Clickers are little remote controls distributed to
students before class. During the lecture, students are repeatedly asked multiple-
choice questions which they answer using their clickers. The results are imme-
diately tabulated and can be presented to the class, usually anonymized in the
form of histograms.

The pedagogical motivations for using clickers are manifold: Clickers allow a
more interactive teaching style even with very large class sizes; they allow for
anonymous and immediate feedback from students; they increase class partici-
pation of shy students; they allow (or force) students to submit an answer even
if they are not sure about a point; and they allow the instructor to regularly
measure the standing of all students, not just the good ones.

Traditional clicker devices are special purpose remote controls with a limited
user interface consisting of only a small number of buttons (corresponding to
the maximum number of choices in a multiple-choice question). Some educa-
tors have used laptops instead of clicker devices [5], an approach that can easily
be adopted at institutions where all students bring laptops to class. Other re-
searchers have used programmable calculators [6], and one can envision other

Informa: An Extensible Framework for Group Response Systems 273

ubiquitous devices being used as clickers, such as mobile phones or PDAs. On
devices that can execute arbitrary applications, a clicker can be implemented as
a software application, and can thus provide capabilities that go far beyond the
classical clicker device.

However, to our knowledge, the potential of such software-based clickers has
not been fully exploited so far: While hardware clickers are limited to multiple-
choice questions, software clickers allow students to submit much richer informa-
tion (“Informa” in Figure 1). Moreover, software clickers enable several degrees
of anonymity, from completely anonymous sessions where the teacher does not
know which student submitted which answer, all the way to authenticated ses-
sions where students need to login to join.

In this paper we introduce a system we call Informa (Integrated Formative
Assessment). Informa enables the most desirable of the four scenarios shown
in Figure 1: A classroom where the instructor gets deep feedback from all stu-
dents. In Section 2 we outline our design goals. Section 3 describes Informa, and
Section 4 presents a usage example. In Section 5 we define the different types
of anonymity useful for a classroom response system, and in Section 6 we dis-
cuss Informa’s extensibility through problem-type plug-ins. Section 7 presents
the results of a pilot study using Informa, Section 8 discusses related work, and
Section 9 concludes.

2 Goals

The primary goal of this work is the development of an effective pedagogical
approach. The purpose of the infrastructure we present in this paper is to ful-
fill that goal. We thus do not strive to provide a framework that drives entire
lectures, and we avoid the known problem of over-scripting [7], but we aim at a
blended learning approach using technological support only where needed.

Given this premise, it is essential that our infrastructure has a low cost in
terms of deployment and that it is easy to use. Students and teachers should
not have to spend excessive amounts of time installing and maintaining the col-
laborative learning infrastructure. It should be possible for students to quickly
install and run the student software during the first lecture of a course. Instruc-
tors should be able to install the software by simply downloading and running
a program, without the need for any configuration or complicated server setup.
The software, both the student and the instructor applications, should work on
any platform commonly used by teachers or students.

Moreover, the software should gracefully handle latecomers, allowing students
to connect or reconnect to a session at any time. This aspect is important in
two ways: Besides addressing the issue of students who arrive late for classes,
this also overcomes problems with students who terminate their application (e.g.
because of a system crash, or because they accidentially close the application).

We strive for an infrastructure that is extensible along several axes: (1) teach-
ers should be able to choose an anonymity level for a given session, (2) teach-
ers should be able to compose problem sets for their lectures and create new

274 M. Hauswirth

problems, and (3) developers should be able to develop plug-ins to support new
types of problems (e.g. beyond simple multiple-choice questions).

3 Informa

In this section we describe the Informa framework including its architecture, its
communication protocol, and the pedagogical script behind its use.

3.1 Architecture

Figure 2 shows the system architecture of Informa. Informa consists of two appli-
cations. The student application, which students run on their laptops, represents
the actual “clicker” and allows students to solve the posted problems and to sub-
mit their solutions. The instructor application runs on the instructor’s computer
and maintains the database of problems, manages sessions, and aggregates stu-
dents’ answers. Moreover, it provides a user interface for the instructor to manage
and post problems, and to visualize the aggregated student solutions.

The student applications communicate with the instructor application over
the (possibly wireless) network. We have implemented Informa as a distributed
system using Java RMI. Using Java allows us to run on most operating sys-
tems installed on student laptops. Moreover, unlike a web-based application, a
rich Java application enables the use of an extensive collection of open source
libraries for implementing rich direct-manipluation GUIs for editing and solving
problems.

3.2 Pedagogical Script

A teacher uses Informa in two contexts: (1) before class to prepare a session,
and (2) in the classroom during a lecture to run a session. In both cases the
teacher runs the Informa instructor application. The functionality available in
both contexts is the same: a teacher can compose problem sets and create new
problems during preparation as well as during class.

In the classroom, the teacher starts an Informa session at the beginning of
class. An Informa session consists of one or more steps. Each step represents the
execution of the following pedagogical script in which students are to solve a

Instructor Application

Instructor

Student 1

Student
Application

Student
Application

Student 2

Student
Application

Student 3

Session
Manager

Problem
Database

Aggregator

GUI

Fig. 2. System Architecture

Informa: An Extensible Framework for Group Response Systems 275

solve revealdiscuss

Fig. 3. One Step in an Informa Session

given problem. A step is partitioned into the three phases shown in Figure 3:
First, in the “solve” phase, the teacher puts up a problem for the students
to solve at their computers. Students work individually on their solutions and
submit them when they are done. Second, after all submissions are in, or when
the teacher decides the time is up, the teacher displays an aggregate visualization
of all submitted solutions. In this “discuss” phase she moderates a discussion
with the goal of identifying and explaining the good and bad solutions. Finally,
in the “reveal” phase, the teacher reveals the correct solution and explains it to
the class.

As Figure 3 shows, the students work independently during the “solve” phase.
We intentionally designed our approach this way to encourage each student to
think deeply about the given problem. The collaborative aspect of our approach
manifests itself in the “discussion” phase. After each student has spent some time
working on the problem, they now see how their individual solution relates to the
overall view of the class. Note that at this point the correct solution is not revealed
as yet, so the class is left on their own to collaboratively determine the correct
solution. It is this phase that triggers the pedagogically most valuable discussions.
After this discussion, the teacher may “reveal” the correct solution (or an example
of one of many correct solutions), and explain any remaining issues.

Note that Informa does not require that a problem has correct solutions. Thus,
a teacher may run a step to poll the students about their opinions on a given
issue, or to gather their subjective judgements.

3.3 Protocol

In Informa, the instructor application is responsible for maintaining the session
state. It is usually running during the entire duration of a lecture. Students are
able to join or leave a session at any time, but they usually join at the beginning
and leave in the end.

Figure 4 shows a high-level view of the RMI-based protocol between the
instructor and student applications. It shows the following four scenarios:

Student joins session. Student applications join a session by contacting the
instructor application. They find the instructor (an RMI remote object) by
looking it up in an RMI registry at a well known port on the instructor’s
computer. The student application prompts the student for the IP address
or hostname of the instructor’s computer (the instructor application displays
this address on the classroom beamer).

Once student applications have a reference to the instructor RMI object,
they try to join the currently active session (see ”Student joins session” in

276 M. Hauswirth

Instructor

anonymity = getSessionAnonymity()

token = connect(this, credentials)

name = getSessionName(token)

problem = getCurrentProblem(token)

submitSolution(token, solution)

Student

problemChanged(problem)

InstructorStudent
student solves problem

disconnect(token)
InstructorStudent

sessionEnded()
InstructorStudent

Student joins session Instructor posts problem, student submits solution

Student leaves session Instructor terminates session

1.

2.

3.

4.

1.

2.

Fig. 4. RMI-based protocol between instructor and students

Figure 4). For this, they first enquire about the current session’s anonymity
approach (e.g. anonymous, or requiring login). Then they prompt the user
for the necessary credentials depending on the given anonymity (e.g. user
name and password for a session requiring a login) and connect to the ses-
sion using these credentials. If the connection request is successful (e.g. user
name and password are valid), the instructor returns a token that uniquely
identifies the student and allows the student to participate in the session (all
further methods of the instructor require a valid token). The student can
then request the name of the current session (and other information), and
retreive the currently active problem.

Using this approach, latecomers will retrieve the currently active problem,
but will not have access to the previously posted problems. In general, the
history of past problems is not retained in the student applications, since the
intention of Informa is to drive a face-to-face classroom situation. However,
the instructor application keeps a history of past problems and submitted
solutions. In the future we might make this history available for students to
review after class.

Instructor posts problem, student submits a solution. An instructor us-
ing Informa can decide to post a problem at any time. This leads to the
instructor application notifying all students (student.problemChanged())
about the new problem. The student applications then present the new prob-
lem to the students, and the students spend some time solving the problem.
Once a student is done, he can submit his solution, leading to a call of
instructor.submitSolution().

Student leaves session. A student may leave the session at any time. The
instructor maintains a list of all students in the session in order to post
new problems to all students. If a student explicitly disconnects (by calling
disconnect), or if a student is unreachable when the instructor posts a
problem, the instructor removes that student from the list.

Instructor terminates session. Finally, at the end of the lecture, the in-
structor terminates the session, notifying all the students with a call to
sessionEnded.

Informa: An Extensible Framework for Group Response Systems 277

Notice that both the student and the instructor application initiate remote
method calls. This is necessary to allow the instructor to post new problems to
the students without the students polling for updates. It also allows the instruc-
tor to notify students when it wants to terminate the session.

4 Example Usage Scenario

This section introduces the Informa system and the related teaching method-
ology with an example: the preparation and teaching of a lecture in a Java
programming course.

4.1 Preparation

The instructor prepares for her lecture by building a set of problems she intends
to post during class. She uses the instructor application to prepare her problem
set. This tool allows her to manage existing problems in her database and to
interactively create new problems of any supported type. She can also import
problems from existing problem databases, for example from a similar course
she taught before.

Figure 5 shows Informa with a list of problems related to Java program-
ming. The selected problem, a multiple-choice question, is previewed below the
list. The instructor decides to modify this problem and Informa invokes the
problem editor specific to multiple-choice questions shown in Figure 6. In ad-
dition to changing this problem, the instructor creates a few additional prob-
lems of various types before finishing her preparation by saving her problem
database.

Fig. 5. Managing and Posting Problems

278 M. Hauswirth

Fig. 6. Editing a Multiple Choice Problem

4.2 Classroom

At the beginning of the class the instructor starts an Informa session on her
computer. She opts for an anonymous session, which means that she will not
know which student submitted which solution.

After starting the session, the instructor application creates two different win-
dows. The first window is the same she used during her preparations (Figure 5):
it allows her to browse and manage her problem database. The second window
presents information that she wants to communicate to the students. She config-
ures her computer to extend her desktop across her monitor and the classroom
beamer. This allows Informa to present the first window on her monitor while it
projects the second window on the beamer, visible for all students.

The beamer window, shown in Figure 7, initially shows a welcome message
for the session. This message includes information on how to download and start
the student application, and information for how to connect to the server (i.e.
the IP address of the instructor’s computer).

The students start the Informa student application on their computers and
connect to the server by entering the connection information presented on the
beamer. Since the session is anonymous, they don’t have to provide any addi-
tional login information.

Informa: An Extensible Framework for Group Response Systems 279

Fig. 7. Welcome Message on Beamer

Fig. 8. Student Solving a Multiple-Choice Problem

Now the instructor picks and posts a problem to the class. All students will
immediately see that problem on their screens, and they will be prompted to
solve it (Figure 8). Since the instructor posted a multiple-choice question, the
students just need to select the correct answer and submit.

The instructor can see the submitted solutions on her monitor, and she can see
the number of outstanding solutions. She can close the problem before receiving
all submissions, or she can wait until all students have submitted their solution.

We consider the next step the most valuable aspect of this teaching approach:
The instructor application can project a visualization that summarizes all sub-
mitted solutions to the classroom beamer. Figure 9 shows this visualization for
the multiple-choice question she posted. It shows a histogram with the number
of students who picked each of the choices. The instructor uses this histogram
to prompt a discussion in class. Since the visualization does not reveal the cor-
rect answer, students can be asked to defend their choices or to explain whether
and why an unpopular choice is correct. At the end of this discussion the in-
structor may reveal the correct answer(s) and provide clarifications and deeper
explanations where necessary.

280 M. Hauswirth

Fig. 9. Aggregate View of Multiple-Choice Solutions

5 Anonymity and Grouping

A classroom response system like Informa is ultimately confronted with the issue
of anonymity: the question of whether it is possible to determine which student
submitted a (possibly incorrect) solution. We have identified different approaches
to anonymity:

Anonymous. Students are entirely anonymous.
User alias. Students pick an arbitrary alias when they connect. This alias

is used whenever information about individual solutions is shown on the
beamer, allowing each student to identify his own information.

User name. Students log in with a user name assigned to them by the instruc-
tor. This allows all students and the instructor to identify information about
each individual student.

User name & password. Students connect with a user name and password.
This type of session allows instructors to use Informa to keep class attendance
information, or to conduct graded quizzes.

Group alias. Students enter a group alias of their choice. Unlike with a user
alias, with a group alias multiple students are expected to enter the same alias
(the alias of their group). While a user alias allows students to compete within
a group of friends, a group alias allows students to compete between groups
(e.g. the “skiers” vs. “snowboarders”). The specific group membership is
irrelevant from the point of view of the instructor. The only purpose of
forming groups is to increase motivation by fostering competition.

Group name. Students enter a group name assigned to them by the instructor.
Group pick. Students pick a group from a set of known groups.

The main goal of Informa is to enable all students to participate. Students
are more inclined to answer a question if they feel comfortable making a mis-
take. Some students, even in the friendliest classroom, are reluctant to offer a

Informa: An Extensible Framework for Group Response Systems 281

solution in which they lack confidence. The anonymity provided by the anony-
mous, user alias, and group alias approaches eliminates this barrier. The group
name and group pick approaches, with small group sizes, lead to a certain loss of
anonymity, but have the benefit of providing more information (e.g. the “Pascal
programmers” group understands information hiding better than the “C pro-
grammers” group). On the other end of the spectrum, the two user-name-based
approaches, user name and user name & password, have the advantage of auto-
matically tracking specific students’ progress. This allows the early detection of
challenged students, enabling instructors to help these students before it is too
late.

The aspect of anonymity is related to the aspect of competition. If students
are completely anonymous there is little means for competition. The more in-
formation about a student is known, the more competitive the session becomes.
Except for anonymous, all of the above approaches foster competition. Moreover,
in group-based appoaches (group alias, group name, and group pick), submissions
are aggregated and visualized by group instead of over the entire class, exposing
the specific performance of each group. This enables competition between groups,
providing a motivating setting without exposing indiviual students directly.

With Informa, the instructor decides on an anonymity approach at the start
of the session. Depending on the approach, students connecting to the session
will then be prompted for the required information.

6 Problem Types

Traditional classroom clickers focus on multiple-choice questions: the instructor
offers a set of predetermined answers, of which the student has to choose the cor-
rect subset. In Informa, multiple-choice questions represent just one supported
problem type. Informa is an extensible framework, where problem types are de-
fined in plug-ins. In this section we describe two problem types in more detail,
the standard multiple-choice questions and our new text highlighting problems.

Each problem-type plug-in provides editors for creating new problems (for the
instructor), GUIs for solving a problem (for the students), and visualizations that
aggregate the submitted solutions (for showing on the beamer). Developers can
easily develop new plug-ins for new types of questions.

6.1 Multiple-Choice Questions

Section 4 shows the support for multiple-choice questions available in Informa.
Figures 8 and 9 show a student’s view of the problem and the aggregate view
of all submitted solutions in the form of a histogram. Informa allows questions
with an arbitrary number of choices. A given question can be configured as
either a single or a multiple answer question. When designing the question, the
instructor also indicates which choices are correct. Informa uses this information
to highlight the correct answers in the histogram aggregating the submitted
solutions. Since giving away the correct solution may not be the pedagogically

282 M. Hauswirth

most effective approach, the highlighting of correct answers is initially disabled.
The instructor can use the histogram to prompt a discussion with the students
and highlight the correct answers only at the end of that discussion.

6.2 Text Highlighting Problems

This problem type consists of a text and a question that asks the student to
highlight certain parts of that text. The example problem shown in Figure 10
asks the students to highlight the name of each instance variable that has a
reference type. The student has already highlighted dateOfBirth, is currently
adding mother, and has not (yet) identified name.

While a multiple-choice problem has a fixed number of incorrect answers (dis-
tractors), text highlighting is a more open type of problem: a student is free
to highlight any area(s) of the text he likes. Because it provides the student
with less support (no choices to pick from), it may help uncover issues of un-
derstanding that would not have been detected with multiple-choice problems.
Since the number of possible answers is large, the aggregation approach used for
multiple-choice questions (i.e. histograms) becomes impractical.

For this reason we have developed the aggregation visualization shown in
Figure 11. This visualization superimposes all solutions, leading to highlights
with different intensity. The intensity of the highlights represents the number of
solutions that highlighted the corresponding text. Intense highlights thus corre-
spond to the majority solution, while divergences by small numbers of students
(often corresponding to errors) show up either as faint highlights or as high-
lights of less-than-full intensity. The instructor can take action if the intensely
highlighted text segments do not correspond to her expectations. In the case of
minor issues like in Figure 11, the instructor may decide to explain that String

Fig. 10. Student Solving a Text Highlighting Problem

Informa: An Extensible Framework for Group Response Systems 283

Fig. 11. Aggregate View of Text Highlighting Solutions

is a reference type, and she may comment that students were expected to select
the name of the variable (not its type).

6.3 Writing New Problem Type Plug-Ins

To create a new problem type, a developer first has to decide how to store the
information defining a problem and a solution by writing implementations of
Informa’s Problem and Solution interfaces. These classes are usually relatively
lightweight. For example for the multiple choice problem type, the Problem class
stores the question text and the list of possible choices. The Solution class stores
the index (or indices) of the selected choices.

The Problem and the Solution class have to be serializable. This allows In-
forma to pass problems from the instructor to the student, and to return solu-
tions from the student to the instructor. Moreover, it enables Informa to store
problems in a file (the problem database is essentially a file containing serialized
Problem objects).

public interface ProblemType {
St r ing getName () ;
ProblemEditor createProblemEditor () ;
So lu t ionEd i tor c r e a t eSo lu t i onEd i t o r () ;
Solut ionAnalys i sView [] c r eat eSo lu t ionAna ly s i sV iews () ;

}

Fig. 12. The ProblemType interface

Besides implementing these two model classes, supporting a new problem
type also requires the developer to write an implementation of the ProblemType
interface (see Figure 12), and to develop the necessary ProblemEditor and
SolutionEditor GUI components. Moreover, the developer needs to develop

284 M. Hauswirth

one or more SolutionAnalysisView to visualize the aggregate information over
all submitted solutions (analog to the histogram for multiple choice solutions).

7 Evaluation

We evaluated Informa in a Java programming course (Programming Fundamen-
tals II) at the University of Lugano (USI). All informatics students at USI bring
laptops to class, and all our classrooms are equipped with beamers and wire-
less networks. At USI we have a high instructor to student ratio, allowing for
small class sizes. While the main benefit of group response systems is to improve
teaching with larger classes, we have found that even in our class of thirteen
undergraduate students the use of Informa can be beneficial.

At the end of that course, we asked students to provide anonymous feedback
on the use of Informa. Eleven students responded to our request. Most students
saw benefits in using Informa, providing comments like:

My answers were almost all wrong. After that I’ve started to read and
prepare myself more.

After answering the questions we would get the right answer and that
sticks better to your mind.

Students also provided significant feedback for improving Informa. They ranged
from bug reports (e.g. student applications that dropped connections) over feature
requests (e.g. way to review problems and solutions after class) to pedagogical
issues (e.g. difficulty of the problems).

The most important limitation the students identified was an issue with our
pedagogical script: at the end of the first phase (“solve”) in each step, the faster
students have to wait for the slower ones. This serialization issue also was of
great concern to the instructor. We plan to address this issue by allowing the
instructor to post a batch of related questions at once. Another approach would
be to provide students who have submitted the answer to their problem with
extra reading material or bonus problems.

A practical issue that surfaced early on in the semester was that each late-
comer had to ask the instructor for connection information (the IP address of the
instructor’s computer). We solved this problem by always displaying connection
information on the beamer. Another solution would involve the use of a service
discovery protocol to allow student applications to automatically find instructor
applications.

We found Informa’s extensibility to be really useful. We developed several
specific problem-types for our course (e.g. for matching regular expressions, or for
identifying the type of a Java expression). However, writing a new problem-type
plug-in requires some effort. Over time we thus identified more general problem-
type plug-ins, such as the text highlighting plug-in described in Section 6.2. We
believe that, as we continue to use and extend Informa, we will end up with a
collection of problem types that are broadly applicaple across course topics.

Informa: An Extensible Framework for Group Response Systems 285

8 Related Work

Trees and Jackson [8] conducted a study involving 1500 students showing how the
use of clickers can improve the effectiveness of large lectures. Our pilot experiment
provides a first indication that our approach,which involves problem types beyond
traditional multiple-choice, can also be beneficial in a lecture with a small number
of students.

Roschelle et al. [9] survey clicker-related research and connect it to the broader
educational literature. They argue that next generation clickers should focus
on formative assessment (Informa’s focus) and on effective means to visually
aggregate student answers (which they do using overlaid plots of submitted
polynomial equations [6], and we do e.g. with our text highlighting problem).

A more recent survey by Fies and Marshall [10] confirms these issues. It also
points out the logistical difficulties to instructors and the cost of purchasing
clickers for students. Our free, lightweight software solution mitigates these prob-
lems in situations where networked computers that run Java (desktops, laptops,
PDAs, cell phones) are available in classrooms.

The “Classroom Learning Partner” (CLP) project at MIT uses pen-based
Tablet-PCs to allow students to submit answers to questions. CLP proposes to
aggregate student answers, but the CLP publications [11,12] only report on a tool
that does not support aggregation. Our work differs from CLP in several ways.
CLP has to correctly interpret the electronic ink before being able to reason
about and compare answers. Because Informa’s solution editors constrain the
space of possible answers, the semantics of a solution are always unambiguous,
and “freak solutions” (solutions that do not fit the context in which the problem
was posed) are avoided. Moreover, CLP requires (expensive) special hardware
and is based on proprietary software (Microsoft PowerPoint).

9 Conclusions

Informa is an extensible framework for group response systems. Using Informa in
a classroom allows the instructor to get deep feedback from all students. Informa
enables getting deep feedback about the understanding of students because of
its pluggable problem types. Developers can create new plug-ins that require
students to solve problems that go far beyond the selection of a choice in a
multiple-choice question. Informa enables getting feedback from all students,
because of its different student anonymity approaches which allow the instructor
to pick a tradeoff between anonymity and competitiveness. We have successfully
used Informa in our own courses. We plan to further improve the system and to
release it as an open source product.

Acknowledgments. We would like to thank the anonymous reviewers for their
insightful comments and the students at the University of Lugano for their feed-
back on improving Informa.

286 M. Hauswirth

References

1. Bligh, D.A.: What’s The Use of Lectures. Jossey-Bass (2000)
2. Penner, J.G.: Why many college teachers cannot lecture: How to avoid communi-

cation breakdown in the classroom. C.C. Thomas (1984)
3. Abrahamson, A.L.: An overview of teaching and learning research with classroom

communication systems (CCSs). In: Proceedings of the International Conference
of the Teaching of Mathematics (June 1998)

4. Duncan, D.: Clickers in the Classroom. Pearson Education, London (2005)
5. Draper, S.W., Cargill, J., Cutts, Q.: Electronically enhanced classroom interaction.

Australian Journal of Educational Technology 18(1), 13–23 (2002)
6. Roschelle, J., Vahey, P., Tatar, D., Kaput, J., Hegedus, S.: Five key considerations

for networking in a handheld-based mathematics classroom. In: Proceedings of the
27th Conference of the International Group for the Psychology of Mathematics
Education (July 2003)

7. Dillenbourg, P.: Over-scripting CSCL: The risks of blending collaborative learning
with instructional design, pp. 61–91. Open Universiteit Nederland, Heerlen (2002)

8. Trees, A.R., Jackson, M.H.: The learning environment in clicker classrooms: Stu-
dent processes of learning and involvement in large courses using student response
systems. Learning, Media and Technology 32(1), 21–40 (2007)

9. Roschelle, J., Penuel, W.R., Abrahamson, L.: Classroom response and communi-
cation systems: Research review and theory. In: Annual Meeting of the American
Educational Research Association (April 2004)

10. Fies, C., Marshall, J.: Classroom response systems: A review of the literature 15(1),
101–109 (2006)

11. Koile, K., Singer, D.: Development of a tablet-pc-based system to increase
instructor-student classroom interactions and student learning. In: Workshop on
the Impact of Pen-based Technology on Education (April 2006)

12. Koile, K., Singer, D.: Improving learning in cs1 with tablet-pc-based in-class assess-
ment. In: Second International Computing Education Research Workshop (submit-
ted)

	Informa: An Extensible Framework for Group Response Systems
	Introduction
	Goals
	Informa
	Architecture
	Pedagogical Script
	Protocol

	Example Usage Scenario
	Preparation
	Classroom

	Anonymity and Grouping
	Problem Types
	Multiple-Choice Questions
	Text Highlighting Problems
	Writing New Problem Type Plug-Ins

	Evaluation
	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

