
SelectAudit: A Secure and Efficient Audit

Framework for Networked Virtual Environments

Tuan Phan and Danfeng (Daphne) Yao

Department of Computer Science
Rutgers University, Piscataway, NJ 08854

{tphan,danfeng}@cs.rutgers.edu

Abstract. Networked virtual environments (NVE) refer to the category
of distributed applications that allow a large number of distributed users
to interact with one or more central servers in a virtual environment set-
ting. Recent studies identify that malicious users may compromise the se-
mantic integrity of NVE applications and violate the semantic rules of the
virtual environments without being detected. In this paper, we propose an
efficient audit protocol to detect violations of semantic integrity through
a probabilistic checking mechanism done by a third-party audit server.

Keywords: networked virtual environments, algorithm, audit, integrity.

1 Introduction

Networked virtual environments (NVE) [10,11] refer to the category of dis-
tributed applications that allow a large number of distributed users to interact
with one or more central servers in a virtual environment setting. For example,
Second Life is a social NVE application [17]. Second Life is also called as a mas-
sive multiplayer online role-playing game, so is World of Warcraft [18] where a
player assumes the role of a fictitious character in the game. Multiplayer online
games enjoy great popularity around the world with the revenue exceeding one
billion dollars in western countries [8]. For a conventional single-player local
game, the graphics are rendered and simulated on the player’s local machine.
For multiplayer online games with a client-server model, when the number of
players are small, it is still possible for the game server to centrally compute
the graphics simulations and send them back to the players. However, for mas-
sively multiplayer online games, the main graphics renderings need to be done
on the client’s machines in order to reduce the workload of the game servers.
Therefore, the server no longer has the entire control over what gets to be com-
puted and displayed on the client’s machine. Vulnerabilities and flaws in game
designs are exploited by cheating players to unfairly take advantages of other
players. Cheating behaviors discourage honest players from participating in the
games [16] that hinders the development of game industry [5].

Multiplayer games can have two types of architectures: client-server or peer-
to-peer. In most client-server models, a client sends to the server updates that
affected the client’s local state. The server then coordinates the global state

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 207–216, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

208 T. Phan and D.(D.) Yao

and adjusts the interactions between players. In comparison, a peer-to-peer is
serverless [12] and relies on game players to coordinate their interactions and
states among themselves. In this paper, we focus on the security of the client-
server architecture.

The architecture of multiplayer games needs to be scalable to accommodate
the interactions among a large number of players. In particular, the workload on
the central server or a cluster of central servers need to be kept efficient to ensure
responsiveness to clients (players)’s updates and requests. Because graphics ren-
dering is computationally intensive, it is infeasible to make the central servers to
perform the rendering for each player. Therefore, typical multiplayer online game
servers only maintain abstract states of each player and the concrete outcome of
simulation is performed and kept on the player’s computer. The concrete state
information captures the settings, contexts, environments, visual effects of the
player at a given point. The abstract state can be thought of as a digest of the
concrete state.

Both client-server and peer-to-peer architectures have potential vulnerabili-
ties for cheating. As defined by Baughman et al. [1,2], cheating occurs when a
player causes updates to game state that defy the rules of the game or gain an
unfair advantage. For example, the game player may attempt to intercept and
access hidden information, collude with his friend to learn secret information of
his opponent 1, or lookahead cheat where a player simply waits until all other
players have sent their decisions. Several cheating behaviors have been studied
and solutions have been proposed by the research community, including lockstep
protocols [1,4] for lookahead cheats, a secure online Bridge game design by [19],
fair message ordering protocol [3], and an audit framework to prevent cheating
on semantic rules [9]. From the game industry, cheating in multiplayer online
games have been intensively discussed and studied [5,16].

Unlike most of the existing anti-cheat work, we study the semantic integrity
of multiplayer games in the client-server architecture. Our goal is to develop a
general and efficient audit framework to detect and deter this type of cheating.
Semantic integrity of multiplayer online games is defined as that all the game
players must observe and follow the logical rules that govern the simulation and
interactions specified by the server.

The attacks on semantic integrity in the client-server architecture are due to
several reasons. First, the client software can be modified by participants, which
is easy for open-source games. Even for proprietary games, client modification
is sometimes possible through reserve engineering. Therefore, a security solution
should not assume that all clients are trusted. Second, due to the large scale
of the game, the central server typically only keeps an abstract state of each
player. Third, there is a difference between the central server’s abstract state
and the player’s concrete state. For example, the central server may only store
the coordination of a few points on a client’s moving path, instead of the entire

1 Certain online Bridge game allows one to join as a bystander and thus can view the
cards of all players [19]. Therefore, a cheater can make his friend a bystander who
can pass other players’ cards information onto the cheater.

SelectAudit: A Secure and Efficient Audit Framework 209

trajectory. This distinction is called semantic gap first by [9], as the state of a
game player contains the semantic meanings. Recently, researchers have identi-
fied that semantic gaps may be exploited by malicious players to violate semantic
rules of the game without being detected.

The main challenge in designing an audit framework for massively multi-
player online games is to prevent the audit server from becoming a performance
bottleneck. Jha et al. proposed to use an audit server to catch cheating players by
recomputing all of the audited players’ previous game states. Their approach is
simple and easy to implement. However, the heavy workload of the audit server
is likely to create a bottleneck in the auditing process, as the recomputation
of hundreds of thousands of game states is expensive. One easy mitigation is
to deploy multiple audit servers to distribute the workload. Even with multiple
audit servers, operations on each single auditor need to be optimized for efficiency
as auditing needs to take place in real time to detect cheating players as quickly
as possible.

In this paper, we develop a novel and efficient audit framework for multi-
player online games through the use of Merkle hash tree and a random verifica-
tion mechanism. Our solution is designed for the client-server architecture. We
propose a scalable algorithm that allows an audit server to periodically examine
clients’ game states to detect cheating events. The main feature of our solution
is that under reasonable assumptions, an audit server only needs to recompute
a constant number of game states of a client in order to catch a potential cheat-
ing client with a high probability. Therefore, the auditing protocol is scalable
to hundreds of thousands of clients as typically seen in popular multi-player on-
line games. (E.g., World of Warcraft currently has 8 million registered players.)
Because of the use of Merkle tree [13,14], once caught, a cheating client cannot
refute the evidences produced by the audit server.

2 An Example

Here, we show a simple example of semantic integrity violation. Table 1 illus-
trates the distribution of game information between the players and the central
game servers.

Table 1. A table shows the distribution of game information between the players and
the central game server

Type of an entity Stores/computes Where

Player Concrete game state of the player Player’s local machine

Central game server Abstract states of all players’ states Central game server

Example 1. To reduce storage requirements, the central game server may only
keep the coordinates of the two end points of a moving player as part of the ab-
stract state of the player, for example, in the right figure, point a at (x1, y1) and
point b at (x2, y2). As a result, a cheating player may violate the game rules by

210 T. Phan and D.(D.) Yao

walking through walls (the red path) without being detected by the state server!
A correct path is to follow the green path. Without an secure audit mechanism,
the central game server is unable to detect this type of cheating events.

Fig. 1. Walking through walls: an example of semantic integrity violation. The central
game server only keeps the coordinates of the two end points of a moving player as part
of the abstract state, point a at (x1, y1) and point b at (x2, y2). A cheating player may
violate the game rules by walking through walls (the red path) without being detected
by the state server.

Other possible semantic integrity attacks include seeing hidden objects, shoot-
ing from the back, and reversing explosion damages, just to name a few. In some
cases, semantic integrity violation is a result of other types of attacks such as
reflex augmentation. For example, shooting from one’s back (without seeing the
target) is due to the use of aiming bot that is a program that automatically
shoots once the target position is obtained (mostly by examining network pack-
ets). Therefore, catching semantic violations may also reduce other attacks in
multi-player online games.

How to define semantic integrity rules that are to be enforced is specific to
an application, which is out of the scope of this paper. However, open questions
remain as to the complexity of such set of rules and how to easily generate these
semantic rules by designing automatic tools. Our approach to detect semantic
violations is to use an audit server to audit players by selectively recomputing
and verifying players’ concrete states, which is presented in the next Section.
In what follows, we assume that the audit server has already obtained a set of
semantic rules that it needs to enforce.

3 Preliminaries

In this section, we introduce the preliminary knowledge needed to understand our
protocol. We briefly explains Merkle hash tree and the necessary cryptographic

SelectAudit: A Secure and Efficient Audit Framework 211

primitives that are used by us. We also briefly describe a simple audit approach
that will be compared to our protocol.

We use Merkle hash trees for authentication of values a1, . . ., an. Merkle hash
tree is for efficient authentication of a large number of items. This simple and
elegant data structure has previously been used in various occasions [6,7]. A
binary Merkle hash tree is a tree where an internal node h0 is computed as the
hash value H(h1, h2) of two child nodes h1 and h2. In our construction, the order
of inputs in the hash function matters and represents the node position in the
tree, e.g., h1 is the left node. The root hash y of the tree represents the digest of
all the values at the leaf nodes, which are values a1, . . ., an. To authenticate that
leaf ai is in the hash tree, the proof is a sequence of hash values corresponding
to the siblings of nodes that are on the path from ai to the root. To verify the
proof, anyone can recompute the root hash with ai and the sequence of hash
values in the proof. In our SelectAudit protocol, the Merkle tree can be thought
of as the commitment on the game information by a player. Given a leaf node
on a Merkle hash tree, the proof nodes refer to the minimum set of nodes that
are required to construct the root hash. In other words, proof nodes consist of
the sibling nodes of the leaf node on the path from the root to the leaf node.

The root hash of the Merkel tree needs to be authenticated with a digital signa-
ture using a public key signature scheme or a keyed-hash message authentication
code (HMAC) with a shared secret key between the signer and the verifier. For
online game settings, public key signature scheme is not suitable as a player may
not possess a public and private key pair. Therefore, a shared secret session key
is usually generated between the player and the central server, then the player
uses the shared key to create HMAC on the root hash for authentication pur-
pose. Our protocol assumes the existence of a collusion-resistance one-way hash
function that (1) it is hard to compute the input of the hash function from the
hash value and (2) it is hard to find two distinct messages that give the same
hash values.

For the ease of discussion, we refer to the audit protocol presented in [9] as
the SimpleAudit protocol. In SimpleAudit, each audited player has to compute
HMAC on all of the update messages and send them to the auditor for verification.
The auditor detects violation by performing the following three main operations.

1. To verify the MAC of each update message to ensure message authenticity.
2. To render each concrete game state corresponding to each update.
3. To verify the compliance of each concrete state according to the semantic

rules of the game.

We describe our protocol SelectAudit in the next section.

4 Our Approach

In this section, we show how to apply cryptographic tools to prevent semantic
integrity violation attacks in NVE. Our audit protocol reduces the computation
costs at the audit server and the communication costs between the client and the

212 T. Phan and D.(D.) Yao

audit server by using Merkle hash trees. Our aim is to improve the performance
of the audit server so that it can efficiently audit a large number of players
simultaneously.

Table 2. Notations in our SelectAudit protocol

k Shared secret key between Client and AuditServer

HMAC(k, M) HMAC of a message M by using a key k

S0 Beginning concrete state of an audit cycle

Q0 HMAC on S0

St
c Concrete state at the time t in the audit cycle c

∆i Update on Client’s concrete game state at epoch i

δi Abstraction corresponding to ∆i (i.e., update on abstract state)

Root hash Root hash of Client’s Merkle hash tree

Qc HMAC of root hash

Ŝi Concrete state of Client at epoch i recomputed by AuditServer

4.1 Overview

There are three types of entities in our protocol: Client, StateServer, and Audit-
Server. StateServer is the central state server that coordinates the players and
maintains the abstract states of all the players. AuditServer does auditing on all
the players. Client refers to a player. AuditServer and StateServer are mutually
trusted by each other. Client is not assumed to be trusted by the servers. To
avoid requiring AuditServer to recompute every concrete state corresponding to
an update of an audited client, we design a sampling technique. AuditServer
only checks the semantic integrity associated with m updates out of n updates
in an auditing cycle. By choosing a reasonably large m, a cheating player can be
detected with high probability. We call our audit protocol SelectAudit.

An audit cycle refers to a time period specified by the game, during which a
client’s game records are examined by the audit server. The audit cycle is agreed
upon by all the entities in the game system. An audit cycle consists of n number
of epoches, each is associated with an update on the client’s game state. During
each cycle, each client constructs a Merkle hash tree on the update messages (no
matter he is under audit or not). At the end of the cycle, the client computes the
root hash of the tree and a message authentication code on the root hash. The
client saves these values. If at a later point of time, the audit server decides to
audit the client for a previous cycle, part of the stored Merkle tree corresponding
to that cycle is sent to the auditor for verification. Without loss of generality, we
choose n to be power of 2 for the ease of building the Merkle tree by the client.

For example, suppose the audit cycle consists of 8 epoches. A client joins the
game at epoch 1. At each epoch from 1 to 8, he constructs the Merkle hash tree
incrementally based on his game state information, and computes a MAC on the
root hash at the end of epoch 8. At epoch 10, the audit server notifies the client
that he is under audit. The client then engages in the audit protocol using the
Merkle tree that he previous generated.

SelectAudit: A Secure and Efficient Audit Framework 213

4.2 Our SelectAudit Protocol

Our SelectAudit protocol has three components: Initialize, StateUpdate, and
Audit, each of them is a protocol itself that is run. In what follows, we assume
that the StateServer and AuditServer have a secure channel for communicating
messages.

Initialize: This protocol is run among the StateServer, the AuditServer, and the
Client when the Client first joins the online game. The StateServer sends the initial
concrete state for the client based on the client’s profile. As it is chosen by the
StateServer, this initial concrete state of the client satisfies the semantic integrity
of the game. The client also commits to AuditServer on the initial state by sending
it a HMAC of the initial state. ASTATE is a shorthand for abstract state.

1. Client and AuditServer exchange a secret session key k, that is used to
generate HMAC values in the updating phases and the auditing phases.

2. Client initializes t = 0 and sends an initialization request to StateServer.
3. StateServer chooses a concrete state S0 for the client based on his profile.

StateServer sends to the client the initial state S0.
4. Client computes and stores Q0 = HMAC(k, S0) along with the concrete

state S0 for audit purpose.

StateUpdate: This protocol is mainly run by the Client and StateServer to
compute an updated game state for each epoch t of the game. The client also
maintains the Merkle hash tree in case he gets audited later on. The Merkle hash
tree is built on top of updates {∆i}. The Merkle tree can be thought of as the
commitment on the updates by the Client. For each epoch t in an audit cycle c,

1. Client computes a desired status update ∆t+1 and its corresponding abstrac-
tion δt+1.

2. Client sends δt+1 to the StateServer.
3. Upon receiving δt+1, StateServer computes a new δ′t+1 and updates its ab-

stract state accordingly.
4. StateServer sends the following to both Client and AuditServer: (δ′t+1 ‖

t + 1 ‖ Clientid).
5. Client chooses and stores the concrete update ∆′

t+1 ∈ γ(St
c, δ

′
t+1) and com-

putes the new concrete state St+1
c = St

c + ∆′
t+1.

6. Client inserts ∆′
t+1 into the Merkle tree corresponding to the current audit

cycle.
7. Client increments t. At the end of cycle c, i.e., t == n where n is the number

of epoches in an audit cycle,
(a) Client computes the corresponding new concrete state Sc.
(b) Client computes Qc := HMAC (k, root hash), then sends Qc to Audit-

Server. Note that this step is required for each Client for each cycle.
(c) Client initializes for the next audit cycle by setting t := 0 and beginning

concrete state S0 := Sn
c . Client computes and stores HMAC(k, S0) along

with the beginning concrete state S0 for audit purpose.

214 T. Phan and D.(D.) Yao

Audit: To audit a previous cycle c on Client, AuditServer and Client engage in a
protocol that allows the AuditServer to verify that (1) game renderings based on
the beginning concrete state S0 and updates at selective epoches satisfy semantic
integrity, (2) the beginning concrete state and updates submitted by Client are
authentic.

1. AuditServer informs Client that he is under audit for an earlier cycle c.
2. Client sends to AuditServer all the concrete updates {∆′

i} in the audit cycle
for all i ∈ [1, n], and the beginning concrete state S0 of cycle c, and its
HMAC Q0.

3. AuditServer checks whether VerifyHMAC(k, root hash, Qc) = TRUE and
VerifyHMAC(k, S0, Q0) = TRUE. These two steps are to verify the au-
thenticity of the root hash of Merkle tree and the beginning concrete state
S0 that are received from Client. Recall that Qc and root hash are sent by
Client to AuditServer in Protocol StateUpdate.

4. AuditServer randomly picks m numbers from [1, n] that represent the in-
dices of epoches to be audited in audit cycle c. These numbers form the
challenges for Client and are denoted by challenge set. AuditServer sends
the challenge set to Client.

5. Client prepares a response message M that includes the proof nodes on
Merkle tree corresponding to ∆′

j where j ∈ challenge set. Recall that proof
nodes defined in Section 3 consist of the sibling nodes of the leaf node on
the path from the root to the leaf node. Client sends to AuditServer: M ‖
HMAC(k, M).

6. AuditServer verifies the HMAC on M . Then, for each challenge i ∈ chal-
lenge set:
(a) Auditor verifies the authentication of ∆′

i by reconstructing the root hash
of the Merkle Tree from ∆′

i and its proof nodes. If the reconstructed root
hash should be the same is the one sent in StateUpdate.

(b) Auditor re-computes the concrete state of Client associate with epoch i
by Ŝi = S0 + (∆′

1 + ∆′
2 + ... + ∆′

i), i.e., to compute the concrete state by
applying accumulated updates.

(c) Auditor checks whether ∆′
i chosen from γ(Ŝi, δ

′
i) is compliant with the

rules of the game. How to define the rules of game depend on the specific
NVE application and is out of the scope of this paper. Recall that δ′i is
obtained from StateServer in Step 4 in Protocol StateUpdate.

7. AuditServer accepts the computation of Client if and only all the above tests
pass. Client may delete the stored audit records.

AuditServer needs to maintain the auditing schedule of each client, i.e., when
to audit which subset of clients. The process of choosing which subset of clients
to audit should be randomized as opposed to following a predictable pattern.
Otherwise, a cheating client can predict the cycles that he will be audited and
cheats for the rest of the time. Ideally, for each audit cycle, every client is au-
dited, which gives the best guarantee on detecting semantic integrity violations.
However, this type of scheduling gives the audit server a heavy workload. Thus,
there is a tradeoff between efficiency and detectability.

SelectAudit: A Secure and Efficient Audit Framework 215

Theorem 1. Assuming the existence of collision-resistance one-way hash func-
tion, our SelectAudit protocol preserves the semantic integrity of NVE and is
secure against probabilistic polynomial-time adversaries in NVEs in the follow-
ing attacks: message tampering and forgery, audit replay attacks, refuting audit
results attacks, collision attacks, reordering attacks, and tailered update attacks.

Theorem 2. Let n be the number of updates in an audit cycle, m be the number
of updates the audit server challenges a player, and r be the honest ratio that is
defined as the probability that a player does not cheat. Also let ε be the maximum
allowed probability of cheating without being caught. Then in SelectAudit, the
following formula captures the upper bound on m.

m <
log ε

log r

Due to space limit, we omit the detailed security and performance analysis. We
refer readers to the full version of our paper for more information [15].

Comparison with SimpleAudit. Jha et al. conducted the first study on the
semantic integrity of multi-player online games [9]. The SimpleAudit protocol
in Section 3 captures the essence of their protocol. Our SelectAudit improves
SimpleAudit in terms of both audit server efficiency and communication over-
head. In [9], when a player is audited for a previous time period t, he needs
to send all of the game updates and their message authentication code (MAC)
associated with t to the audit server. In our solution, the MAC is only computed
once for time period t. This simplification not only saves the communication
overhead between the players and the audit server, but also lowers the compu-
tation overhead for the players. In [9], the audit server needs to recompute all
of the concrete game states of each player who is under audit. Because game
rendering is expensive, this recomputation is a significant overhead, especially
when the number of players to be audited is large. In comparison, our audit
server only needs to recompute a selective number of concrete states for each
player, in order to have a high detection probability.

5 Conclusions

We have described a general and scalable audit framework for massive multi-
player online games and for networked virtual environments in general. We are
able to develop a distributed and efficient audit protocol that is run by the audit
server to periodically examine the semantic integrity of clients’ game states. The
audit server is able to quickly detect cheating players and provide irrefutable
proofs on the cheating behavior. The main advantage of our random checking
algorithm is that the audit server only needs to perform a small number of
rendering operations in order to catch cheaters with a high probability. This
randomization significantly saves the computation costs for the audit server.

216 T. Phan and D.(D.) Yao

References

1. Baughman, N.E., Levine, B.N.: Cheat-proof playout for centralized and distributed
online games. In: IEEE INFOCOM, pp. 104–113 (2001)

2. Baughman, N.E., Liberatore, M., Levine, B.N.: Cheat-proof playout for centralized
and peer-to-peer gaming. IEEE/ACM Trans. Netw. 15(1), 1–13 (2007)

3. Chen, B.D., Maheswaran, M.: A cheat controlled protocol for centralized online
multiplayer games. In: Proceedings of the 3rd Workshop on Network and System
Support for Games (NETGAMES), pp. 139–143. ACM Press, New York (2004)

4. Chen, B.D., Maheswaran, M.: A fair synchronization protocol with cheat proofing
for decentralized online multiplayer games. In: 3rd IEEE International Symposium
on Network Computing and Applications (NCA), pp. 372–375 (2004)

5. Davis, S.B.: Why cheating matters. In: Game Developer’s Conference (2003),
http://www.secureplay.com/papers/docs/WhyCheatingMatters.pdf

6. Du, W., Jia, J., Mangal, M., Murugesan, M.: Uncheatable grid computing. In:
International Conference on Distributed Computing Systems (ICDCS), pp. 4–11

7. Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku, S.,
Yao, D.: Efficient signature schemes supporting redaction, pseudonymization, and
data deidentification. In: Proceedings of the 2008 ACM Symposium on Information,
Computer and Communications Security (ASIACCS), pp. 353–362 (2008)

8. Harding-Rolls, P.: Western world MMOG market: 2006 review and forecasts to
2011, Management Report. Screen Digest (March 2007)

9. Jha, S., Katzenbeisser, S., Schallhart, C., Veith, H., Chenney, S.: Enforcing se-
mantic integrity on untrusted clients in networked virtual environments. In: IEEE
Symposium on Security and Privacy, pp. 179–186 (2007)

10. Joslin, C., Giacomo, T.D., Magnenat-Thalmann, N.: Collaborative virtual envi-
ronments: From birth to standardization. IEEE Communications Magzine, 28–33
(April 2004)

11. Joslin, C., Pandzic, I.S., Magnenat-Thalmann, N.: Trends in networked collabora-
tive virtual environments. Computer Communications 26(5), 430–437 (2003)

12. Knutsson, B., Lu, H., Xu, W., Hopkins, B.: Peer-to-peer support for massively
multiplayer games. In: IEEE INFOCOM (2004)

13. Merkle, R.: Protocols for public key cryptosystems. In: Proceedings of the 1980
Symposium on Security and Privacy, pp. 122–133. IEEE Computer Society Press,
Los Alamitos (1980)

14. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

15. Phan, T., Yao, D.: Select audit: A secure and efficient audit framework for net-
worked virtual environments. Technical Report DCS-TR-642, Rutgers University
(2008)

16. Pritchard, M.: How to hurt the hackers: The scoop on internet cheating and how
you can combat it,
http://www.gamasutra.com/features/20000724/pritchard_pfv.htm

17. Second Life, http://secondlife.com/
18. World of Warcraft, http://www.worldofwarcraft.com/index.xml
19. Yan, J.: Security design in online games. In: ACSAC 2003, Washington, DC, USA,

p. 286. IEEE Computer Society, Los Alamitos (2003)

http://www.secureplay.com/papers/docs/WhyCheatingMatters.pdf
http://www.gamasutra.com/features/20000724/pritchard_pfv.htm
http://secondlife.com/
http://www.worldofwarcraft.com/index.xml

	$SelectAudit$: A Secure and Efficient Audit Framework for Networked Virtual Environments
	Introduction
	An Example
	Preliminaries
	Our Approach
	Overview
	Our SelectAudit Protocol

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

