
A Federated Digital Identity Management

Approach for Business Processes

Elisa Bertino, Rodolfo Ferrini, Andrea Musci, Federica Paci,
and Kevin J. Steuer

CS Department and CERIAS, Purdue University, West Lafayette IN 47907, USA
{bertino,rferrini,amusci,paci,ksteuer}@cs.purdue.edu

Abstract. Business processes have gained a lot of attention because of
the pressing need for integrating existing resources and services to better
fulfill customer needs. A key feature of business processes is that they
are built from composable services, referred to as component services,
that may belong to different domains. In such a context, flexible multi-
domain identity management solutions are crucial for increased security
and user-convenience. In particular, it is important that during the exe-
cution of a business process the component services be able to verify the
identity of the client to check that it has the required permissions for
accessing the services. To address the problem of multi-domain identity
management, we propose a multi-factor identity attribute verification
protocol for business processes that assures clients privacy and handles
naming heterogeneity.

Keywords: identity management, business process, naming heterogene-
ity, interoperability.

1 Introduction

Business processes have gained a lot of attention because of the pressing need
for integrating existing resources and services to better fulfill customer needs.
A key feature of business processes is that they are built from composable ser-
vices, referred to as component services, that may belong to different domains. In
such a context, flexible multi-domain identity management solutions are crucial
for increased security and user-convenience. In particular, it is important that
during the execution of a business process the component services be able to
verify the identity of the client to check that it has the required permissions for
accessing the services. Clients identity consists of data, referred to as identity
attributes, that encode relevant-security properties of the clients. The manage-
ment of identity attributes in business processes raises however a number of
challenges. On one hand, to enable authentication, the propagation of client’s
identity attributes across the component services should be facilitated. On the
other hand, identity attributes need to be protected as they may convey sensi-
tive information about a client and can be target of attacks. Moreover, because
business processes orchestrate the functions of services belonging to different do-
mains, interoperability issues may arise in client authentication processes. Such

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 194–206, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

A Federated Digital Identity Management Approach for Business Processes 195

issues range from the use of different identity tokens and different identity nego-
tiation protocols, such as the client-centric protocols and the identity-providers
centric protocols, to the use of different names for identity attributes. The use of
different names for identity attributes, that we refer to as naming heterogeneity,
typically occurs because clients and component services use a different vocab-
ulary to denote identity attribute names. In this case, whenever a component
service requests from a client a set of identity attributes to verify its identity,
the client may not understand which identity attributes it has to provide.

To address the problem of multi-domain identity management, we propose a
multi-factor identity attribute verification protocol for business processes that
assures clients privacy and handles naming heterogeneity. The protocol uses an
identity attribute names matching technique based on look-up tables, dictionar-
ies and ontology mapping, to match component services and clients vocabularies
and aggregate zero knowledge proofs of knowledge (AgZKPK) cryptographic
protocol to allow clients to prove with a single interactive proof the knowledge
of multiple identity attributes without the need to provide them in clear.

The rest of the paper is organized as follows. Section 2 introduces a running
example that is used throughout the paper to illustrate the discussion. Section
3 discusses the main issues related to digital identity management for business
processes. Section 4 introduces the notions on which our multi-factor identity
attribute verification protocol is based. Section 5 presents the multi-factor iden-
tity attribute verification protocol. Section 6 discusses the system architecture.
Section 7 reports experimental results. Finally, Section 8 concludes the paper
and outlines some future work.

2 Running Example

In this section we introduce an example of business process that implements a loan
approval process (see Figure 1). Customers of the service send loan requests. Once

Fig. 1. A loan approval process specification

196 E. Bertino et al.

a request is received, the loan service executes a simple process resulting in either
a “loan approved” message or a “loan rejected” message. The decision is based
on the amount requested and the risk associated with the customer. For amounts
lower than 10, 000$ a streamlined process is used. In the streamlined process low-
risk customers are automatically approved. For higher amounts, or medium and
high-risk customers, the credit request requires further processing. For each re-
quest, the loan service uses the functions provided by two other services. In the
streamlined process, used for low amount loans, a risk assessment service is used
to obtain a quick evaluation of the risk associated with the customer. A full loan
approval service (possibly requiring direct involvement of a loan expert) is used to
obtain an assessment about the customer when the streamlined approval process
is not applicable. Four main activities are involved in the process:

– Loan Request allows a client to submit a loan request to the bank
– Check Risk (provided by risk assessment service) computes the risk associ-

ated with the loan request
– Approve Loan (provided by loan approval service) determines if the loan

request can be approved or rejected
– Loan Response sends to the client the result of the loan request evaluation

process

risk assessment and loan approval services require a set of identity attributes
from the client who has submitted the loan request. The risk assessment service
asks DrivingLicense, CarRegistration and EmployeeID, whereas the loan ap-
proval service requires EmployeeID and CreditCard.

3 Identity Management for Business Processes

Managing and verifying clients identity in a business processes raise a number
of challenging issues. A first issue is related to how the client’s identity attribute
have to be managed within the business process. The client of a business process
is not aware that the business process that implements the required service in-
vokes some component services. The client thus trusts the composite service but
not the component services. Therefore, every time the component services have
to verify the client’s identity, the composite service has to act as an intermedi-
ary between the component services and the client. Moreover, since the client’s
identity attributes may contain sensitive information and clients usually do not
trust the component services, the client’s identity attributes should be protected
from potential misuse by component services.

Another issue is related to how the identity verification process is performed.
Because component services belong to different domains, each with its own iden-
tity verification policies, the sets of identity attributes required to verify client’s
identity may partially or totally overlap. Therefore, the client has to prove sev-
eral times the knowledge of the same subset of identity attributes. It is thus
important to take advantage of previous client identity verification processes
that other component services have performed.

A Federated Digital Identity Management Approach for Business Processes 197

Finally, another issue is the lack of interoperability because of naming het-
erogeneity. Naming heterogeneity occurs when component services define their
identity verification policies according to a vocabulary different from the one
adopted by clients. Therefore, component services and clients are not able to have
“meaningful” interactions because they do not understand each other. Thus, it
is also necessary that client identity verification process supports an approach to
match identity attribute names of component services and clients vocabularies.
In such respect, a first question to be addressed is which matching technique
to use, which in turn depends from the types of variation in identity attribute
names. A second question is related to the matching protocol to use, that is,
by which party the matching has to be performed and whether the fact that a
client has already performed a matching with a component service may help in
a subsequent matching.

To address such issues we propose a multi-factor identity attribute verification
protocol for business processes that supports a privacy usage of clients identity at-
tributes and that guarantees interoperable interactions between clients and com-
ponent services. In what follows, we provide more details about our approach.

4 Preliminary Concepts

To enable multi-factor identity attribute verification, clients have to register
their identity attributes to a registrar [1]. The registrar is an additional compo-
nent in digital identity management systems that stores and manage information
related to identity attributes. For each client’s identity attribute m, the regis-
trar records an identity tuple (σi, Mi, tag, validity − assurance, ownership −
assurance, {Wij}). Each identity tuple consists of tag, an attribute descriptor,
the Pedersen commitment [5] of m, denoted as Mi, the signature of the reg-
istrar on M , denoted as σi, two types of assurance, namely validity assurance
and ownership assurance and a set of weak identifiers {Wij}. Mi is computed
as gmhr, where g and h are generators in a group G of prime order q. G and
q are public parameters of the registrar and r is chosen randomly from Zq. Va-
lidity assurance corresponds to the confidence about the validity of the identity
attribute based on the verification performed at the identity attribute’s original
issuer. Ownership assurance corresponds to the confidence about the claim that
the principal presenting an identity attribute is its true owner.

Weak identifiers are used to denote identity attributes that can be aggregated
together to perform multi-factor authentication. The identity tuples of each reg-
istered client can be retrieved from the registrar by the component services or
the registrar can release to the client a certificate containing its identity record.

We assume that each of the component services define their identity verifi-
cation policies by specifying a set of identity attribute names that have to be
required from the client.

Because of naming heterogeneity, clients may not understand component ser-
vices identity verification policies. The type of variations that can occur in clients
and component services identity attribute names can be classified in: syntactic,
terminological and semantic variations.

198 E. Bertino et al.

– Syntactic variations arise because of the use of different character combina-
tions to denote the same term. An example is the use of ”CreditCard” and
”Credit Card” to denote a client’s credit card.

– Terminological variations refer to the use of different terms to denote the
same concept. An example of terminological variation is the use of the syn-
onyms ”Credit Card” and ”Charge Card” to refer a client’s credit card.

– Semantic variations are related to the use of two different concepts in dif-
ferent knowledge domains to denote the same term.

Syntactic variations can be identified by using look up tables. A look up ta-
ble enumerates the possible ways in which the same term can be written by
using different character combinations. In detecting terminological variations,
dictionaries or thesaurus such as WordNet[6] can be exploited. Finally, semantic
variations can be determined by using ontology matching techniques. An ontol-
ogy is a formal representation of a domain in terms of concepts and properties
with which those concepts are related. Ontologies can be exploited to define a
domain of interest and for reasoning about its features. Ontology mapping is
the process whereby two ontologies are semantically related at conceptual level;
source ontology concepts are mapped onto the target ontology concepts accord-
ing to those semantic relations [4]. Typically an ontology matching algorithm
takes in input two ontologies Oi and Oj , and returns a set of triples of the form
〈ci, cj , s〉, where ci is a concept belonging to ontology Oi, cj is a concept belong-
ing to ontology Oj that matches concept ci, and s is a confidence score, that is, a
value between 0 and 1, indicating the similarity between the matched concepts.

To enable the matching of identity attributes by using the above techniques,
we make the following assumptions. Component services’ identity verification
policies are defined according to their domain vocabulary ontology. Moreover,
they track existing mappings with other component services’ ontologies. Such
mappings are formally represented by tuples of the following form:

〈OCS , CS′, OCS′ , {〈c1, c2, s1,2〉, . . . , 〈cl, cm, sl,m〉}〉
where OCS is the ontology of a component service CS, CS′ is a component service
whose ontology OCS′ matches ontology OCS and {〈c1, c2, s1,2〉, . . . ,
〈cl, cm, sl,m〉} is the set of concepts mappings 〈ci, cj , si,j〉 where ci ∈ OCS and
cj ∈ OCS′ . Moreover, each component service keeps a look up table containing al-
ternative character combinations and store a set of synonyms, denoted as Synset,
for each of the identity attribute names used for expressing its identity verifica-
tion policies. Finally, since we want to avoid that the client proves several times the
possession of a same set of identity attributes, we assume that component services
have a PKI infrastructure that allows them to issue certificates to clients. These
certificates (see Definition 1 below) assert that an identity attribute by a client
matches an identity attribute by a component service and that the component
service has verified that the client owns the attribute. Clients can use these cer-
tificates to prove that they own a set of identity attributes without going through
the authentication process during the execution of the same business process in-
stance in which the certificates have been released. Instead, clients can use the

A Federated Digital Identity Management Approach for Business Processes 199

certificates in business processes different from the one in which the certificate
have been issued to prove there is a mapping between a set of client’s attributes
and a service’s ontology. This distinction is motivated by the fact that there is a
trust relationship between the component services in the same business process
instance, that may not exist with services external to the process.

Definition 1 (Proof-of-Identity Certificate). Let S be a component service
participating to a business process BP and C be a client. Let OS be the ontol-
ogy describing the domain of S and AttrSet be the set of C’s identity attribute
names. The proof of identity certificate released by S to C upon a successful
verification is a tuple 〈Issuer, Owner, OID, Mappings, IssuanceDate〉 where:
Issuer is the identifier of S, Owner is the identifier of C, OID is OS ontol-
ogy identifier, Mappings is a set of tuples of the form 〈Attr, Concept〉 where
Attr ∈ AttrSet and Concept ∈ OS , and IssuanceDate is the release date of the
certificate.

Besides being stored by the clients, proof-of-identity certificates released during
the execution of a business process instance are stored in a local repository,
denoted as CertRep, by the composite service for the whole process execution.

5 Interoperable Multi-factor Authentication

In this section, we present a multi-factor authentication protocol for business
processes. The protocol takes place between a client, the composite service and
a component service. Since the client is not aware of the component services, the
composite service has to mediate the interactions between them. The protocol
consists of two phases that make use of the notion of proof-of-identity certificate
introduced in the previous section (see Figure 2). In the first phase, the compo-
nent service matches the identity attributes of clients vocabulary with its own
attributes to help the client understand its identity verification policy. In the
second phase, the client carries out an aggregate ZKPK protocol to prove to the
component service the knowledge of the matched identity attributes. Algorithm 1
summarizes the different phases of the protocol.

5.1 Identity Attribute Matching Protocol

The technique that we have developed for matching identity attribute names
from different vocabularies is based on the combined use of look-up tables, dic-
tionaries, and ontology mapping.

As we have already mentioned, an important issue is which party has to
execute the matching. In our context, the matching can be executed by the
client, the composite service or the component services. Performing the match-
ing at the client has the obvious drawback that the client may lie and as-
serts that an identity attribute referred to in the component services policy
matches one of its attribute, whereas this is not the case. The matching pro-
cess cannot be performed by the composite service because it should have ac-
cess to information which are local to the component services. Therefore, in

200 E. Bertino et al.

our approach, the matching is performed by the component services. Notice
that because of the privacy-preserving protocol that we use (see next section),
the composite service and the component services will not learn the values of
the identity attributes of the client and therefore do not have incentives to lie.

Algorithm 1: Multi-factor verification protocol

Input: CertRep: proof-of-identity certificates repository
AttrProof : set of identity attributes requested from the client
Output: ci: proof-of-identity certificate

(1) foreach ai ∈ AttrProof
(2) if ∃cj ∈ CertRep such that cj prove the knowledge of ai

(3) ai is verified
(4) else
(5) Match ai with client’s proof-of-identity certificates
(6) Verify AgZKPK
(7) Release new proof-of-identity certificate ci

(8) Store ci in CertRep

A second issue is how to take advantage of previous interactions that the
client has performed with other component services. It is also important to ex-
ploit mappings that can exist between ontologies by different component services.
To address such issue, the matching protocol relies on the use of the proof-of-
identity certificates and matching techniques. We assume that AttrProof is the
set of identity attributes that a component service asks to a client to verify
its identity. The identity attribute name matching process is carried out be-
tween the client, the component service and the composite service when some
attributes in AttrProof do not match any of the attributes in AttrSet, the set
of clients’ identity attributes. We refer to the set of component service’s identity
attributes that do not match a client attribute name to as NoMatchingAttr.
The matching process consists of two main phases. The goal of the first phase is
to match the identity attributes that have syntactical and terminological varia-
tions. During this phase, the component service sends to the composite service,
for each identity attribute ai in the NoMatchingAttr set, the set Synseti that
contains a set of alternative character combinations and a set of synonyms.
Thus, the composite service sends the sets Synseti to the client. The client ver-
ifies that for each identity attribute ai, there is an intersection between Synseti
and AttrSet. If this is the case attribute ai is removed from NoMatchingAttr.
Otherwise, if NoMatchingAttr is not empty, the second phase is performed.
During the second phase the client sends CertSet, the set of its proof-of-identity
certificates to the composite service that forwards them to the component ser-
vice. Thus, in the second phase of the matching process the component ser-
vice tries to match the concepts corresponding to the identity attributes the

A Federated Digital Identity Management Approach for Business Processes 201

Fig. 2. Approach schema

client is not able to provide with concepts from the ontologies of the services
which have issued the proof-of-identity certificates. Only matches that have a
confidence score s greater than a predefined threshold are selected. The ac-
ceptance threshold is set up by the component service to assess the matches’

202 E. Bertino et al.

validity. The greater the threshold, the greater is the similarity between the two
concepts and thus higher is the probability that the match is correct. If the
component service is able to find mappings for its concepts, it then verifies by
using the information in the proof-of-identity certificates that each matching
concept matches a client’s attribute Attr. If this check fails, the component ser-
vice notifies the composite service that terminates the interaction with the client.

Algorithm 2: Verification()

Input:
Output:

(1) C: Receive(Match)
(2) AttrMathces.Add(Match)
(3) foreach 〈Attr, Idi〉 ∈ AttrMatches
(4) {Mi, σi} := Select(RegCert, Attr)
(5) M =

∏n
i=1 Mi

(6) randomly picks y, s ∈ [1..q]
(7) d = gyhs (modp)
(8) Send({M1, . . . , Mn}, {σ1, . . . , σn }, M , σ, d);
(9) CS: Receive({M1 , . . . , Mn}, {σ1, . . . , σn }, M , σ, d)
(10) randomly picks e ∈ [1..q]
(11) Send(e)
(12) C: Receive(e)
(13) u := y + em (mod q) where m = m1 + m2 + +mn

(14) w := s + er (mod q) where r = r1 + r2 + . . . + rn

(15) Send(u, w)
(16) CS: Receive(u, w)
(17) if guhw = = dMk (mod p) ∧σ = =

∏t
i=1 σi)

(18) Execute(S);
(19) IssueCertificate();
(20) else
(21) Send(Service Denied)

5.2 Multi-factor Authentication

Once the client receives Match, the set of matched identity attributes from
the composite service, it retrieves from the registrar or from its RegCert the
commitments Mi satisfying the matches and the corresponding signatures σi.
The client aggregates the commitments by computing M =

∏n
i=1 Mi =

gm1+m2+...+mihr1+r2+...+ri and the signatures into σ =
∏n

i=1 σi, where σi is
the registrar ’s signature on the committed value Mi = gmihri . According to the
ZPK protocol, the client randomly picks y, s in [1, ..q], computes d = gyhs (mod
p), and sends d, σ, M , Mi , 1 ≤ i ≤ t, to the composite service that on in turn
sends these values to the component service. The component service sends back a
random challenge e ∈ [1, .., q] to the client. Then the client computes u = y +em

A Federated Digital Identity Management Approach for Business Processes 203

(mod q) and v = s + er (mod q) where m = m1 + . . . mt and r = r1 + . . . rt

and sends u and v to the composite service. The composite service forwards u
and v to the component service. The component service accepts the aggregated
zero knowledge proof if guhv = dce. If this is the case, the component service
checks that σ =

∏n
i=1 σi. If also the aggregate signature verification succeeds,

the component service releases a proof of identity certificate to the client. The
certificate states that client’s identity attributes in the Match set are mapped
onto concepts of the component service ontology and that the client has suc-
cessfully proved the knowledge of those attributes. The composite service sends
the proof-of-identity certificate to the client and stores a copy of the certificate
in its local repository CertRep. The proof-of-identity certificate can be can be
provided by the composite service to another component service to allow the
client to prove the knowledge of an attribute without performing the aggregate
ZKP protocol. The component service that receives the certificate has just to
verify the validity of the certificate.

Example 1. Assume that a user Bob submits a loan request to the loan service in-
troduced in Example 1. The risk assessment service wants to verify Bob identity
and it asks him to provide DrivingLicense, CarRegistration and EmployeeID
identity attributes. Bob provides to the loan service the aggregate proof of
DrivingLicense, CarRegistration and EmployeeID to the loan service, that
forwards them to the risk assessment service. The risk assessment service verifies
by carrying out an aggregate ZPK protocol with Bob that he owns
DrivingLicense, CarRegistration and EmployeeID and release to Bob a proof-
of-identity certificate that asserts Bob has DrivingLicense, CarRegistration
and EmployeeID identity attributes. Therefore, when the loan approval service
requires Bob to prove the possession of EmployeeID and CreditCard identity
attributes, the loan service requests to Bob only to provide CreditCard identity
attribute and sends the proof-of-identity certificate released by the risk assess-
ment service to the loan approval service.

6 System Architecture and Implementation

In this section we discuss the system architecture that supports our multi-factor
identity attributes authentication for business processes. We assume that our
processes are implemented as WS-BPEL business processes, that is, as business
processes in which each component service is implemented by a Web service.
The main components of the architecture are: the BPEL engine, the Identity
Attribute Requester module, the Client, the Registrar, the Identity
Verification Handler module, and the component Web services. The WS-
BPEL engine is responsible for scheduling and synchronizing the various
activities within the business process according to the specified activity depen-
dencies, and for invoking Web services operations associated with activities. The
Identity Attribute Requester module extends the WS-BPEL engine’s func-
tions by carrying on the communication with the client asking for new identity
attributes whenever necessary. The Identity Attribute Requester keeps in a

204 E. Bertino et al.

Fig. 3. System architecture

local repository the mapping certificate associated with previous clients identity
verifications. The Client supports the functions to trigger the execution of the
WS-BPEL business process, to select the identity attributes matching the ones
requested by the component services, and to generate the aggregate ZKP of the
matched attributes. The Registrar component provides functions for storing
the clients’ identity records and retrieving the public parameters required in the
AgZKPK protocol. The Identity Verification Handler intercepts the com-
ponents services invocation messages and provides functions for matching client
identity attribute names and performing the aggregate ZKP verification. Finally,
the component Web services support the operations that are orchestrated by the
business process.

The Identity Attribute Requester, the Identity Verification Handler
modules, and the component Web services have been implemented in JAVA.
The Identity Verification Handler implements the identity attribute name
matching protocol using the Falcon-AO v0.7 [2,3] ontology mapping API and
WordNet 2.1 English Lexical database [6]. The Client application has been im-
plemented in JSP while the Registrar has been implemented as a JAVA servlet.
As BPEL engine we have chosen ODE. Finally, we have used Oracle 10g DBMS to

A Federated Digital Identity Management Approach for Business Processes 205

store clients’ identity records, ontology mappings, set of synonyms, session data
and mapping certificates.

7 Experimental Evaluation

We have performed several experiments to evaluate the AgZKPK process that
characterize the proposed approach to multi-factor identity verification and the
identity attribute names matching process. To execute the tests we have devel-
oped a BPEL process composed by four component Web services and we have
created a set of ontologies with an average cardinality of 60 concepts. We have
carried out the following experimental evaluations:

– we have measured the time taken by a component Web service to perform
the two different phases of the identity attribute names matching process by
varying the number of identity attributes that have to be matched from 1
to 8. (Figure 4(a));

– we have measured the time taken by a component Web service to generate the
aggregate ZKP by varying the number of identity attributes being aggregated
from 1 to 50. (Figure 4(b));

– we have measured the time taken by a component Web service for aggregate
ZKP verification execution time varying the number of identity attributes
being aggregated from 1 to 50. (Figure 4(b));

The execution time has been measured in CPU time (milliseconds). Moreover,
for each test case we have executed twenty trials, and the average over all the
trial execution times has been computed.

Figure 4(a) shows the execution times of the two phases of the matching proto-
col for varying values in the number of identity attributes verified by a component
service. The execution time of the first phase (green line) slightly increases and is
around 60 ms. Instead, the time of the second phase is constant because even if
the number of identity attributes to be match increases, this phase performs al-
ways the same operation, that is, matching two ontologies. Figure 4(b) reports
the times to create an AgZKP and to verify it for varying values in the number of
identity attributes being aggregated. The execution time to generate the AgZKP

(a) Heterogeneity evaluation (b) AgZKPK Verification versus Creation

Fig. 4. Experimental results

206 E. Bertino et al.

(represented by the blue line in the graph) is almost constant for increasing val-
ues in the number of identity attributes. The reason is that the creation of AgZKP
only requires a constant number of exponentiations. By contrast, the time that the
component Web service takes to perform identity attributes verification linearly
increases with the number of identity attributes to be verified. The reason is that
during the verification the component Web service is required to multiply all the
commitments to verify the resulting aggregate signature.

8 Concluding Remarks

In this paper we have proposed a digital identity management approach for busi-
ness processes. Our approach uses a combination of techniques from the area of
semantic web and security protocols. We plan to extend this work in several di-
rections. One direction is related to deal with heterogeneous identity negotiation
protocols. The second direction is related to the definition of a language for iden-
tity verification policies that would allow service providers to specify conditions
on identity attributes. We also plan to extend the AgZKPK protocol to verify
that identity attribute’s commitments satisfies such conditions.

References

1. Bhargav-Spantzel, A., Squicciarini, A.C., Bertino, E.: Establishing and Protecting
Digital Identity in Federation Systems. Journal of Computer Security 14(3), 269–300
(2006)

2. Choi, N., Song, I.Y., Han, H.: A survey on ontology mapping. SIGMOD Record
35 (3), 34–41

3. Falcon, http://iws.seu.edu.cn/projects/matching/
4. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: the state of the art. The Knowl-

edge Engineering Review 18(1), 1–31 (2003)
5. Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret

Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

6. WordNet, http://wordnet.princeton.edu/

http://iws.seu.edu.cn/projects/matching/
http://wordnet.princeton.edu/

	A Federated Digital Identity Management Approach for Business Processes
	Introduction
	Running Example
	Identity Management for Business Processes
	Preliminary Concepts
	Interoperable Multi-factor Authentication
	Identity Attribute Matching Protocol
	Multi-factor Authentication

	System Architecture and Implementation
	Experimental Evaluation
	Concluding Remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

