
Towards Continuous Workflow Enactment

Systems

Panayiotis Neophytou, Panos K. Chrysanthis, and Alexandros Labrinidis

University of Pittsburgh, Pittsburgh, PA 15260, USA
{panickos,panos,labrinid}@cs.pitt.edu

Abstract. Traditional workflow enactment systems and workflow de-
sign processes view the workflow as a one-time interaction with the vari-
ous data sources, executing a series of steps once, whenever the workflow
results are requested. The fundamental underlying assumption has been
that data sources are passive and all interactions are structured along
the request/reply (query) model. Hence, traditional Workflow Manage-
ment Systems cannot effectively support business or scientific monitoring
applications that require the processing of data streams. In this paper,
we propose a paradigm shift from the traditional step-wise workflow ex-
ecution model to a continuous execution model, in order to handle data
streams published and delivered asynchronously from multiple sources.

Keywords: workflow, continuous workflows, patterns, data streams.

1 Introduction

Many Enterprises use workflows to automate their operations and integrate their
information systems and human resources. Workflows have also been used to
facilitate outsourcing or collaboration beyond the boundaries of a single enter-
prise, for example, in establishing Virtual Enterprises [1]. Recently, workflows
have been used in the context of scientific exploration and discovery to automate
repetitive, complex and distributed scientific computations that often require the
collaboration of multiple scientists [4,7,9].

A common class of applications in both business and scientific domains is
monitoring applications that involve the processing of continuous streams of
data (updates) [3]. Examples include financial analysis applications that mon-
itor streams of stock data to support decision making in brokering firms and
environmental analysis applications that collect and analyze sensor data to sup-
port discovery of air and water pollution.

Most recent workflow enactment/management systems orchestrate the inter-
actions among activities within a workflow along the lines of web services [18].
Several business process modeling languages have been designed to capture the
logic of a composite web service, including WSCI [19], BPML [2], BPEL4WS
(with the latest update WS-BPEL 2.0 [8]), BPSS [15] and XPDL [20]. However,
these interactions are usually one-shot interactions between the sender and the

E. Bertino and J.B.D. Joshi (Eds.): CollaborateCom 2008, LNICST 10, pp. 162–178, 2009.

c© ICST Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2009

Towards Continuous Workflow Enactment Systems 163

receiver of the request and it is not clear whether or not these existing workflow
management systems and languages are suited for monitoring applications.

Our goal in this paper is to examine the capability of current workflow models
and workflow management systems to support business and scientific monitoring
applications. We will base our examination on the Workflow Pattern framework
which was developed in [17]. This framework proposed a set of 20 common
workflow patterns and a set of 6 communication patterns in [13]. This frame-
work was used to evaluate the capabilities of the languages mentioned above in
[22] and [10], showing that these languages could not support nearly half of the
20 workflow patterns, and also 2 of the communication patterns. These 2 com-
munication patterns are Publish/Subscribe and Broadcast which, interestingly,
are essential for enabling monitoring applications. YAWL [16], which is a more
recent workflow definition language, makes the effort to support all the workflow
patterns, but there is no reference in its definition for the support of the two
communication patterns which are prevailing in monitoring applications.

The two missing communication patterns from existing workflow models are
a direct result of the fundamental assumption that data sources in workflows are
passive (e.g., stored in databases or data files) whereas data consumers (users,
tasks) are both active and passive. These two missing communication patterns
assume that some data sources are active, supporting continuous data streams.

In order to address the lack of support for continuous data streams in existing
workflow models, in this paper, we consider a paradigm shift towards the idea
of “continuous” workflows (analogous to the recent data processing shift from
Database Management Systems to Data Stream Management Systems). The
main difference between traditional and continuous workflows is that the latter
is continuously (i.e., always) active and continuously reacting on internal streams
of events and external streams of updates from multiple sources at the same time
at any part of the workflow network.

The key contributions of this paper are:

1. Identify the limitations of the current workflow model in terms of supporting
streams of data events, internally and externally.

2. Propose a new Continuous Workflow model and introduce two key primitives
to support it, namely, queues and window operators.

3. Illustrate how the 20 existing workflow patterns could be implemented in
order to support data streams.

4. Identify 4 new Continuous Workflow patterns.
5. Illustrate the expressive power of our continuous workflow model, in terms of

simplicity and flexibility, by comparing the implementation of a monitoring
application in our model and using a Timed Petri net implementation [6].

The rest of the paper is organized as follows: Section 2 sets the stage by pro-
viding background to existing workflow systems. We also discuss the Workflow
Pattern framework that was used to evaluate the abilities of these existing sys-
tems. In Section 3, we study the need for continuous workflow constructs and
then propose the new workflow model for Continuous workflows in Section 4.
We finally conclude and give our directions for future work in Section 5.

164 P. Neophytou, P.K. Chrysanthis, and A. Labrinidis

2 Existing Workflow Model

A workflow (also referred to as workflow process) is defined as the automation
of a business process, in whole or part, during which documents, information or
tasks are passed from one participant to another for action, according to a set of
procedural rules. A workflow management system (WfMS) is one that defines,
creates and manages the execution of workflows through the use of software,
running on one or more workflow engines, which is able to interpret the process
definition, interact with workflow participants (human or machine) and, where
required, invoke the use of IT tools (databases, job schedulers etc.) and appli-
cations. A workflow process can be defined by set of sub-processes which form
part of the overall process. Multiple levels of sub processes may be combined to
form a workflow hierarchy.

A workflow activity is a description of a piece of work that forms one logi-
cal step within a process. An activity may be a manual activity, which does not
support computer automation, or an automated activity. A workflow activity re-
quires human and/or machine resources(s) to support process execution; where
human resource is required an activity is allocated to a workflow participant. A
workflow activity is specified in terms of name, preconditions, actions, rules of
exception handling, completion and temporal constraints. Every workflow speci-
fication formalism is built around a set of control flow relationships and concepts,
such as those defined in [21]. Examples include simple one-to-one precedence con-
straints to denote sequential execution, or OR and AND relationships to denote
parallel execution. These are subdivided into OR-split and AND-split to specify
branching and, OR-join and AND-join to specify convergence to initiate the
next activity in the workflow.

A comprehensive study [17] enumerates the various control patterns required by
workflow applications. A pattern “is the abstraction from a concrete form which
keeps recurring in specific nonarbitrary contexts” [12]. The 20 patterns studied in
[17] include more complex control structures, than the ones described by WfMC
[21], such as XOR-split, Differed Choice, Multiple Instances etc. These help to de-
fine the workflow model in more detail and down to specific imperative workflow
requirements. The study also elaborates on which of these patterns could be re-
alized in workflow management systems and languages, available at the time of
the study. Some of the patterns mentioned cannot be realized by these systems
because their design did not take them into consideration. They then proposed a
new workflow language [16] that is able to implement these patterns.

Workflow events are distinguished into internal and external events. External
events, are relevant input workflow data, pushed into the workflow as a response
to a request, from applications, users, databases and other entities external to
the workflow. Internal events are workflow control data, as defined in [21], but
limited to internally exchanged data between activities. This does not include
the engine state data store in the WfMS database. Usually internal events mark
the completion of an activity and signal the execution of the next one.

A workflow request is the initiating event of a workflow. Once it is received
by the WfMS it creates a new instance of the workflow. The request includes

Towards Continuous Workflow Enactment Systems 165

Fig. 1. Continuous Workflow enabling architecture

relevant data and constraints defined by the requester. This is the first piece of
information being fed to a workflow instance.

Most workflow languages model workflows either as State charts or Petri nets.
Figure 1 represents the state chart of a vacation trip booking workflow from [5],
where AND-splits (and AND-joins) are implicit when more than one arrow orig-
inates from (or is coincident to) a node. For example, Get Input represents an
AND-split and Make Trip Decission represents an AND-join. OR-splits and OR-
joins are depicted with arrows annotated with selection conditions. For example,
Make Payments represents an OR-split with condition S (Success) and F (Fail-
lure). There is also the case where conditions are not mutually exclusive and
more than one branches is activated. The workflow patterns observed in this
workflow, are defined as WP1-WP5 in [17]. One can also discern some activities
being defined as sub-processes.

Regarding the execution of activities, according to the transition definition in
[21], any two activities in the same sequence cannot run in parallel. The first one
will give the thread of execution to the next one. That means that if we have
two activities A and B where A comes before B in a sequence, then B cannot
start running (even on partial results from A) unless A is completely terminated
(Figure 2).

An attempt was made, by using Time Petri nets, to apply temporal con-
straints on events in [6]. The effort covers some cases of workflow patterns for
monitoring supply chains and reacting on events such as “Out of stock” and
“Order arrived”. The Petri net approach is difficult to implement and although
is able to capture operations on multiple events, it cannot do it for an arbitrary
number of events, known only at runtime. Also events are consumed whenever an
activity is activated, and they have to be replaced if there is a need to reprocess
them. These are all considerations that the designer has to make before hand.

166 P. Neophytou, P.K. Chrysanthis, and A. Labrinidis

We will take their example and show an easier way to implement the supply line
patterns described, in Section 4.

In the next section we will examine if the existing workflow model is suitable
to support monitoring applications.

3 From the Existing to the Continuous Workflow Model

In this section we examine the ability of existing workflow models to support
monitoring applications. This analysis is based on the communication patterns
described in [22] and how those can be used inside a workflow using the internal
workflow patterns described in [17].

3.1 Communication Patterns

Communication patterns are divided into two categories: Pull and Push. In the
pull model the data consumer gets at most one reply per request. Three patterns
from [17] follow this model. (1) Request/Reply, where a sender makes a request
to the receiver and waits for a reply before continuing execution; (2) One-Way,
where the sender makes a request to the receiver and waits for an acknowledg-
ment reply before continuing execution; and (3) synchronous polling, where a
sender makes a request to a receiver and continues processing. It then periodi-
cally checks to see if a reply was sent by the receiver. When it detects a reply it
stops polling.

In the push model the data consumer receives multiple data items per request.
Two patterns interest us which follow this model. Publish/Subscribe is a form
of asynchronous communication where a request is sent by a process and the
receivers are determined by a previous declaration of interest. The declaration
of interest could also express constraints on the kind of replies each receiver
is interested in. Lastly, Broadcast, is a form of asynchronous communication
in which a request is sent to all participants, the receivers, of the network.
Each participant determines whether the request is of interest by examining
the content.

From the aforementioned patterns current workflow management systems and
languages provide support for just the pull model communication patterns. In
the best of our knowledge no system provides support for either of the two push
model communication patterns.

3.2 Ability of Existing Workflows to Support Push Input

As we have mentioned in the introduction, monitoring applications monitor con-
tinuous streams of data. The only way to receive updates as soon as they happen
is by using a Push mechanism such as Publish/Subscribe. In existing WfMSs the
only point in a workflow that is able to handle push data is at the initial activity,
where the request to instantiate a workflow comes in. This way, each event be-
longing to a stream will be individually handled by an instance of the workflow.

Towards Continuous Workflow Enactment Systems 167

The workflow is able to notify humans or machine resources in the case that a
specific event needs further handling.

An alternative processing model would be to use pipelined execution of the
workflow. Since a high volume of events is expected from the data stream, a
pipeline model could be used to save resources. In pipelined workflow enact-
ment, activity instances are being shared by multiple workflow instances. Each
activity is thought of as a pipeline stage. Buffering takes place between steps to
independently handle individual events. The control flow is handled in the same
way as in the case of multiple instances of the workflow.

There two problems with the pipeline approach. First, only one stream can be
supported. Second, no multiple events can be handled together since each event
runs on a separate instance or pipeline stage, thus the requirement that a moni-
toring application needs to run on a history of events in real time, is not met.

We will now examine how existing workflow models could support monitoring
of multiple streams, and see where they fall back. Consider Figure 2. In this
example, activity C is required to get continuous updates from a streaming data
source. Since there are currently no constructs to allow for activity C to receive
events directly from a data stream and act upon them immediately, let’s assume
that there is a buffer between activity C and the data stream. Now activity C
is polling the buffer to get the new updates. In most systems, activity D cannot
run on intermediate results of C since C has to terminate and then activate D.
This is the case of synchronous polling, as described in Section 3.1. To alleviate
this problem one can use loops (Figure 2.b.) We set activity C to query the
buffer once and return the results to D. D then might split the results to G and
back to C (for it to query the buffer once again). Now since G is an AND-join,
and branch E-F was activated only once (not a loop), then G will only run once,
consume the event that came from E-F, and then block. It will not be able to
process all the results coming out of the loop. This problem could be solved by
having G feed back the same event to its input, every time it executes, so that
it will process it together with the results from the loop. This implementation,
although it does not provide real-time monitoring of a data stream, it shows how
a workflow system can monitor a buffer of a data stream, and internally produce
a stream of events using a loop. There exist though workflow definition languages
like BPEL, that do not allow loops that have an output on every iteration, like
the one described above. The most common loops allowed have one input and
one output.

Fig. 2. Abstract Workflow example

168 P. Neophytou, P.K. Chrysanthis, and A. Labrinidis

If the designer adds another similar loop to the E-F branch then two internal
asynchronous streams will be created, being joined at activity G. The results
on random pairs of events would probably not make any sense. Also the two
streams could have a big volume difference in number of events per unit of time,
thus one of them would either drop events or should have means of buffering
them. Introducing queues to the inputs of the joins should workout this problem.
Moreover the results would probably make more sense if there was a way to
synchronize the two streams in terms of temporal and value based functions on
windows of these data, similar to the ones found in continuous queries [11].

We saw that polling is one way to monitor a stream, but this approach does not
allow for real time reaction to the incoming stream, and in fact, even this is only
allowed in systems where arbitrary loops are allowed. This makes us come to the
conclusion that parallel execution of sequential activities is required to process
streams of events, much like in the pipelined execution, because consecutive
activities need to be continuously active processing the events. The difference
here is that buffering of multiple events in the stream is required to be able
to satisfy the requirement of monitoring applications to run on subsets of the
history of the stream.

Another operation that monitoring applications need to be able to make on
workflows processing data streams, is event invalidation. For example, if you have
a stream from an airline which publishes fares, and a new fare update comes in
that invalidates a previous fare, then the earlier update should be invalidated
downstream, in order to avoid processing a fare that is invalid. Invalidation or
otherwise known as cancelation is supported in YAWL [16] but it is not possible
to selectivly invalidate events in the workflow, since they consider each workflow
instance independent for each event and they do not support data streams.

4 Continuous Workflow Model

During our analysis in the previous section we made some observations on the
functional and expressive ability of existing workflow languages and models. In
light of those observations we now present our definition of “Continuous Work-
flows” and then elaborate on how this new workflow model can be applied to
existing workflow patterns. We also identify 4 new patterns which we consider es-
sential for new classes of applications, that require interaction with data streams
either internally or externally.

Definition 1. A “Continuous Workflow”, is a workflow that supports enact-
ment on multiple streams of data, by pipelining the flow and processing into
various parts of the workflow. Continuous workflows can potentially run for an
unlimited amount of time, constantly monitoring streams. To achieve that, the
proposed Continuous Workflow Model introduces:

1. Concurrent execution of sequential activities, in a pipelined way.
2. Queues on the inputs of activities to buffer data in between activities.

Towards Continuous Workflow Enactment Systems 169

3. Windows and window functions on the queues to allow the definition of
synchronization semantics between multiple data streams. Windows are also
used on multiple invocations of a single execution pipeline whose results are
buffered in a queue. This means that an event can be considered as part of
multiple pipeline invocations.

4. Interactions between pipeline steps. That is, the ability to notify a down-
stream or upstream activity of an update and cancel its execution.

In order to introduce new synchronization semantics into Continuous Workflow
we define the notion of event waves, as follows:

Definition 2. A wave of internal events is created at a split node (or when
initiating multiple instances) and it is synchronized at a join node (or when
merging multiple instances). A split creates a wave of events that are dissemi-
nated in multiple branches that run in parallel. When these branches merge at
a synchronizing join then all of the events in the wave must be joined and pro-
cessed together. Even if an activity produces multiple events as a result of one
invocation (or multiple invocations as part of a loop), then these are marked and
considered part of the same wave. An event within a wave may create sub waves,
creating a hierarchy of waves that need to be synchronized. These can be taken
care by the system with appropriate instrumentation of the waves.

4.1 Windows

A window is generally considered as a mechanism for adjusting flexible bounds
on an unbounded stream in order to fetch a finite, yet ever-changing set of events,
which may be regarded as a temporary bundle of events. We are introducing the
notion of windows on the queues of events which are attached to the activity
inputs. The windows are calculated by a window operator running on the queue.
Windows are defined in terms of an upper bound, lower bound, extend and
mode of adjustment as time advances. The upper and lower bounds are the
timestamps of the events at the beginning and the end of the window. The
extend is the size of the window. This can be defined in two measurement units:
(a) Logical units, which are time based, and define the maximum time interval
between the upper and lower bound timestamps. (b) Physical units, which are
count based, and define the number of events between the upper and lower
bounds. The mode of adjustment, also known as window step, defines the period
for updating the window. If a step is not defined, then the window is evaluated
every time a new event comes into the queue. This makes the window operator
more accurate in terms of reacting to events on time, but in cases of high event
rates this could seriously diminish the overall system performance. A flag called
“delete used events” is also defined to denote if events that were used in the
window that triggered the firing of an activity should be deleted from the queue.
The signal to delete used events from queues comes as part of the post-conditions
of an activity.

Another feature introduced for windows, is that every queue has two outputs:
(1) the current window, as it is calculated according to the window constraints,

170 P. Neophytou, P.K. Chrysanthis, and A. Labrinidis

Fig. 3. Window operator example

and (2) the events that are being expired with every recalculation of a window.
For example, if an order is waiting in a queue and for some reason was delayed,
the window might expire it and it will be transferred to a different queue to be
handled as a delayed order.

To better understand the window operator we describe an example with the
help of Figure 3. Letters represent events and numbers represent timestamps (in
minutes). The window attributes are: Size=5 minutes, Step=1 minute, Delete
used events=true. Firing of the activity depends on the contents of the window
and the preconditions of the activity which could be dependent on the contents.
Assume the preconditions include if(window.length >= 2) then activate. The
window is calculated for every step (of 1 minute). If there is a change to the
window operator’s results then the preconditions of the activity are evaluated
to determine whether the activity should be fired. If the activity is fired, then
the events pushed are deleted from the queue. Notice in the example in Figure
3, that a was not used in firing activity A and that at timestamp 6, a does not
fall inside the window, thus it was expired and returned to the expired output of
the queue. However at timestamp 8, where the window pushed includes events b
and c, the activity is fired and once it is completed these events are both deleted
from the queue.

4.2 Workflow Patterns in Continuous Workflows

In this section, we consider the 20 workflow patterns presented in [17] whose im-
plementation changes with the introduction of continuous workflow enactment,
but their semantics remain the same. That means that continuous workflows are
backward compatible with the existing workflows. The reader can easily verify
that the examples in [17] are still valid for the patterns described here. All of the
patterns except WP11 (Implicit termination) can be implemented using contin-
uous workflows. We also introduce 4 new patterns that are unique to continuous
workflows.

Towards Continuous Workflow Enactment Systems 171

Basic Control Flow Patterns. These patterns capture the elementary aspects
of process control. These patterns closely match the definitions of elementary
control flow concepts covered in [21]. WP 1,2 and 4 (Sequence, Parallel split and
XOR-split) do not require any modifications to fit our continuous workflow model
since they can be scheduled to execute without any synchronization dependencies
on consecutive events.

In WP3, multiple parallel branches converge into a single thread of control
(AND-join), thus synchronizing multiple threads. The join will be activated once
all the branches have completed.

In continuous workflows, the assumption that a branch cannot be completed
again before the execution of the join is relaxed, since the workflow reacts on
streaming events. Events produced by multiple executions of a branch can be
buffered in the join’s queues. Figure 4.a shows that two data events were pro-
duced by activity A while activity B is still processing and may eventually drop
the item. Given the AND-join semantics, activity C blocks until both queues
have a result. Activities belonging to a branch that has already finished process-
ing can be scheduled to execute on the next wave of events.

In WP5, two or more alternative branches come together without synchro-
nization (XOR-join). The assumption in this pattern is that only one branch is
activated. That means that each wave of events has only one event propagated
through the only activated branch. The joining activity runs once on each wave
coming into the queue.

Advanced Branching and Synchronization Patterns. This subsection in-
cludes more advanced patterns for branching and synchronization. Again the
assumption for this set of patterns is that the activating stream is the same
for each branch thus we use notion of waves. WP6 (Multi-choice) and WP8
(Multi-Merge) from this set are the same in the continuous setting, since no
synchronization among events of the same wave is needed.

In WP7, multiple branches converge into a single thread (Synchronized Join).
The join activity has to wait for all of the activated branches to finish and then ex-
ecute. Some branches may not activate in which case a null event is propagated to
the join. Figure 4.b shows a case where we have a branch (A) that has finished pro-
cessing 2 events, branch (B) which is still processing the first event and branch (C)

Fig. 4. (a) Pattern 3: AND-join and (b) Pattern 7: Synchronized-Merge

172 P. Neophytou, P.K. Chrysanthis, and A. Labrinidis

which was not activated and the null event was propagated. Activity D will only
execute if all activated branches have finished.

In WP9 (Discriminator) multiple branches merge and execution is initiated
on the first result to arrive. Multiple branches are activated per wave. To avoid
mixing of events from multiple waves, a cancellation signal is triggered for the
specific wave after the join is finished executing. We present more details on
cancellation in the WP19 pattern.

Structural Patterns. This set includes patterns for arbitrary cycles and work-
flow termination. Cycles are categorized in structured cycles which in program-
ming languages resemble WHILE loops, and interleaved cycles which resemble
GOTO loops, where loops can be interleaved. Termination can be explicit (a set
of conditions are met) or implicit (the workflow terminates when nothing is left
to process).

WP10 (Arbitrary Cycles). In the continuous workflow model arbitrary cycles
can be implemented, both structured (Figure 5.a) and interleaved cycles (Figure
5.b). Arbitrary cycles make the understanding of semantics difficult since more
complicated situations can arise, thus the workflow designer must be able to
understand the risks and possible confusion that may arise from such a design
especially in the continuous workflow model.

WP11 (Implicit termination). This patterns captures the behavior of tradi-
tional workflow systems when nodes can be terminated when activity ceases.
This pattern is not directly supported by the continuous workflow model since
streams of data are infinite and the only way to terminate the execution is only
by defining a set of termination parameters. However, we could essentially im-
plement similar functionality by relying on some sort of punctuations from the
data sources [14].

Patterns Involving Multiple Instances. The patterns in this subsection
involve cases where multiple threads of execution share the same definition. The
number of instances could be known a priori or at runtime. We refer to a bundle
as the set of instances required for a data event. If the results of the instances

Fig. 5. Cycle patterns: (a) structured cycle and (b) interleaved cycle

Towards Continuous Workflow Enactment Systems 173

of a bundle are needed for the execution of the rest of the workflow, then these
results are gathered in a single queue at the activity joining the instances. The
activity then runs on a window with the size of the number of instances. In the
continuous model there are two cases to consider. The first one is running a
number of bundles that were caused by the same number of events in parallel.
The second case is running the bundles serially. When running serially, each event
executes on the same bundle where the previous event was executed. The bundle
will expand or shrink accordingly. Note the each bundle must finish execution
before the next event can run on the same bundle.

WP12 (MI without Synchronization): This pattern refers to executing
the instances in each bundle in parallel; their results are not required to be
synchronized. Careful consideration must be taken if the results of an instance
trigger the execution of the rest of the workflow. In the case of parallel bundles,
results from multiple instances that correspond to one event can interleave with
results that correspond to another event.

In WP13-WP15 (MI with synchronization), instances within a bundle are
synchronized once they end their execution. In WP13 the number of instances
for each event/bundle is known at design time, in WP14 the number is known
at runtime and in WP15 the number of instances is dynamic. In these cases the
window size of the join node can be set to the number of instances, if the instances
bundle is per-stream. If the instances bundle is per event then before moving
on to the next step in the workflow each bundle has to synchronize internally
and then forward the results. For WP15 to work, the process that creates the
bundles has to also update the size of the windows at the corresponding queues
inside the bundles.

State-Based Patterns. There are three state based patterns.
In WP16 (Deferred choice), several branches have been activated (by AND-

split or OR-split) but only one should execute. The decision is delayed until the
occurrence of some event, where the one that finally executes sends cancel signals
to the rest. In continuous workflows, since events are queued and the execution
happens once some preconditions on the queues are met, the cancellation signal
can be acted by removing the event from the activity’s queue.

In WP17 (Interleaved parallel routing), a set of activities is executed once, in
an arbitrary order decided at runtime but no two activities can run at the same
time for the same event. To achieve this, a list of mutual exclusion semaphores,
(one for each wave of events) keeps the activities from running concurrently. The
semaphore shows the wave id, a flag showing if some branch is acting on this
event and a number for the active branches remaining to act on this wave. Once
the number reaches 0 then the semaphore is removed from the list.

In WP18 (Milestone), an activity can only run if a certain milestone is
reached and has not expired. A milestone is a point in the process where a
given activity A has finished processing an event, and a subsequent activity B
has not yet started. It is important to keep track of which events have reached

174 P. Neophytou, P.K. Chrysanthis, and A. Labrinidis

a certain milestone and if that milestone has expired. A similar approach to the
one in WP17 is taken, where a list is used to keep track of the waves of events.

Cancellation Patterns. There are two cancellation patterns. WP19 and
WP20 refer to the canceling of an activity and the withdrawal of the whole
workflow respectively. Activity cancellation in Continuous workflows works much
like in [16], but instead of flushing everything in the queues, events are canceled
only if they belong to the same wave as the event that triggered the cancella-
tion. To cancel an activity on a specific event, you have to either remove it from
the queue of the activity, or if the activity is running on that event, notify the
scheduler to terminate the execution of the activity. Withdrawal of a workflow
instance can only happen once the termination conditions are met, or if the user
has requested to terminate the execution of the continuous workflow.

Continuous Workflow Patterns. In addition to the somewhat radical changes
to the previously mentioned patterns, we now describe 4 patterns that are required
in the context of Continuous Workflows.

Fig. 6. (a) CWP1: Sequential aggreate and (b) CWP2: Stream-join

CWP1 Sequential Aggregate: A point in a workflow where two activities
are to be run sequentially on a stream of events, one after the other. The later
activity may need to run on the result of multiple invocations of the previous
activity. The event results of the first activity are buffered in the second activity’s
queue. A function and/or window operations can be performed on a set of the
resulting events as those are stored in the queue. The events in the queue can
be involved in multiple invocations of the second activity until they are expired
by the function. Example: Activity analyze last hour will analyze a one hour
buffer of results produced by receive temperature. The window function can also
define the interval between invocation of the analysis part, like every 30 minutes.

CWP2 Stream-join: This pattern covers the case where each branch of the
join activity is activated by a different stream of events. In this pattern the
notion of event waves is not considered since the two streams are not synchro-
nized. Again in this case the workflow can define functions on the individual
queues. Example: In a travel agency application, activities receive fares and
receive hotel prices are joined into one stream by adding the prices.

Towards Continuous Workflow Enactment Systems 175

CWP3 Stream-synch: A point in the workflow where two or more differ-
ent event streams meet to get synchronized. The result is waves of events that
are synchronized. This pattern is used to feed these waves to branches that re-
quire waves of events (see WP1-WP18). In CWP3, usually the slowest stream
gives the pace and the other streams get sampled on some window of their
events. Example: In a travel agency application, activities receive fares and re-
ceive hotel prices are synchronized according to some window definitions, and
split into pairs where the hotel.price+ fare.price < 300. They are then handled
individually but are considered part of the same wave.

CWP4 Workflow data view: This pattern refers to the ability to extract
any kind of data being exchanged inside the continuous workflow and streamlin-
ing them into a separate event stream that can be used as an input to another
workflow. An example usage of this pattern is to monitor the execution of the
workflow and to debug it. Usually the views are not known at design time thus
incorporating them into the workflow is not feasible. The view can be expressed
as a set of predicates that can be evaluated on any arbitrary set of the data
inside the workflow network. Example: Somewhere in the workflow an activity
produces a result that is above expected values. The designer can add a view
that will give her the message/event with the outlier value as soon as it is pro-
duced (i.e. value > 100). The message is annotated with meta-data regarding
the activity it was last processed by.

4.3 Applicability of Continuous Workflow Patterns

We have evaluated the expressiveness of our continuous workflow model over a set
of patterns which applies to the supply chain monitoring applications introduced
in [6]. With the introduction of queues and window operators, designing those
patterns is made much easier and it is more flexible.

In Figure 7, you can see two versions of the same pattern implemented using a
Petri net approach and a Continuous Workflow approach. The pattern concerns
the case where multiple occurrences of one event within a certain time period
cause another event to occur. In the example shown if two out-of-stock events
occur within a time period of T2 then a notification to the Supply Chain manager
will be initiated. In Figure 7.a, transitions t2 and t3 wait for time interval T 2
before consuming an event from either e′1 or e′′1. This is used for expiring events
that occurred time T2 ago. A notification by t1 is only fired if two events are
allowed to coexist in e′1 and e′′1.

In continuous workflows (Figure 7.b) this can be implemented by simple hav-
ing a queue for Out-of-stock events and a window operator on that queue, which
constructs windows of size T 2. No step is defined thus the window is calculated
for every new Out-of-stock event, and a notification is fired only if the window
has two events in it (according to the precondition). Events are not deleted
once used but they are eventually expired and handled by another activity, thus
keeping the semantics of the two implementations the same. You can see that
our implementation is much simpler. Moreover, if the designer wants to change
the semantics and requires 3 out-of-stock events to happen before notifying the

176 P. Neophytou, P.K. Chrysanthis, and A. Labrinidis

Fig. 7. (a) Petri net of “repeat cause-one effect” (b) Continuous workflow of “repeat
cause-one effect”

supply chain manager, then, in the Petri net case she would have to add another
transition like t3 and another like t2 and change the numbers on the arcs going
to t1, from 2 to 3. In the continuous workflow case she would only have to change
the precondition to window.length >= 3.

5 Conclusions and Future Work

In this paper we analyzed current workflow management systems’ ability to
enable the development of monitoring applications. A class of applications where
it is possible for organizations to share resources and publish events, in order
to enable real-time reaction management. We have shown where the existing
WfMS’s are lacking in functionality and proposed a new workflow enactment
system which is capable of fulfilling the requirements of these applications. The
new enactment model constitutes a paradigm shift from the traditional reactive
model to one that is proactive towards multiple streams of events behaving in
an almost random fashion.

Next on our agenda is to develop an architecture capable of enacting this new
model, in an efficient and application centric way, and achieve the requested
Quality of Results, in terms of response time, throughput and data quality. Three
major challenges in this task: (1) Finding proper scheduling policies, that are
able to handle different workflows and workloads, (2) Enable backwards compat-
ibility with existing workflow definitions, in order to make the transition to the
new model as smooth as possible, (3) Try to achieve maximum resource utiliza-
tion in distributed environments, by integrating multiple workflow enactment
systems and multiple resource providers (such as Grid computing platforms),

Towards Continuous Workflow Enactment Systems 177

thus enabling further inter-organizational collaborations, and (4) Provide a user
interface to enable the participant of a collaboration, to collectively build and
maintain collections of continuous workflows.

Acknowledgement

This research was supported in part by NIH-NIAID grant NO1-AI50018 and
NSF grant IIS-0534531.

References

1. Berfield, A., Chrysanthis, P.K., Tsamardinos, I., Pollack, M.E., Banerjee, S.: A
scheme for integrating e-services in establishing virtual enterprises. In: RIDE, pp.
134–142 (2002)

2. BPMI. Process modeling language (bpml) (2002), www.bpmi.org (accessed, novem-
ber 2002)

3. Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.: Monitoring streams: A new class of data man-
agement applications. In: VLDB (2002)

4. Churches, D., Gombás, G., Harrison, A., Maassen, J., Robinson, C., Shields, M.S.,
Taylor, I.J., Wang, I.: Programming scientific and distributed workflow with triana
services. Concurrency and Computation: Practice and Experience 18(10), 1021–
1037 (2006)

5. Ramamritham, K., Chrysanthis, P.K.: Advances in concurrency control and trans-
action processing. IEEE Computer Society Press, Los Alamitos (1997)

6. Liu, R., Kumar, A., van der Aalst, W.M.P.: A formal modeling approach for supply
chain event management. Decision Support Systems 43(3), 761–778 (2007)

7. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,
E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system.
Concurrency and Computation: Practice and Experience 18(10), 1039–1065 (2006)

8. OASIS. Web services businedd process execution language,
http://docs.oasis-open.org/wsbpel/2.0/os/wsbpel-v2.0-os.html

9. Oinn, T.M., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, R.M.,
Carver, T., Glover, K., Pocock, M.R., Wipat, A., Li, P.: Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics 20(17),
3045–3054 (2004)

10. Aalst Marlon Dumas, W.M.P., Arthur, H.M., Hofstede Petia, W.: Pattern based
analysis of bpml (and wsci)

11. Patroumpas, K., Sellis, T.K.: Window specification over data streams. In: Grust,
T., Höpfner, H., Illarramendi, A., Jablonski, S., Mesiti, M., Müller, S., Patran-
jan, P.-L., Sattler, K.-U., Spiliopoulou, M., Wijsen, J. (eds.) EDBT 2006. LNCS,
vol. 4254, pp. 445–464. Springer, Heidelberg (2006)

12. Riehle, D., Züllighoven, H.: Understanding and using patterns in software devel-
opment. TAPOS 2(1), 3–13 (1996)

13. Ruh, W.A., Maginnis, F.X., Brown, W.J.: Enterprise application integration: A
wiley tech brief (2001)

14. Tucker, P.A., Maier, D., Sheard, T., Fegaras, L.: Exploiting punctuation semantics
in continuous data streams. IEEE Trans. Knowl. Data Eng. 15(3), 555–568 (2003)

www.bpmi.org
http://docs.oasis-open.org/wsbpel/2.0/os/wsbpel-v2.0-os.html

178 P. Neophytou, P.K. Chrysanthis, and A. Labrinidis

15. UN/CEFACT and OASIS. ebxml business process specification schema,
www.ebxml.org/specs/ebbpss.pdf

16. van der Aalst, W.M.P., ter Hofstede, A.H.M.: Yawl: yet another workflow language.
Inf. Syst. 30(4), 245–275 (2005)

17. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14(1), 5–51 (2003)

18. W3C. Web services glossary, http://www.w3.org/tr/ws-gloss/
19. W3C. Service choreography interface (wsci) 1.0 (2002), www.w3.org/tr/wsci
20. WfMC. Workflow process definition interface - xml process definition language,

http://www.wfmc.org/

21. WfMC. Workflow management coalition: Terminology & glossary (wfmc- tc-1011)
(1999)

22. Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Analysis of
web services composition languages: The case of bpel4ws. In: Song, I.-Y., Liddle,
S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 200–215.
Springer, Heidelberg (2003)

www.ebxml.org/specs/ebbpss.pdf
http://www.w3.org/tr/ws-gloss/
www.w3.org/tr/wsci
http://www.wfmc.org/

	Towards Continuous Workflow Enactment Systems
	Introduction
	Existing Workflow Model
	From the Existing to the Continuous Workflow Model
	Communication Patterns
	Ability of Existing Workflows to Support Push Input

	Continuous Workflow Model
	Windows
	Workflow Patterns in Continuous Workflows
	Applicability of Continuous Workflow Patterns

	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

