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Abstract. We introduce transformations from time series data to the
domain of complex networks which allow us to characterise the dynamics
underlying the time series in terms of topological features of the complex
network. We show that specific types of dynamics can be characterised
by a specific prevalence in the complex network motifs. For example, low-
dimensional chaotic flows with one positive Lyapunov exponent form a
single family while noisy non-chaotic dynamics and hyper-chaos are both
distinct. We find that the same phenomena is also true for discrete map-
like data. These algorithms provide a new way of studying chaotic time
series and equip us with a wide range of statistical measures previously
not available in the field of nonlinear time series analysis.

Keywords: nonlinear time series, chaos, chaotic dynamics, complex net-
works.

1 Turning Time Series into Networks

The simplest method to transform a time series into a complex network is
through the well established recurrence plot [2]. Recurrence techniques provide
a recognised method for constructing a sparse binary matrix from a time series.
That matrix may be (although to the best of our knowledge it never has been)
interpreted as the adjacency matrix of a complex network, and one may then
study that network to get an insight into features of the dynamics not apparent
from the time series. Many measures have been associated with recurrence plots.
Recurrence Quantification Analysis (RQA) introduces a host of such measures
based on identifiable patterns within the recurrence plots [13,6]. Moreover, Theil
and co-workers [11] have showed how the recurrence plot can be considered as
a surrogate for the correlation integral and it can then be used to estimate ver-
sions of the usual dynamic invariants. However, RQA and the other measures
derived from the recurrence matrix all treat properties of the matrix rather than
properties of the network. For example, the temporal ordering of the rows and
columns of the recurrence matrix are important, for an adjacency matrix the
result is invariant under permutations of the rows and columns.

In this communication we do not consider recurrence plots. We consider an
alternative method of constructing a complex network from a time series. The
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features we wish to examine in that complex network are features of the network
rather than features of the matrix. That is, we are concerned primarily with
path length and clustering of points within a network (and the prevalence of
various motifs [8] within the network). The way in which we obtain the adjacency
matrix of the network from the time series also differs from the approach used
in recurrence plots.

In the remainder of this paper we consider two distinct approaches to the
construction of complex networks from time series. The first scheme was intro-
duced in 2006 [16] and provides a method to construct complex networks from
pseudo-periodic time series. The second method is currently under development
and provides a generic method to construct complex networks from any time
series data [14]. In the following two sections we outline these methods.

2 Networks from Pseudo-periodic Time Series

In [16] we introduce a method to construct complex networks from time series
data. The method assumes that the time series is approximately periodic and
takes as the basic unit of the time series a single oscillation of that periodicity.
Pseudo-periodic time series have been considered previously [10] and the same
basic definition is the one we adopt here. Pseudo-periodic time series exhibit
some oscillation, and that oscillation is rhythmically repeating. The object of
interest is the inter-cycle variation in that rhythmic oscillation. Is the underlying
system low dimensional chaos, or a periodic orbit [10]?

Networks are constructed from data such as these in the following way. First
the time series is divided up into individual cycles and each cycle is then treated
as a node on a network. Exactly how to divide the data into cycles is not stip-
ulated. In fact, the method will depend on the data. Nonetheless, the objective
is to deconstruct the time series in such a way that the individual cycles can
be meaningfully compared to one another. Next, some metric and a suitable
threshold are chosen. While the choice of metric and threshold will have some
affect on the results we have found that the results are robust across the usual
range of metrics and a wide range of threshold values. All cycles are compared
with this metric, and those found to be closer than the threshold are said to be
neighbours. Finally, we construct links on the network corresponding to cycles
which are neighbours. That is, two nodes are linked if the corresponding two
cycles are close to one another under the chosen metric.

In [16] we do this in the obvious way. First, cycles are split at local maxima.
Second, cycles are compared with either linear correlation or Euclidean distance
(after sliding the shorter cycle along the larger and finding a minimum That
is, for two cycles Ci = (x1, x2, x3, . . . , xni) and Cj = (y1, y2, y3, . . . , ynj ) (with,
without loss of generality ni ≤ nj) the distance between them is defined as

d(Ci, Cj) = min
1≤i≤(nj−ni)

φ ((x1, x2, . . . , xni), (yi+1, yi+2, . . . , yi+ni)) (1)

where φ(·, ·) is some measure of distance in Rni — typically either Euclidean
distance of linear correlation. This scheme is depicted schematically in Fig. 1.
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C1 C2 C3 C4 C5 C6 C7 C8 ...

C1 1 0 0 0 0 1 0 0

C2 0 1 1 0 1 1 1 0

C3 0 1 1 0 0 0 0 0

C4 0 0 0 1 0 1 0 1

C5 0 1 0 0 1 1 1 1

C6 1 1 0 1 1 1 0 0

C7 0 1 0 0 1 0 1 0

C8 0 0 0 1 1 0 0 1

...

C1

C2

C4

C3

C5

C6

C8

C7

Fig. 1. This cartoon depicts the scheme utilised in [16] to construct a complex network
from a time series. The pseudo-periodic time series is first divided into cycles and the
distance between these cycles is measured and compared to some threshold. This yields
a matrix which is treated as an adjacency matrix to construct a network.

Using linear correlation between cycles as the measure of closeness has sev-
eral advantages when treating real data. In particular, the effect of (stationary)
additive noise is minimised, and one can avoid the often difficult task of success-
fully embedding the data. Of course, for particular applications one may choose
different measures of closeness. Moreover, the choice of measure may depend on
the application one is considering. However, for the general problem of analysis
of the attractor reconstructed from a time series, the measure we have chosen is
appropriate. Using this algorithm we have constructed complex networks from
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various time series and have examined the gross measures of network structure:
degree distribution and vertex strength [16]. We found that this simple measure
allows one to differentiate between noisy periodic orbits and chaotic dynamics. In
particular we observed peaks in the degree distribution of the complex network
corresponding to the unstable periodic orbits of the underlying system. More-
over, when applied to experimental and clinically obtained Electrocardiograms
(ECGs) we found fundamental differences in the structure of sinus rhythm ECG
of healthy volunteers and of coronary care patients.

Recently, the results of [16] have been more thoroughly studied by Zhang and
colleagues [17]. In this work, the network transform introduced by Zhang and
Small [16] is exploited and the standard battery of network-based statistics are
applied: degree, degree correlation, betweenness centrality and path lengths. In
[16] we observed UPOs (Unstable Periodic Orbits) in the degree distribution. In
[17] we go further and find that the joint degree distribution characterises the
organisation of cycles in phase space, and of course the assortativity coefficient
provides a succinct measure of this feature. Hence, the chaotic Rössler system
is assortative (with a highly structured joint degree distribution) while noisy
periodic signals are either uncorrelated or disassortative.

The technique of Zhang and Small has recently been extended by Yang and
Yang [15] to the case of time series without obvious period. In the method of
Yang and Yang all windows of a fixed length L along a time series are considered
as nodes and links between them are drawn if the magnitude of the correlation
coefficient exceeds some threshold. Of course, this is equivalent to performing an
L-dimensional embedding with time lag 1 and allows one to construct networks
from arbitrary time series. A further trivial generalisation of this method would
be to allow an arbitrary embedding. Certainly, for particular types of dynamics
a larger time delay may be preferable.

In [4], Lacasa and co-worker introduce another technique for constructing
networks from time series. Unlike the method of Zhang and Small [16] this
method does not require that the time series is pseudo-periodic. Rather, [4]
maps each scalar time series point to points on a complex network. The nodes
corresponding to two points (ta, ya) and (tb, yb) are then said to be connected if
for all intermediate third points (tc, yc) with ta < tc < tb we have that

yc − yb

tb − tc
<

yb − ya

tb − ta
. (2)

This method is simple, and the test easy to perform. But, it is unclear (at
least, it is unclear to the current authors) what feature of the dynamics is being
measured by this convexity constraint. This “visibility” constraint is motivated
by considering the points on the time series as mountain or building peaks. The
aim of the criterion is to identify which peaks are visible from the current peak
[3]. The criterion for this is (2). Nonetheless, Lacasa and colleagues apply this
criterion and are able to distinguish between broad classes of dynamical systems.
In particular, this constructions maps periodic signals to regular graphs and
random signals to random graphs. Scale-free networks are obtained from fractal
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time series. We note that the emergence of scale-free networks from fractal time
series is a trivial consequence of the choice of (2) and self-similarity.

3 Networks from Embedded Data

The main strength of the method introduced by Zhang and Small [16] is that it
is fairly robust to noise and does not require embedding. The main weakness of
that method is that it will only work provided one has some way of comparing
orbits. In some instances (hyper-chaos, for example) it is not clear how to achieve
this. In this section we describe a generic alternative [14].

The first step of this method is to embed the data in some suitable phase
space. Problems of choosing embedding dimension, embedding lag, and selecting
an appropriate embedding are not addressed here. Nonetheless, Fig. 2 depicts
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Fig. 2. The lower panel depicts the x-component of the Lorenz system and the upper
panel a time delay embedding de = 3, τ = 2 of that data. The embedded phase space
points are used to generate the complex network in Fig. 3.
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the result of this step for one archetypal model of chaos. Assuming a suitable
embedding can be found, each embedded phase space point represents a node
on the complex network. For some fixed k link each point xi with its k nearest
neighbours. For instances where two points are closest to one another, the same
link is added only once (we not consider either directionality of multiplicity of
links). In the event that two nodes are mutually closest to one another (that is,
the same link could’ve been added twice), the next closest link to either node
is added (one more link is added). Hence each node will contribute on average
k links to the network. The mean degree of the network will be exactly 2k, but
some nodes will certainly be more highly connected than others.

Finally, in order to ensure that neighbours are spatial neighbours rather than
merely temporal successors, we exclude points on the same strand of the tra-
jectory from being neighbours. That is, for any i the neighbours of xi are the
points xj such that |j − i| > T and ‖xi − xj‖ is one of the k smallest observed
distances (T is chosen to be one quarter of the recurrence time).

The main strength of this procedure is that the transformation ignores the
relative sparsity or density of points in phase space: each point will generate the
same number of neighbours and correspond to a node with the same number of
links. What is left when we examine the network structure is the local spatial
ordering of points. Temporal effects have been removed (the rows and columns
of the adjacency matrix can be shuffled without changing the network) and
large scale variation in the density of points is not considered (each point will
contribute the same number of neighbours).

The result of this construction for the chaotic Lorenz system is shown in Fig. 3.
In this figure we depict the network constructed from 7000 points sampled from
the x-component of the chaotic Lorenz system. The time series and the usual
time delay embedding are shown in Fig. 2. Based on continuity of the embedded
phase space it is easy to see that the two wings of the Lorenz attractor correspond
to the two lobes of the network. We believe that the central region of the network
corresponds to the small neighbourhood of the separatrix at the origin of the
Lorenz system. The two arms corresponding to transmission between the two
wings in either direction. The intricate web structure is a consequence of the
fact that temporal successor are not allowed to be neighbours: xi and xi+1 are
not neighbours, but they may both be neighbours of xj (|j − i| > T ).

In contrast to the Lorenz system, a network constructed from an orbit of the
Rössler much more closely resembles the original attractor. Figure 4 depicts the
structure of the network derived from the x-component of the chaotic Rössler
system. We emphasise here that neither Fig. 4 or Fig. 3 contains any temporal
information. The Rössler attractor-like structure of Fig. 4 is a consequence of
the proximity of points which are not temporally close. Despite this, even the
folding mechanism which gives rise to chaos in the Rössler system is evident.

This strong determinism and the longer chains of these neighbours lead to the
complex structure and even the local cycles observed in the network depicted in
Fig. 3. Our aim is to find some way to quantify the length and frequency of these
cycles in the network. As a first step to this goal we examine the motifs occurring
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Fig. 3. The complex network constructed from a time series of the x-component of
the chaotic Lorenz system. The figure depicts 7000 nodes of the complex network (this
choice is merely a constraint of our computing resources). The local neighbourhood
structure and the two wings of the Lorenz system, together with the dynamic of the
central separatrix are all clearly depicted. The nodes of the network are distributed in
R3 using a spring embedding which aims to places connected nodes close together and
unconnected nodes far apart.

in the network and the relative frequency with which the occur [8,7]. A motif
of size n is simply a subnetwork consisting of n nodes. For ease of computation,
we consider only connected motifs of size 4. We compute the frequency with
which each connected motif of size 4 occurs and compare the relative frequency
of these motifs, ranking them from most to least frequent. The results of this
computation are shown in Table 1. Details of the various systems we study are
given in the Appendix.

Table 1 provides a summary of the relative frequency of various different local
structures within the network. One observes, for example, a variation in the fre-
quency of the fully connected motif: most common in regular periodic systems,
less frequently observed in low-dimensional (one positive Lyapunov exponent)
chaos and least frequent for noise and high dimensional chaos. Similarly the sym-
metric motif (the square) is more common in the high-dimensional systems and
less common in the low-dimensional ones. Both these observations are natural:
one would expect less mixing in the more regular (i.e. periodic systems) and
progressively more mixing in the higher dimensional ones.
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Fig. 4. The complex network constructed from a time series of the x-component of the
chaotic Rössler system. The figure depicts 7000 nodes of the complex network. The
nodes of the network are distributed in R3 using a spring electrical embedding which
aims to places connected nodes close together and unconnected nodes far apart.

Similarly, the less transitive motifs are more common in the higher dimensional
systems. For example the motif consisting of a single node fully connected to the
remainder (i.e. a is connected to b, c and d but none of b, c or d are connected to
one another) is most common in the systems which exhibit the most stretching.
Sensitivity to initial conditions implies that points should spread apart so that
the neighbours of a are not necessarily neighbours themselves. This is observed in
the relative frequency of this motif for chaotic, hyper-chaotic and periodic system.
For noisy signals this motif is most common, for this system points are arranged
more randomly and it is therefore unlikely that neighbours will be transitive.

We now turn out attention to discrete chaotic and noise processes. We consider
data generated by chaotic maps, hyper-chaotic maps and Gaussian and fractal
noise sources. The results are depicted in Table 2 and the general observations
that we can make are the same as those observed for flows. Details of the various
systems we study are given in the Appendix.

We observe that non-transitive motifs (a connected to b, c, and d, but no
other connections) are again more prevalent in the increasingly high-dimensional
systems. Fully connected motif are more frequently observed in data from low-
dimensional system. The reasons for this are exactly the same as we observed
earlier.
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Table 1. Relative motif frequency (Motifs of size 4) for a variety of different dynamical
systems. Chaotic systems include the classic Lorenz and Rössler systems and Chua’s
chaotic circuit. In each case with a variety of different parameter values. The periodic
Rössler (with period-2 up to period-8 motion) was also tested and found to exhibit
distinct dynamics, as was noise contaminated Sine (0 dB to 30 dB) and the infinite-
dimensional Mackey-Glass system in a chaotic regime. In each case, the most frequent
motif is shown on the left, and the other motifs are then depicted in decreasing order
of frequency.

Data Source Motif frequency

Chaotic Lorenz
Chaotic Rössler

Chaotic Chua’s circuit

Hyper-chaotic Mackey-Glass

Periodic Rössler

Noisy Sine

Table 2. Relative motif frequency (Motifs of size 4) for a variety of different discrete
systems. Chaotic systems are the three usual suspects: logistic map, Hénon map and
Ikeda map. We also study two hyper-chaotic system and various noise sources (white
noise and various Fractal processes). In each case, the most frequent motif is shown on
the left, and the other motifs are then depicted in decreasing order of frequency.

Data Source Motif frequency

Chaotic logistic map
Chaotic Hénon map
Chaotic Ikeda map

Hyper-chaotic folded towel map
Hyper-chaotic generalised Hénon map

White noise
Fractal noise
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4 Conclusion

Constructing a complex network from a recurrence plot would provide a method
of reconstructing the attractor responsible for the recurrence plot. Essentially,
as we see here, the network constructed from the Rössler system quite closely
resembles the Rössler system itself. Similarly, if one was simply to use the re-
currence matrix as an adjacency matrix one would obtain the generic attractor
(close points would be linked, but those links would of course not follow the
trajectory). To completely recover something homomorphic to the original at-
tractor one could take the network constructed from the recurrence matrix and
then remove all links while retaining the spatial arrangement of nodes on the
network. One then reconnects the nodes according to the actual temporal or-
der of the nodes in the recurrence matrix. The spatial adjacency of the points
would have been obtained from the network structure. Hence, there is a genuine
dualism between recurrence plot and attractor [12]. (In [12] Theil develops the
bijection between recurrence plot and attractor slight differently, but the result
is the same.) Provided one identifies sufficiently many neighbours to retain the
vital information when constructing the recurrence matrix, one may infer the
attractor from the recurrence plot.

However, in this paper we are interested in examining a slightly different set
of properties. While we have briefly introduced the idea of generating networks
from recurrence plots, that is not out main purpose. The adjacency matrix we
use is not equivalent to the recurrence matrix and the properties we examine
are topological features of the network rather than the temporal structure of the
attractor.

We show that super-families exist among the complex networks generated
from time series. That is, the relative frequency of occurrence of the various
different motif structures is the same for various time series obtained from the
same type of complex system: periodic, low-dimensional chaos, high-dimensional
chaos, and noise. Nonetheless, despite this super-family structure individual dif-
ference exist between members of a single super-family (compare Fig. 3 and
Fig. 4). In some sense, the network obtained in each case is a fingerprint of
the particular dynamical system that generated the corresponding time series.
The super-family structure is a crude counting of simple properties of those
fingerprints, but much more complex structure exists. We speculate that the
network itself contains detailed information concerning the stability of the un-
derlying dynamics. In Fig. 4 we see the folding mechanism that is the signature
of Rössler-type chaos and in Fig. 3 we see three distinct regions and the effect
of the central separatrix which characterises the Lorenz system.

Essentially, viewing time series as networks provides a whole new arsenal of
nonlinear statistics and measures which one may apply in the analysis of those
data. It may also be instructive (for example) to look at the behaviour of the
corresponding complex network as the original dynamical system undergoes a
bifurcation: say the Rössler system bifurcating through multiple periodicities
and into a variety of different chaotic regimes. It would also be instructive to
apply this method to problems related to multivariate time series: either to
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look for coherence and organisation between multiple channels (by replacing the
embedding step in the procedure we describe here with a single multivariate
time sample) or to look for synchronisation between channels. In either case the
change in behaviour would be readily apparent from the structural properties of
the resultant network.
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Appendix

A High Dimensional Chaos

In this section we review the various dynamical systems used to generate the
time series data used in this study. We assume that most readers are familiar
with the canonical Rössler, Lorenz and Chua systems, and the Ikeda, Hénon
and logistic maps (and for details of our particular interpretation we refer the
interested reader to [14]). Our other examples need a little further explanation.

Chaotic Mackey-Glass delay system [5]: a = 0.2, b = 0.1, d = 17. The sampling
interval T = 0.25 and the time delay τ = 40.

ẋ(t) =
ax(t − d)

1 + x10(t − d)
− bx(t) (3)

Hyper-chaotic generalized Hénon map [1]: a = 1.9, b = 0.03.
⎧
⎨

⎩

xn+1 = a − y2
n − bzn

yn+1 = xn

zn+1 = yn

(4)

Hyper-chaotic folded-tower map [9]: a = 3.8, b = 0.2.
⎧
⎨

⎩

xn+1 = axn(1 − xn) − 0.05(yn + 0.35)(1 − 2zn)
yn+1 = 0.1((yn + 0.35)(1 + 2zn) − 1)(1 − 1.9xn)
zn = 3.78zn(1 − zn) + byn

(5)
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