
FLECS: A Framework for Rapidly Implementing

Forwarding Protocols

Mirza Beg

David R. Cheriton School of Computer Science
University of Waterloo
Waterloo, ON, Canada
mbeg@cs.uwaterloo.ca

Abstract. Design, implementation and deployment of network proto-
cols is a challenging and difficult task. Determining their correctness and
feasibility for large-scale networks is even more complicated. This paper
presents Flecs, a framework for fascilitating implementation of forward-
ing protocols for packet-switched networks. We build upon the observa-
tion that the forwarding functionality can be modeled as a combination
of well-defined but customizable components, the functionality of each
component is constrained by the fundamental axioms of communication.
Flecs provides a protocol specification language and automatically gen-
erates the protocol implementation from the specification.

1 Introduction

Designing, implementing and deploying network software is an expensive and
time-consuming process. As a result, modular network architectures have gained
significant interest in the networking research community. Modular architectures
are ideal vehicles to design, develop, test and optimize individual components of
communication protocols.

In this paper we describe Flecs, a framework that employs modularization to
quickly implement forwarding functionality of communication protocols. Exist-
ing research in protocol prototyping is generally directed towards optimization
and performance enhancement techniques [15,11]. Current systems lack a solid
theoretical foundation, which makes it almost impossible to formally analyze
their behavior with respect to forwarding. Notable exceptions include [3,14],
which study the underlying principles of connectivity in communication proto-
cols. In contrast, our work builds on an axiomatic basis for expressing commu-
nication primitives that provides a theoretically sound framework for expressing
fundamental inter-networking concepts such as deliverability of messages. In
particular, we use the axiomatic basis to derive and implement a universal for-
warding engine, constrained by the axioms of our theoretical framework. We do
so by using meta-compilation techniques to rapidly generate protocol implemen-
tations for a variety of forwarding schemes. A parallel stream of research has
made an attempt to define communication invariants using axioms [5,4].

J. Zhou (Ed.): Complex 2009, Part II, LNICST 5, pp. 1761–1773, 2009.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

1762 M. Beg

Fig. 1. Ethernet Bridge in Flecs

The axiomatic framework defines abstract components called abstract switch-
ing elements or Ases. This facilitates the overall protocol design by dividing
it into sub tasks and makes use of the divide-and-conquer strategy to simplify
complex forwarders. The axioms in the framework help constrain the behavior
of Ases as communication protocol components in contrast to prior work, where
each module can perform arbitrary processing actions.

We illustrate the concepts behind the design of Flecs using Ethernet Bridg-
ing as an example. Figure 1 shows the configuration of a learning Ethernet
bridge. The model only requires a single Ase called EthBridge. The correspond-
ing Flecs implementation is shown in Figure 2.

In the given model, EthBridge is directly connected to all the network inter-
faces (in this case four, i.e. eth0, eth1, eth2 and eth3). A packet arriving at any
interface is forwarded to the EthBridge Ase which looks at the Ethernet desti-
nation (dest mac) and source (src mac) (Figure 2(b), lines 8-9). Each arriving
packet is forwarded based on a lookup of the switching table and the Ase learns
the reverse path towards src mac and updates the switching table if necessary.

An equivalent implementation of the Ethernet bridge takes more than 3000
lines of code in FreeBSD. This work also presents encouraging results from our
experience with implementing the universal forwarding engine. The project was
undertaken with the following goals.

– Implement fundamental packet processing operations that can be used to
compose complex packet forwarding schemes.

– Define a meta-language to specify packet forwarders and demonstrate its
feasibility by implementing non-trivial forwarding schemes.

– Implement tools to auto-generate runnable forwarder implementations from
the specifications written in our meta-language.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work followed by a brief restatement of the axiomatic formulation from
[4], in Section 3. Section 4 examines the Flecs framework and its core compo-
nents. Section 5 describes the implementation of Flecs. Implementation details
and detailed protocol examples have not been included due to space limitations.
Section 6 illustrates the practical capabilities of our framework by compactly
describing the forwarding scheme in IP. Section 7 evaluates the effectiveness of
our approach and we end with conclusions and future work in Section 8.

FLECS: A Framework for Rapidly Implementing Forwarding Protocols 1763

1 EthBridge bridge {

2
3 control {

4 [*, *] ->

5 [setup/none][forward/none];

6 }

7
8 switching {

9 [eth$i, *] -> [eth-$i, null];

10 }

11 }

12
13 config(eth0, eth1, eth2, eth3)

14 {

15 eth0 <-> bridge <->eth1;

16 eth2 <-> bridge <->eth3;

17 }

(a)

1 DEFINE ETHERNET_ADDR_LEN 6

2 DEFINE DEST_MAC_OFFSET 0

3 DEFINE SRC_MAC_OFFSET 6

4
5 ASE EthBridge {

6 peek {

7 READ {

8 dest_mac DEST_MAC_OFFSET

9 ETHERNET_ADDR_LEN

10 src_mac SRC_MAC_OFFSET

11 ETHERNET_ADDR_LEN }

12 CONTROL { dest_mac }

13 }

14
15 forward { LOOKUP { dest_mac } }

16
17 setup {

18 UPDATE { * src_mac prev null }

19 }

20 };

(b)

Fig. 2. (a) Ethernet Bridge configuration represented in Flecs (ethbridge.flecs) (b)
Definition of the EthBridge Ase in Flecs (ethbridge.ase)

2 Related Work

Our work is related to a handful of attempts to build engines for rapid protocol
prototyping. It also relates to work in understanding the architecture of the
Internet. The axiomatic framework described in [5,4] succinctly formalizes the
design principles behind communication protocols and provides a basis for formal
reasoning about their properties. We briefly describe the axioms in the next
section. Flecs attempts to implement the constraints defined by the axioms,
using Click [8,7], whereas other approaches like [1,2] fail to build upon a sound
theoretical framework.

Click defines a flexible, modular architecture for building configurable routers.
Click routers can be configured by connecting Click components, called elements,
in a directed graph. Each element defines a simple packet processing operation,
such as queuing, scheduling, switching, and interfacing with network devices.We
differ from this approach in that we specify protocols at a higher level of ab-
straction rather than in a general-purpose programming language. In addition,
our design constrains the programmer according to the axiomatic formulation
of packet forwarding [4]. We find Click to be complementary to our work and
indeed we use it to build the first prototype of our system.

Estelle (Extended State Transition Language) [6] is a format description tech-
nique to describe communication protocols and services developed within the In-
ternational Standard Organization (ISO). This technique is based on an extended

1764 M. Beg

finite state transition model. The Estelle framework consists of objects called
modules. An Estelle specification is a set of cooperating modules, interacting with
each other by exchanging messages through links called channels.Our approach
has several similarities with Estelle. However Flecs is unlike Estelle in that it
strives to present a higher level of abstraction to the programmer and constrains
the design in accordance with the axiomatic principles. Approaches like SDL [12],
LOTOS [13] and Esterel [15], also describe techniques to express communication
protocols using formal descriptions, like Estelle. Instead of expressing protocols
in completely abstract terms, they use an approach that requires protocols to be
specified in an implementation oriented formal description. The code generated
is generally in the form of a skeleton that must be completed by the programmer.

Flecs represents a middle ground approach compared to previous approaches
to protocol design. It allows the user to define forwarding protocols in a domain
specific language constrained by the axioms of communication; yet it retains the
clarity and simplicity in design that enables us to prove some essential properties
of protocols.

3 Background on the Axioms of Communication

The axiomatic formulation given by Karsten et al. [4] describes the properties of
the “leads to” relation denoted as →. In these axioms the Ases are denoted by
letters A, B and C having input and output ports for inter-Ase communication.
At Ase B, the input port from predecessor A is denoted as AB and the output
port to a successor C is BC . A variable port is denoted as x. The unit of com-
munication between Ases is a message m. A message m that exists at a port
x is denoted as m@x. An Ase maintains a private set of mappings, called the
switching table. The switching table at Ase B is denoted as SB and contains
mappings 〈A, p〉 �→ {〈C, p′〉} from an Ase-string pair 〈A, p〉 to a set of Ase-string
pairs {〈C, p′〉}. The switching table can be queried through a lookup operation
SB[A, p]. The “leads to” relation is defined by the following four axioms:

LT1. (Direct Communication)
∀A, B, m : ∃AB ,A B ⇐⇒ m@AB → m@AB.

LT2. (Local Switching)
∀A, B, C, m, p, p′ : ∃AB, BC ∧ 〈C, p′〉 ∈ SB[A, p] =⇒ pm@AB → p′m@BC .

LT3. (Transitivity)
∀x, y, z, m, m′, m′′ : (m@x → m′@y)∧ (m′@y → m′′@z) =⇒ m@x → m′′@z.

LT4. (Reflexivity) ∀m, x : m@x → m@x

These axioms constrain Ase packet processing. LT1 denotes direct commu-
nication between Ases A and B. This is possible if and only if A and B are
connected to each other by a link. Axiom LT2 expresses the lookup and switch-
ing capability of an Ase. Note that in the theoretical model a packet pm is
logically split into a header prefix p and the opaque message m during each local
switching step. LT2 also covers any form of multi-destination forwarding, such
as multicast, since the set SB[A, b] may have multiple elements. LT3 describes

FLECS: A Framework for Rapidly Implementing Forwarding Protocols 1765

transitivity over direct communication and local switching to splice the individ-
ual forwarding steps together. These three axioms naturally express the simplex
forwarding process in a communication network, where, potentially, at each for-
warding step, a forwarding label is swapped. Axiom LT4 specifies reflexivity for
simplification of certain formal proofs.

3.1 Constraints Imposed by the Axiomatic Basis

The axiomatic basis imposes stringent constraints on the behavior of an Ase.
These constraints apply to two main aspects of Ase design.

Inter-Ase Communication: These constraints arise directly from the axioms
themselves. LT1 restricts each Ase by only allowing direct communication be-
tween neighbors. Two Ases are neighbors if and only if they are directly con-
nected to each other. The second constraint arises from LT3. This bounds the
overall connectivity of an Ase by the transitive closure of direct communication
and local switching.

Processing within an Ase: The first constraint is that the Ase is not allowed
to overwrite or redefine the main loop which forms the core of Ase processing.
This prohibits the user from defining completely new Ases in the framework. The
second constraint is imposed by the processing patterns. The Ase is restricted to
a small well-defined set of patterns. Any Ase specific processing must be defined
by specialization and configuration of the patterns.

4 Framework

There are two main considerations which drive the design of the meta-language
in Flecs. First, our protocol specification language should comply with the
axiomatic fundamentals [4], which constrain packet processing in Ases. Second,
Flecs should allow programmers to specify complete protocol functionality. The
routine tasks of packet manipulation can be extracted as a super component
and can be reused for different implementations instead of being re-written from
scratch [9,10]. This enables the programmer to automate the task of protocol
composition from a minimum set of specifications.

Restricting the programmer to a limited domain specific language constrains
the design choices for the protocol. An obvious benefit of using Flecs is that
the programmer does not have to bother with the intrinsic details of networking
which is common in protocol implementations. A less obvious benefit is that the
programmer is restricted from making bad design choices.

4.1 Object-Oriented Design of Ases

Flecs models fundamental protocol abstractions as objects, represented by
Ases. The framework predefines a Base Ase (Base) and the programmer can
implement new Ases by refining Base to produce Ases required to construct a
specific protocol. Figure 3 illustrates the general design of the Flecs framework.

1766 M. Beg

Fig. 3. The Design of the Flecs Framework

It depicts the inheritance of Ases from Base to compose the final forwarder. A
protocol instance is made up of Ase instances, connected together to form a con-
figuration graph. Representing protocol abstractions this way not only achieves
our goal of constraining Ases using our axiomatic formulation, but it also sup-
ports our secondary goal of dividing the functionality into smaller components,
hence making the specifications simpler and easier to write.

Object-oriented programming is well-suited for representing the Ases. One
characteristic of Flecs is that it partitions protocol state such that each Ase
operates on its own local state information. Object-oriented design fosters this
way of thinking by packaging related meta-data and procedures together within
an Ase. Another benefit is that object-orientation provides inheritance as an in-
built language discipline for supplying packet processing functionality and data
structures from the Base. It should be noted here that there are certain protocol
specific functions, such as TTL decrement or checksum re-computation in an IP
Router, which are difficult to generalize. The framework allows the program-
mer to include arbitrary functions in the Ases to make the implementations
interoperable within the existing architecture.

It should be noted that Flecs is object-oriented only with respect to the
protocol abstractions built in the Base. Flecs programmers cannot define ar-
bitrary, new and unconstrained Ases. The language specifications only allow the
programmer to create specializations of the Base. This makes Flecs specific
for packet processing, and unlike a general purpose, object-oriented language,
it does not explicitly provide the programmer with language-level constructs to
optimize protocol software. This restriction allows us to exploit the knowledge
of common patterns in protocol operations for internal optimizations. This gives
additional power to Flecs over hand-coded optimizations by reducing per-layer
overhead, even though the protocol graph is not determined until run time.

Flecs represents fundamental tasks in protocols as packet processing primi-
tives. It predefines a collection of primitives, using which any arbitrary network
protocol can be easily composed. These primitives include pop (to remove a pre-
fix of the packet header), push (appends a prefix to the packet header), send,

FLECS: A Framework for Rapidly Implementing Forwarding Protocols 1767

receive, lookup (looksup the switching table) and update (inserts entries to
the switching table).

4.2 Internals of an Ase

It turns out that the forwarding functionality of an Ase can be specified through
a small number of processing patterns, using the primitives described above. We
use patterns and primitives to abstractly describe the design of Ases. We log-
ically partition overall Ase processing into several processing patterns. Each
pattern defines either a forwarding or control procedure. Forwarding includes
manipulation of the packet header as well as packet switching based on a switch-
ing table lookup. This forwarding operation is along with the necessary modi-
fications to the packet is defined by the forward pattern. Control patterns are
designed to update local or remote Ase state. These include setup (updates
Ase state), resolve (performs remote lookup), respond (responds to a remote
lookup request) and rupdate (updates Ase state based the reply for resolve).

Patterns model complex operations of packet processing than the afore-
mentioned primitives. In fact, each pattern can be composed from a set of
primitives arranged in a block of code using regular programming constructs.
For different Ases the same pattern can be configured differently, possibly with
different options, to yield different functionality. Essentially, it is the processing
patterns that implement the constraints imposed by the axiomatic formulation.

Ases are a particularly novel aspect of Flecs. Each Ase operates on a specific
prefix of the packet header. It extracts the relevant information from this header
prefix and uses it for processing the packet and forwarding. An Ase can be in-
stantiated multiple times in the same configuration. An active instance of an Ase
in a particular forwarder configuration can emulate a protocol layer such as IP.

Ases make processing and switching decisions based on values retrieved from
the packet header. They can carry out complex operations such as swapping
header fields, encapsulating a message with a new header or removing header
prefixes as required by the specific protocol. The functionality of an Ase is
defined by the processing patterns it implements (e.g. forward pattern in Eth-
Bridge, Figure 2(b)). At runtime, the behavior of an Ase is determined by its
local state. Ases maintain their local state in control and switching tables. These
are initialized for each instance of an Ase in the configuration.

The pseudo-code in Figure 4 shows the main processing routine for an Ase.
When a packet arrives at an Ase, it is handed to its process routine. Process
extracts the relevant fields from the packet header and looks up the control
table to determine which patterns are to be executed on the packet. If there
is no matching entry for a particular packet in the control table, the packet
is discarded. Otherwise, the patterns returned by the lookup are sequentially
executed on the packet.

The control table determines the patterns to be executed on different pack-
ets received by the Ase. Entries in the control table specify mappings as
[Asex, p′] → {[pattern/subtype]}, where Asex is the Ase from which the packet
was sent and p′ is a set of strings; the pair forms the key for that entry. The

1768 M. Beg

1 process(Packet *p, AseRef prevAse) {

2 s = peek(p)

3 patterns[] = lookup(control, {prev, s})

4
5 for (each pattern in patterns[]) {

6 if (p) execute(pattern, p)

7 }

8 }

Fig. 4. The Main Processing Routine of an Ase

key maps onto a set of patterns. As can be noted from the table structure, the
loop enforces an order on pattern execution. This is an additional constraint
not captured by the axioms. Switching table entries are mappings of the form
[Asex, p′] → {[Aseyi , p′′]}. In the forward pattern, a packets forwarding path is
determined by using previous Ase and a set of header fields as the lookup value.
The lookup returns a set of Ase and string pairs, and copies of the packet are
then forwarded to each of those Ases along with the string p′′ which is used as
a name for the destination Ase of this packet. Note that this gives us the ability
to handle broadcast, multicast as well as anycast packets.

5 Implementation

We have implemented Flecs using Click [8], a framework for building flexible,
configurable routers. We use a hybrid approach of class inheritance and meta
compilation to produce the desired Click implementation and configuration. The
complete protocol development process in Flecs is shown in Figure 5 where
Base is implemented as a Click element. Ase specifications are compiled by the
asec compiler to generate code for the corresponding Click elements. Ases are
implemented as complex Click elements, extending Base to inherit the generic
functionality. Given the Ase design, it can easily be noticed that a traditional
protocol layer can be modelled as an Ase. A particular protocol configuration

Fig. 5. Flecs Implementation in Click

FLECS: A Framework for Rapidly Implementing Forwarding Protocols 1769

might require multiple instances of the same Ase to simulate a single layer.
A specific Flecs configuration can be translated into the corresponding Click
configuration using the confic compiler. The elements are compiled to form the
Click executable which interprets the configuration file to produce the desired
forwarding functionality represented by Forwarder in Figure 5.

Succinctly stated, the Flecs framework is comprised of two meta-compilers
and the respective meta-language specifications. The Ase compiler, called asec,
compiles Ase specifications written in Ase Description Language (ADL) to
generate Click element code representing the Ase. The configuration compiler,
namely confic, compiles configurations specified in Flecs Configuration Lan-
guage (FCL) to produce a Click configuration. It should be noted here that
Flecs does not depend on any specific functionality of Click, rather we can
implement the Flecs compilers in any reasonable packet processing engine.

6 Examples

In this section, we discuss how the Flecs framework can be used to implement
some well-known and non-trivial forwarding protocols. In the following sections,
we discuss a couple of protocol implementations with diverse compositions. In
general, the framework can be used to implement forwarding in DNS [18,19],
Mobile IP [17], Dynamic Source Routing [16] and other multicast and anycast
protocols with little effort. We discuss the implementation details of an IP for-
warder.

6.1 IP Forwarding

A simple IP forwarder can be modeled in Flecs as shown in Figure 6. An IP
packet arriving at a network interface is forwarded to the corresponding ETH Ase.
ETH Ase’s switching lookup on the Ethernet destination and protocol determines
whether to forward the packet to the IP Ase, ARP Ase or drop it. If the intended
Ethernet destination of the packet differs from the Ethernet address assigned to

Fig. 6. IP Router in Flecs

1770 M. Beg

the respective ETH Ase, the packet is dropped, otherwise the Ethernet header is
popped off and the packet forwarded to IP Ase.

The IP switching table lookup determines the interface to forward the packet
and passes it on to the corresponding ARP Ase, annotating the packet with the
next hop IP address given in the switching table entry of IP Ase. Protocol
specifications are not given due to space constraints. The IP switching table
is the routing table of the IP Router. This can be configured manually during
initialization or rupdate in the IP Ase can be defined for handling routing table
updates. ARP looks up its switching table to resolve the next hop IP address,
pushes the resolved Ethernet address and forwards the packet to the ETH Ase
which recasts the packet in the correct Ethernet header and relays it to the
respective interface.

ETH and ARP Ases are also configured to handle ARP requests and ARP
replies, hence the extra arrows between them. The ARP Ases are configured with
the local ip and the corresponding Ethernet address.

7 Evaluation

Figure 7 demonstrates the feasibility of using the Flecs framework to prototype
forwarding functionality of communication protocols. It shows the difference be-
tween the lines of code written by the programmer in Flecs compared to the
number of lines of code generated by the asec compiler for different protocol
implementations. For example an Ethernet bridge configuration can be specified
in Flecs along with its configuration for a two network interfaces in less than
thirty lines (2). The same implementation in Click results in more than two
hundred lines of code. Flecs produces the Click implementation from the spec-
ification in less than a hundred lines of code. This does not include the generic
code inherited from Base. A comparable Ethernet bridge written for FreeBSD is
more than 3K lines of code. This difference between implementations in different

Fig. 7. Comparison of the number of
lines of code in the .ase file with
the number of lines generated by the
asec compiler. Click implementation of
Etheret bridge is in 236 lines of code.

Fig. 8. Forwarding Rates of an IP
Router in Flecs

FLECS: A Framework for Rapidly Implementing Forwarding Protocols 1771

environments results partly because of our generalized nature of the framework,
reusable code base and inheritance model and partly because other implemen-
tations have a big chunk of error handling and optimization code. This includes
optimizations such as the spanning tree protocol implementation and network
interfacing with the LAN driver in FreeBSD. We specify the IP forwarder in
187 lines of ACL. The Ase compiler produces 657 lines of Click code for IP.
A comparable Click implementation for IP forwarding (not using the Base class
functionality provided by Flecs) takes more than 2K lines of code. A similar im-
plementation in Linux would probably consist of several thousand lines of code.
Flecs generalizations not only reduces the amount of work the programmer has
to put in to prototype a specific forwarder, but also makes it easier to locate
bugs which might be difficult to find due to the complexity of a code base.

We also evaluate the cost of adhering to the axiomatic constraints and the
generalizations implemented in Flecs. Figure 8 characterizes the performance
of an IP forwarder in Flecs by measuring the rate at which it can forward 64
byte packets, when compared to a Click implementation of a comparable IP for-
warding configuration. This analysis presents the router behavior under different
workloads. The experiments were conducted by running the implementations in
user-level Click, on the same machine. The Flecs-generated implementation
peaks at 7,000 packets where as the Click implementation peaks at 10,000. The
resulting Ases from Flecs were modified to use an optimized data structure to
hold extracted values from the packets and table lookups.

We expected to see some performance degradation due to the nature of gener-
alization enforced on the Ase processing. The results show a performance hit of
30%. This is an encouraging result considering that we have not yet incorporated
any optimization techniques into our compilers and we are performing at 70%
of a protocol specific implementation. We observe that each IP packet passes
through five complex elements, each performing at least two lookup operations,
compared to thirteen simple elements in the Click implementation with a single
lookup amongst them. Optimized data-structures for holding the control and
switching tables would probably result in regaining s significant portion of the
performance loss. Furthermore the asec compiler can utilize domain knowledge
to produce optimized forwarding code.

8 Conclusions

This paper describes Flecs, a framework for rapid protocol prototyping. Flecs
applies a divide-and-conquer strategy to decompose complex protocols into a
combination of Ases. Ases can support a wide variety of complex packet for-
warding tasks through composition.

There are a three main advantages of using Flecs for implementing packet
forwarders. The first is that by using the Flecs framework the time to design
and implement communication protocols can be drastically reduced. The second
advantage is that by adhering to the axiomatic basis, the generalized proofs of

1772 M. Beg

correctness of patterns can eventually be used in augmentation with automated
theorem provers to prove correctness of protocol implementations. The third
advantage emerges from our use of the object-oriented inheritance model to
extract the generic functionality and the main processing loop in the Base. This
not only constrains design choices but also reduce the protocol specifications to
mere data-oriented specializations of the Base.

Given the current status of our work, we can implement optimization tech-
niques available to a domain specific framework to generate very efficient imple-
mentations.

References

1. Kohler, E., Kaashoek, M.F., Montgomery, D.R.: A Readable TCP in the Prolac
Protocol Language. In: SIGCOMM 1999, Cambridge, Massachusetts, USA, pp.
3–13 (1999)

2. Madhavapeddy, A., Ho, A., Deegan, T., Scott, D., Sohan, R.: Melange: Creating
a ’Functional’ Internet. In: EuroSys 2007: Proceedings of the 2007 conference on
EuroSys., Lisbon, Portugal, pp. 101–114 (2007)

3. Clark, D.: The Design Philosophy of the DARPA Internet Protocols. In: SIG-
COMM 1988, Stanford, California, pp. 106–114 (1988)

4. Karsten, M., Keshav, S., Prasad, S., Beg, M.: An Axiomatic Basis for Communi-
cation. In: SIGCOMM 2007, Kyoto, Japan, pp. 217–228 (2007)

5. Karsten, M., Keshav, S., Prasad, S.: An Axiomatic Basis for Communication. In:
HotNets V, Irvine, CA, USA, pp. 19–24 (2006)

6. Budkowski, S., Dembenski, P.: An Introduction to Estelle: A Specification Lan-
guage for Distributed Systems. Computer Networks and ISDN Systems 14(1), 3–24
(1988)

7. Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.F.: The Click Modular Router.
In: SOSP 1999, Kiawah Island Resort, near Charleston, SC, USA, pp. 217–231
(1999)

8. Kohler, E., Morris, R., Jannotti, J., Kaashoek, M.F.: The Click Modular Router.
ACM Transactions on Computer Systems 18(3), 263–297 (2000)

9. Condie, T., Hellerstein, J.M., Maniatis, P., Rhea, S., Roscoe, T.: Finally, a Use for
Componentized Transport Protocols. In: HotNets IV (2005)

10. Krupczak, B., Calvert, K., Ammar, M.: Increasing the Portability and Re-usability
of Protocol Code. IEEE/ACM Transactions on Networking 5(4), 445–459 (1997)

11. Liu, X., Kreitz, C., Renesse, R., Hickey, J., Hayden, M., Birman, K.P., Constable,
R.L.: Building Reliable, High-performance Communication Systems from Compo-
nents. In: SOSP 1999, Kiawah Island Resort, near Charleston, SC, USA, pp. 80–92
(1999)

12. Tennenhouse, D.L.: Layered Multiplexing Considered Harmful. In: First Interna-
tional Workshop on High Speed Networking (1989)

13. Bolognesi, T., Brinksma, E.: Introduction to the ISO Specification Language LO-
TOS. Computer Networks and ISDN Systems 14(14), 25–59 (1987)

14. Griffin, T.G., Sobrinho, J.L.: Metarouting. In: SIGCOMM 2005, Philadelphia,
Pennsylvania, USA, pp. 1–12 (2005)

15. Dabbous, W., O’Malley, S., Castelluccia, C.: Generating Efficient Protocol Code
from an Abstract Specification. In: SIGCOMM 1996, Palo Alto, California, USA,
pp. 60–72 (1996)

FLECS: A Framework for Rapidly Implementing Forwarding Protocols 1773

16. Bolognesi, T., Brinksma, E.: Dynamic Source Routing in Ad Hoc Wireless Net-
works. Mobile Computing 353, 153–181 (1996)

17. Perkins, C.: RFC 3344 - IP Mobility Support for IPv4. IETF (2002)
18. Mockapetris, P.: RFC 1034 - Domain Names - Concepts and Facilities. IETF (1987)
19. Mockapetris, P.: RFC 1035 - Domain Names - Implementation and Specification.

IETF (1987)

	FLECS: A Framework for Rapidly Implementing Forwarding Protocols
	Introduction
	Related Work
	Background on the Axioms of Communication
	Constraints Imposed by the Axiomatic Basis

	Framework
	Object-Oriented Design of {\sc Ases}
	Internals of an {\sc Ase}

	Implementation
	Examples
	IP Forwarding

	Evaluation
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

