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Abstract. Funnelling effect, in the context of searching on networks,
precisely indicates that the search takes place through a few specific
nodes. We define the funnelling capacity f of a node as the fraction of
successful dynamic paths through it with a fixed target. The distribution
D(f) of the fraction of nodes with funnelling capacity f shows a power
law behaviour in random networks (with power law or stretched exponen-
tial degree distribution) for a considerable range of values of the parame-
ters defining the networks. Specifically we study in detail D1 = D(f = 1),
which is the quantity signifying the presence of nodes through which all
the dynamical paths pass through. In scale free networks with degree dis-
tribution P (k) ∝ k−γ , D1 increases linearly with γ initially and then at-
tains a constant value. It shows a power law behaviour, D1 ∝ N−ρ, with
the number of nodes N where ρ is weakly dependent on γ for γ > 2.2.
The latter variation is also independent of the number of searches. On
stretched exponential networks with P (k) ∝ exp (−kδ), ρ is strongly de-
pendent on δ. The funnelling distribution for a model social network,
where the question of funnelling is most relevant, is also investigated.
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1 Introduction

Searching on networks has attracted a lot of attention recently. In general, the
problem is to send a signal to a target node from a source node. It has been
shown in some studies on real networks that it is possible to find short paths
[1,2,3,4,5,6,7] during such a searching or navigation on small world and scale-
free networks. This implies that even with only local knowledge of the network,
there is a small world effect, i.e., the average number of steps to reach the
target is O(log(N)) where N is the number of nodes in the network. In several
theoretical studies the interest therefore has been to find out the scaling relation
of the shortest searching path lengths with the number of nodes using different
searching algorithms [8,9,10,11,12,13,14,15,16,17,18,19,20].

The notion of the small world effect emerged from the results of the original
experiments made by Milgram [1] in which letters had to be hand delivered
to a specific target. Apart from the observation of small world effect it was
also claimed that the successful paths filtered through a few nodes [3] and this
effect was termed funnelling. In these experiments however, very few chains
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were completed and the results could be less than conclusive. In a later study by
Dodds et al [4], where search experiments on email networks were conducted, it
was concluded that no such funnelling effect exists for social networks.

The question of funnelling has not been adequately addressed so far in any
theoretical study to the best of our knowledge. In fact, no precise quantitative
definition of funnelling has been proposed either.

We define the funnelling capacity of a node to be the fraction of dynamic
paths through it when the target is fixed and the source is varied. In a realistic
search, failure to reach the target has a considerable probability and searches
with a possibility of termination [17,18] have been studied earlier. Hence, with
a fixed target, we define the funnelling capacity fi of the ith node as

fi =
No of successful searches through the ith node

Total no of successful paths
. (1)

Defined in this way, it may seem that the funnelling capacity, averaged over all
targets is the same as the betweenness centrality [21] of the node. The latter is
defined as the fraction of shortest paths through a node and is a much studied
quantity, but it must be remembered that it is obtained from the global knowl-
edge of the network, and is thus a static property. Thus these two quantities
are expected to behave differently in general. Funnelling capacity, which is a
dynamic variable will obviously depend on the search algorithm.

It may also be mentioned that keeping the target fixed is an important cri-
terion; a node in general is not expected to be part of the traffic for all choices
of source-target pairs (the target is selected randomly). On the other hand if
one relaxes this criterion, only the hubs can show the funnelling effect. In the
experiments of social searching also, funnelling has been considered by keeping
the target fixed [1,4].

In the present work, we have carried out simulations, in which, after generating
the desired network, we fix a target and allow different nodes to be the source
nodes. The dynamic path to the target (if it exists) is then found out to calculate
the funnelling capacity. We then obtain the distribution D(f), which is precisely
the fraction of nodes with funnelling capacity f . To obtain D(f), such searching
processes are repeated on many networks.

Strictly speaking, fi is dependent on the target node as well, but here we have
not studied that aspect directly. Rather, we expect that the dependence will be
reflected in the distribution D(f) itself.

The presence of funnelling effect would imply that D1 = D(f = 1) should be
non-zero. We have therefore focussed our attention on this quantity and studied
its behaviour as a function of the parameters of the network.

We have studied some random networks with given degree distribution as well
as a correlated network which can serve as a toy model of a social network. The
chosen degree distributions are either scale-free or stretched exponential type
and are controlled by suitable parameters.

In addition, we consider as a parameter ν, the ratio of the number of searches
to be made (i.e., number of sources) to the total number of nodes N . Unless
otherwise mentioned, the value of ν has been taken to be 0.1.
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Since the degree of a node is an important quantity of a network and it is
customary to study the behaviour of quantities as a function of degree, we have
also studied the average funnelling capacity 〈f(k)〉 of nodes with degree k in
case of scale-free networks.

We have used Monte Carlo simulations to study the funnelling effect by gener-
ating networks of size ≤ 5000 and taking averages over typically 10000 to 20000
network configurations.

In sections II and III the results for scale-free and stretched exponential net-
works are presented respectively. In section IV, funnelling distribution in the
toy model of social network has been discussed. In the last section we have
summarised the results and drawn a few concluding remarks.

2 Funnelling in Scale Free Networks

In this section we discuss the results for networks which are constructed with a
scale free degree distribution but are otherwise random. The search algorithm
which has been used is degree based; such algorithms have been considered in
networks (especially for scale free networks) quite commonly [9,10].

We have generated random scale free networks with degree distribution
P (k) ∝ k−γ with the exponent γ lying between 2 and 3 corresponding to realis-
tic networks. The generation of the networks and the algorithm are described in
detail in [17]. We allow a minimum of two links (degree) for each node, while the
maximum is N1/2. All links are undirected and there are no multiple links be-
tween a given pair of nodes. We have used two degree based algorithms described
in the following subsections. There is a general rule that a node can receive a
message only once and searches terminate in case there is no neighbour left to
whom the message can be passed.

2.1 Highest Degree Search (HDS)

Here the message is passed to a neighbour with the highest degree dh (highest
degree search or HDS). In case of multiple neighbouring nodes with degree dh,
one is selected randomly. However, if the target node happens to be a neighbour
of a node, the message will be conveyed to it without considering the degree of
other neighbours. When finding out the neighbour to whom the signal is to be
passed, the neighbours which have already received it once are not considered.

With this algorithm, it is observed that D(f) shows a power law decay against
f with exponent close to 1 but as γ increases beyond γ = γ∗ � 2.4, the power
law behaviour is observed only for a limited range of f and shows a more rapid
decay to zero as f → 1. The results are shown in Fig. 1.

We find another intriguing behaviour of D(f) for γ values below γ∗. Here,
D(f) actually shows a tendency to increase for f very close to unity. (By defini-
tion the maximum value of f is one and therefore the increase in D(f) cannot
continue indefinitely. ) In fact, even for γ > γ∗, f = 1 is a special point where
D(f) shows a significantly higher value than that at f just below unity causing a



1722 P. Sen

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1  1

D
(f

)

f

γ=2.2

γ=2.8

Fig. 1. The funnelling distribution D(f) is shown for scale-free networks with γ = 2.8,
2.6, 2.4 and 2.2 (from top to bottom) for ν = 0.1. The straight line has slope equal
to -1.

discontinuity in D(f). This is another reason to study the behaviour of D1 more
intricately. The reason for the discontinuity in D(f) for γ > γ∗ is apparently due
to the presence of a few nodes through which the searching path always passes
(e.g., the nearest neighbours of the target).

In order to investigate the behaviour at f = 1 more closely, we have plotted
D1 as a function of γ (Fig. 2). We notice that D1 first increases linearly with γ
and then tends to attain a constant value at higher γ.

The γ = 2.0 is a special point where the average degree shows a logarithmic
divergence. If the average degree is large, D1 will naturally be small as there are
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Fig. 2. The value of the distribution D(f) at f = 1 in scale-free networks is shown
against γ for two different network sizes
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Fig. 3. The average funnelling capacity as a function of degree is shown for scale free
networks with γ = 2.8, 2.6, 2.4 and 2.2

many available neighbouring nodes to pass on the signal. Hence the value of D1

initially increases with γ. However, as γ increases further the number of hubs
decrease and consequently D1 does not increase anymore. It can be expected
that D1 should decrease for very high values of γ, however, for γ ≤ 3.0 this
tendency is not strongly evident.

As γ increases, the number of nodes with large degree becomes less and the
above observation indicates that the funnelling capacity of nodes with less de-
gree must increase with γ. Indeed, this is evident from a plot (Fig. 3) of the
average funnellng capacity 〈f(k)〉 against degree k for different γ. This data also
show that there is no simple algebraic relation between 〈f(k)〉 and the degree as
has been noted for the betweenness centrality showing clearly that betweenness
centrality and funnelling are not trivially related.

Plotting D1 against N , we show that funnelling disappears in the thermo-
dynamic limit for all γ (Fig. 4). D1 in fact follows a power law decay with N ;
D1 ∝ N−ρ. For γ = 2, ρ � 0.75 and decreases from this value as γ is increased;
beyond γ ∼ 2.2, ρ = 0.60±0.01 (weakly dependent on γ). This indicates that the
funnelling capacity has universal behaviour for higher values of γ. Interestingly,
the exponent is larger for smaller values of γ, i.e., when the number of hubs is
large. This is consistent with the fact that in such a situation, there are multiple
routes available for a message to reach the target, thereby making the funnelling
capacity of nodes lesser.

We have also studied D1 as a function of N for different ν and find that power
laws are obeyed for each ν (Fig. 5) with the exponent equal to 0.60 ± 0.01 in
each case. The magnitude of D1 decreases linearly with the number of search,
which is also easy to understand (e.g., if there is only one searching process, all
the nodes which take part in this search have funnelling capacity equal to 1, the
maximum possible value).
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Fig. 4. The variation of D1 against N is shown for SFN with different γ (γ = 2.0, 2.2, 2.4
and 2.8). At higher values of γ, the exponents are equal to ∼ 0.60, while for γ = 2.0 it
is ∼ 0.75.

 0.001

 0.01

 1000

D
1

N

ν=0.05

ν=0.2 ν=0.1

Fig. 5. The variation of D1 against N is shown for SFN with γ = 2.4 and different
values of ν showing that the exponents are not dependent on ν

2.2 Tunable Degree Based Algorithm

Next we study the funnelling distributions on random scale-free networks with
a tunable degree based algorithm. Precisely, here the search has a preferential
algorithm. During the search, if one of the neighbours of the messenger node
happens to be the target itself, the message will be sent to the target. If not,
then the ith neighbour will receive the message with a probability Πi, where

Πi ∝ kλ
i . (2)
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Fig. 6. The distribution D(f) is shown for a scale free network with γ = 2.0 with
different algorithms corresponding to different values of λ (eq (2))

Thus here the algorithm can be extended from a random search (RS) (λ = 0)
to a highest degree search (HDS) (λ → ∞) scheme as described in [17]. The
rule that a message cannot be passed on to the same node twice is still applied.
The essential difference between the present algorithm and the HDS is while the
tunable degree based algorithm is stochastic, the HDS is deterministic.

We have taken scale free networks with γ < γ∗ such that we know that in the
limit λ → ∞, it does show a funnelling effect (i.e., power law degree distribution
up to f = 1). We find that for small λ values, D(f) has a fast decay as f
approaches one, while above a certain value of λ = λ∗ it has a power law decay
with the upward bend as noticed for the HDS. For λ < λc, there is a power law
behaviour only over for a finite range of values of f . The value of λ∗ depends
on γ, it being higher for higher values of γ. We find that λ∗ is in fact very high
(∼ 10 for γ = 2.0) (Fig. 6) and we have checked that at such large values of λ,
essentially the signal is being passed to the neighbour having the highest degree.
The power law decay of D(f) for large λ again occurs with an exponent close to
unity, which is to be expected.

3 Funnelling in Stretched Exponential Network

There are many real world networks (e.g., social networks) which do not have a
scale-free degree distribution. We have therefore considered networks in which
the degree distribution has a stretched exponential distribution:
P (k) ∼ exp(−ckδ). The value of c is unimportant and we set it equal to 1.
The maximum degree allowed here is N1/2. Very small values of δ gives rise to a
very highly connected network which is somewhat unphysical and therefore we
have taken δ > 0.2. The funnelling distributions D(f) again shows a power law
variation with a change occurring at δ = δ∗ (lying between 0.6 and 0.7), above
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Fig. 7. The funnelling distribution D(f) is shown for stretched exponential networks
with δ = 0.8, 0.7, 0.6, 0.5 and 0.4 (from top to bottom) with ν = 0.1. The straight
line has slope equal to 0.85.

which the funnelling distribution falls rapidly with f . The power law exponent
is, however, different from that observed in scale free networks; it has a value
close to 0.85. Once again we notice that below δ∗, D(f) shows a power law decay
and a slightly upward bend as f approaches one (Fig. 7).

Here too we study the variation of D1 with network sizes and find that a
power law variation exists, (Fig. 8) however, in this case the exponent is strongly
dependent on δ. The exponents decrease in magnitude as δ is increased, e.g.,
ρ � 1.0 for δ = 0.4 and ρ � 0.5 for δ = 0.6. Once again we note that as in
the case of scale free networks, the exponent for the smaller value of δ is higher,
when the number of highly connected nodes is larger.

4 Funnelling in a Correlated Network

Funnelling is an important issue in social searches and therefore we have con-
sidered in this section a network which is not entirely random in the sense that
there is a correlation between nodes. The nodes, in reality, have many char-
acteristic features (other than the degree) which seriously affect the searching
process [4,13]. In a very simplified picture, we consider only one such character-
istic which we call the similarity factor ξ of the individuals, ξ varying between 0
and 1 randomly. Since we have actually tried to simulate a social network, the
degree distribution is taken to be P (k) ∝ exp(−k). However, while constructing
the network with such a distribution, the bonding between two nodes is now
made according to the probability

Pi,j ∝ |ξi − ξj |−α, (3)

such that for positive values of α, similar nodes will have more connection prob-
ability. As an example, ξ may simply denote the geographical position of a node.
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Fig. 8. D1 = D(f = 1) against network size N is shown for stretched exponential
networks δ = 0.6, 0.5 and 0.4 (from top to bottom) indicating that the exponents are
different as the straight lines drawn to fit the curves have different slopes (see text)

The algorithm used is a greedy one: while searching, a node here sends the signal
to a node with the similarity characteristic closest to that of the target node.

Searching on a generalised class of stretched exponential networks, (i.e., those
with degree distribution exp(−kδ)) with similarity dependent connections has
been recently considered [19] and it has been observed that the success rate
of searching is drastically reduced as δ is increased. Using a similarity based
search algorithm and varying the parameter α, it was observed that the best
searchability occurs at values of α close to 1.5 for any δ. For both higher and
lower values of α the searchability deteriorates. At large α, the network is highly
clustered in the sense that nodes which have comparable values of ξ happen to
have a strong bonding and since the target node is randomly selected the success
rate falls. On the other hand, at small α, the nodes are highly uncorrelated which
makes searching based on similarity ineffective.

As far as funnelling is concerned, we find some intriguing results which show
that searchability and funnelling properties are not simply related. Here we have
a considered a degree distribution ∝ exp(−k) where the searchability is rather
poor [19]. Still, for small values of α, there is a power law variation of D(f)
with an exponent close to 1.5 (weakly dependent on α). For higher values of α,
large fluctuations occur, the power law behaviour is lost and the distribution
tends to become flat (see Fig. 9). The change in behaviour of the distribution
might suggest that a phase transition is occurring here, but we would not like
to conclude anything as the fluctuations are too large to comment.

In order to understand the above results, we first discuss the case α = 0 which
corresponds to a network without any correlation. This is simply an exponential
network where there is no funnelling effect with HDS as noted earlier. But with
the present algorithm, we find that there is indeed a power law variation of
D(f). What could be the reason for this? It appears that since the nodes are
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Fig. 9. The distribution D(f) is shown for a network where the linkings depend on a
similarity factor for different values of α (eq (3))

uncorrelated, the target node is connected to nodes with arbitrary similarity
factors. However not all of them will take part equally in the search process
because of the algorithm and successful paths will be mostly through a few nodes
making it possible the existence of a few nodes with large funnelling capacity.

Apparently, the funnelling effect diminishes with correlations as the present
results suggest. In fact, with α 	= 0, when we have a correlated network, there can
be several nodes to which the signal can be passed which are equally ‘distant’
from the target. This effectively makes the funnelling capacity of individual
nodes lesser which is reflected in the distribution. For very high α, this effect is
enhanced to a large extent making the distribution nearly flat.

5 Discussions and Concluding Remarks

In this paper we have, for the first time to our knowledge, attempted a quan-
titative study of the phenomenon of funnelling relevant to search or navigation
on a network. First we have proposed a definition of funnelling capacity f of
a node and thereafter estimated the funnelling distribution D(f). The point
f = 1 has been treated specially as a non-zero value of D1 = D(f = 1) would
indicate funnelling is indeed occurring. Our studies on scale-free and stretched
exponential networks have shown that funnelling will not survive for infinite
networks and also decrease if the number of searches is increased. However, we
have obtained power law decay behaviour for both D(f) versus f and D1 versus
N variations. The exponent for D(f) is different for different networks. In case
of the scale free network, we note that the exponent ρ obtained from the D1

versus N plots is weakly dependent on γ for 2.2 < γ < 3.0 while in stretched
exponential networks, it is non-universal. We have also used different algorithms
in the different networks, e.g., degree based algorithms for networks which are
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uncorrelated and similarity based algorithm on correlated networks; the results
show that the algorithm seriously affects the funnelling distribution.

To show how the algorithm can affect the funnelling capacity one can take
the example of a simple hypothetical network. Suppose the network has uniform
degree k = l with a tree structure. Thus the successful paths to the target will
flow with equal probability through its l neighbouring nodes when the algorithm
does not take into account any correlations (note that the HDS and the random
search are identical in this case). Thus these l nodes will take part in 1/l fraction
of searches, their l2 neighbours also take part in 1/l2 searches and so on making
D(f) ∝ 1/f . However, if now an algorithm based on correlations is used, the
message flow will no longer be uniform and the distribution D(f) will be quite
different. In fact we have obtained exponents for D(f) which are different but
of the order of unity in the different networks.

To explain the result obtained in [4] that there is no funnelling effect in a
social search, one can argue on the basis of the present results that this is due
to the fact that the human network is far from random and has quite strong
correlations. On the other hand, in the earlier experiments [1], funnelling was
observed since the number of searches conducted (compared to the network size)
was very small.
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