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Abstract. We analyze dependencies in complex networks characterized
by power laws (Web sample, Wikipedia sample and a preferential attach-
ment graph) using statistical techniques from the extreme value theory
and the theory of multivariate regular variation. To the best of our knowl-
edge, this is the first attempt to apply this well developed methodology
to comprehensive graph data. The new insights this yields are striking:
the three above-mentioned data sets are shown to have a totally different
dependence structure between graph parameters, such as in-degree and
PageRank. Based on the proposed approach, we suggest a new measure
for rank correlations. Unlike most known methods, this measure is es-
pecially sensitive to rank permutations for top-ranked nodes. Using the
new correlation measure, we demonstrate that the PageRank ranking is
not sensitive to moderate changes in the damping factor.

Keywords: Extremal dependencies, Statistical analysis, Power laws,
PageRank, Web, Wikipedia, Preferential attachment.

1 Introduction

What do we know about structure of complex networks? There is a vast literature
on the subject but we are still far from complete understanding. One of the
common points is the presence of power laws. In simple words, a power law with
exponent α > 0 means that a tail probability, i.e. the probability of obtaining a
value greater than x, is roughly proportional to x−α. The standard example of
a power law is a Pareto distribution

P(X > x) = xα
0 x−α, x ≥ x0,

where x0 is the positive minimum possible value of X . The power law random
variables are heavy-tailed [20], which means that the probability of obtaining ex-
tremely high values is relatively large. For instance, for such random variables,
the moments of order α or higher are infinite. For excellent surveys on history,
properties, modeling, and mining of power laws, and their role in complex net-
works we refer to e.g. [4,12,15,16,17].
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A natural mathematical formalism for analyzing power laws is provided by
the theory of regular variation. This theory has been developed in the context of
analysis of extremes [5], financial time series [14], and traffic in communication
networks [19]. By definition, the random variable X is regularly varying with
index α, if

P(X > x) = x−αL(x), x > 0, (1)

where L(x) is a slowly varying function, that is, for x > 0, L(tx)/L(t) → 1 as
t → ∞, for instance, L(x) may be equal to a constant or log(x). Clearly, a power
law can be modeled as an instance of regular variation.

The World Wide Web is an important example of a network with a complex
graph structure characterized by power laws. The question of measuring correla-
tions in the Web graph has led to many controversial results. Most notably, there
is no agreement in the literature on the dependence between in-degree and Page-
Rank of a Web page [6,9]. In this respect, Chakrabarti and Faloutsos [4] confirm
that measuring correlation in power law data is tricky because the important
large values do not appear very often, and thus, the coefficient of correlation
might give a wrong impression about the dependencies in the tails. This merely
confirms the common knowledge in the extreme value theory community [5,20]
that the correlation coefficient is an uninformative dependence measure in heavy-
tailed data. The correlation is a ‘crude summary’ of dependencies that is most
informative for jointly normal random variables. It is a common and simple
technique but it is not subtle enough to distinguish between the dependencies
in large and in small values.

In this work we propose to employ the extreme value theory [2] and the theory
of regular variation [20] that provide a range of statistical procedures designed
to deal with multivariate data of which the marginal distributions exhibit power
laws. In particular, this paper points out that this body of statistical theory
contains a well-developed notion of dependence. This notion called extremal de-
pendence is characterized by spectral measure, which seems to be much more
suitable for the power law data than standard correlation measures. To the best
of our knowledge, the proposed methods have never been applied to comprehen-
sive graph data.

In this paper, we compute the spectral measures for in-degrees, out-degrees
and PageRank scores in three large data sets: an EU-2005 Web sample, a
Wikipedia sample and a Growing Network graph based on the preferential at-
tachment model by Albert and Barabási [1]. Our experimental results reveal a
dramatically different correlation structure in the three data sets. For instance,
the results for in-degree and PageRank in Wikipedia strongly suggest an in-
dependence between these two parameters. Similar analysis for the Web graph
reveals a non-trivial dependence structure. Finally, a preferential attachment
graph shows a very strong dependence between in-degree and PageRank.

The analysis of extremal dependence leads us to propose a new rank corre-
lation measure which is particularly plausible for power law data. The measure
has the appealing property that it is especially sensitive to rank permutations for
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top-ranked nodes. Using the new correlation measure, we demonstrate that the
PageRank ranking is not sensitive to moderate changes in the damping factor.

The paper is organized as follows. The data sets are described in detail in
Section 2. Some background on extremal dependencies and the definition of
spectral measure are given in Section 3. Further, in Section 4 we describe the
estimator of the spectral measure. The experimental results are presented in
Section 5. Based on the proposed approach, a new rank correlation measure is
presented in Section 6, and a discussion is provided in Section 7.

2 Data Sets

We chose three data sets that represent different network structures. As the
Web sample, we used the EU-2005 data set with 862.664 nodes and 19.235.140
links, that was collected by The Laboratory for Web Algorithmics (LAW)1,
the Università degli studi di Milano [3]. We also performed experiments on the
Wikipedia (En) graph, that contains 4.881.983 nodes and 42.062.836 links. Fi-
nally, we simulated a Growing Network by using preferential attachment rule
for 90% of new links [1]. The graph consists of 10.000 nodes with constant out-
degree d = 8. In Figure 1 we show the cumulative log-log plots for in-degrees,
out-degrees and PageRank scores in all data sets. The PageRank scores in the
network of n nodes are computed according to the classical definition [18]:

PR(i) = c
∑

j→i

PR(j)
dj

+
c

n

∑

j∈D
PR(j) +

1 − c

n
, i = 1, . . . , n (2)

where PR(i) is the PageRank of page i, i = 1, . . . , n; dj is the number of outgoing
links of page j; the sum is taken over all pages j that link to page i; D is a set
of nodes without outgoing links; and c is the damping factor, which is equal 0.5
and 0.85 in our case. It is well-known that the linear system (2) has a unique
solution for any c ∈ (0, 1). The PageRank scores PR(i), i = 1, . . . , n constitute
a probability distribution on the set of n nodes. Throughout the paper however
we use the scale-free PageRank scores nPR(i). In this setting, it is easier to
compare the probabilistic properties of PageRank and in- and out-degree, that
are also scale-free.

The log-log plots for Figure 1 resemble the signature straight lines indicat-
ing power laws. However, we suggest to combine several techniques in order to
establish the presence of heavy tails and to evaluate the power law exponent.
In [21] we used QQ plots, Hill and altHill plots as well as Pickands plots [20] to
confirm that the in-degree and PageRank follow power laws with similar expo-
nents for all three data sets. We also showed that the out-degree can be modeled
reasonably well as a power law with exponent around 2.5-3.

Although all plots in Figure 1 look alike, it does not imply that the three
networks have identical structure. In Section 5 we rigorously examine the de-
pendencies between the network parameters.
1 http://law.dsi.unimi.it; Accessed in January 2007.
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Fig. 1. Cumulative log-log plots for in/(out)-degree, PageRank (c=0.5) and PageRank
(c=0.85)

3 Extremal Dependencies and Spectral Measure

In this section we briefly present a background on extremal dependencies and
spectral measure. Our presentation is based on Chapter 8 of Beirlant et al. [2],
where an interested reader can find an in-depth treatment of this subject in the
general framework of the extreme value theory.

Let X and Y be two possibly dependent non-negative random variables with
complementary distribution functions

FX(x) = P(X > x), FY (y) = P(Y > y), x, y > 0.

Denote
X∗ =

1
FX(X)

, Y∗ =
1

FY (Y )
.

It is easy to see that the distribution of X∗ and Y∗ is Pareto with α = 1. Now,
we apply the polar coordinate transformation with respect to L2 norm

(R, Θ) = Polar(X∗, Y∗),
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where Polar(x, y) =
(√

x2 + y2, arctan (y/x)
)
. Clearly, Rt is positive and Θ

takes values in [0, π/2]. Furthermore, there exists a limiting measure S such that

lim
t→∞ tP(R > t, Θ ∈ A) = S(A) (3)

for any Borel set A ⊂ [0, π/2] that has a compact closure the boundary of mea-
sure zero with respect to S. The measure S is called angular or spectral measure
and is used to describe so-called extremal dependencies i.e. the dependencies be-
tween extremely large values of X and Y . Furthermore, S([0, π/2]) is finite, and
we use

S̃(A) = S(A)/S([0, π/2])

as a probability spectral measure, where Θ∗ is a random variable that has dis-
tribution S̃(A). We also note that the spectral measure is well defined for any
norm || · || in R

2 and can be extended to R
n.

Unlike the correlation coefficient, the angular measure provides a subtle cha-
racterization of the dependencies in the tails of X and Y. Indeed, the limit in (3)
as t → ∞ describes the distribution of Θ provided that R is large, which can only
happen when X∗ or Y∗ are large. In other words, the measure S characterizes
the limiting behavior of the joint distribution of very high quantiles of X and
Y . One may also notice that this approach is closely related to copulas that are
commonly used e.g. in financial mathematics to describe the joint distribution
of a random vector [2]. As a result, we expect to obtain different distributions
of S̃ for vectors with different dependence structure. In particular, it is easy to
check that in case of a complete dependence X = Y we have S̃({π/4}) = 1.
Furthermore, in case of a complete independence we obtain S̃({0}) = 1/2 and
S̃({π/2}) = 1/2 since in this case, for large t, the event [R > t] is most likely to
occur, roughly, if either [X∗ > t] and Y∗ is small, or [Y∗ > t] and X∗ is small.
All other distributions of S̃ correspond to intermediate cases between complete
dependence and complete independence.

4 Spectral Measure Estimator

The equation (3) also gives a recipe for an estimator of the spectral measure
S(·) [2]. Consider a pair of graph parameters (X, Y ), and let Xj and Yj be
observations of X and Y for the corresponding node j. In order to estimate the
angular measure, we start by using the rank transformation of (X, Y ), leading
to {(rx

j , ry
j ), 1 ≤ j ≤ n}, where rx

j is the descending rank of Xj in (X1, . . . , Xn)
and ry

j is the descending rank of Yj in (Y1, . . . , Yn). The motivation for this rank
transformation is that (rx

j /n, ry
j /n) is a natural estimator of (FX(Xj), FY (Yj)).

Next, we choose k = 1, . . . , n and apply the polar coordinate transform as
follows

Polar

(
k

rx
j

,
k

ry
j

)
= (Rj,k, Θj,k). (4)
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Fig. 2. Starica plot for in-degree and PageRank (c = 0.85)

Now, taking t = n/k in (3) and interpreting Ri,k as a realization of kR/n, we
obtain the following estimator for S̃(A):

∑n
i=1 1[Ri,k > 1, Θi,k ∈ A]∑n

i=1 1[Ri,k > 1]
, (5)

where 1[·] is an indicator function. As an outcome, we make a plot for a cumu-
lative distribution function of Θ given by the above estimator. More details can
be found in Chapters 8 and 9 of [2], and Chapter 9 of [20].

It was proved in [2,20] that the empirical measure converges to a proper
distribution on [0, π/2] as n, k → ∞, k/n → 0. That is, ideally, we need to
consider only a relatively small part of a large data set. In practice the problem
remains: how to choose a suitable value of k? In the case of bivariate regular
variation, this can be determined by making a Starica plot. This technique helps
to determine where the bivariate power law behavior actually ‘starts’. To make
the Starica plot, we consider radii R1,k, . . . , Rn,k from (4) and rank them in
descending order R(1) ≥ . . . ≥ R(n). To get Starica plot we graph
{(

R(j)

R(k)
,
R(j)

R(k)
· j

k

)
, 1 ≤ j ≤ n

}
, or

{(
R(j),

R(j)j∑n
i=1 1{Ri,k≥1}

)
, 1 ≤ j ≤ n

}
.
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The idea is that for suitable k the ratio in the ordinate should be roughly a
constant and equal 1 for the values of the abscissa in the neighborhood of 1.
The plot looks different for the different parameters k and one can either find a
suitable k by trial and error or use numerical algorithms to compute optimal k.
A Starica plot for good k will have a region in the right neighborhood of x = 1
where the plot is hugging the y = 1 line. If the line is going steep up at x = 1
then the chosen k is too large. On the other hand, if the graph stabilizes around
y = 1 for some x < 1 then it means that k is too small, and we miss some
valuable tail data. We refer to Resnick [20] for more details and references.

In Figure 2 we present Starica plots for the pair of in-degree and PageRank
(c=0.85). The plots behave nicely in all three data sets, which makes our an-
gular measure more reliable. The Growing Network exhibits an ideal Starica
plot (Figure 2(c)). In [21] we provided the plots and the appropriate values of
k for the other combinations: in-degree and PageRank (c = 0.5), in-degree and
out-degree; and out-degree and PageRank (c = 0.5, c = 0.85).

5 Dependence Measurements on the Data

After defining a suitable k, we compute the pairwise angular measure. In Figure 3
we depict θ ∈ [0, π/2] against the estimated probability spectral measure [θ, π/2],
which, according to (5), equals to the fraction of pages i where the angle Θi,k is
greater or equal to θ provided that Ri,k > 1.

The results are striking. Let us first look at Figures 3(a) and (b) that char-
acterize the dependence between in-degree and PageRank. For the Wikipedia
data set we observe that about half of the observations are concentrated around
0 whereas another half is close to π/2. This suggests an independence of the
tails of in-degree and PageRank (c=0.85 and c=0.5). That is, in Wikipedia data
set an extremely high in-degree almost never implies an extremely high ranking.
The picture is completely the opposite for Growing Networks, where the angular
measure is entirely concentrated around π/4 indicating a complete dependence.
Thus, in highly centralized preferential attachment graphs, most connected nodes
are also most highly ranked.

Finally, the Web graph exhibits a subtle dependence structure that results in
angular measure which is almost uniform on [0, π/2]. This suggest that Page-
Rank popularity measure can not be replaced by in-degree without significant
disturbance in the ranking (of course, in-degree can not be used as a popularity
measure for many other reasons, for instance, because it is easy to spam by cre-
ating link farms; we refer to [11] for further discussion of PageRank and other
popularity measures).

The picture is different in Figure 3(c) where we depict the angular measure
for in-degree and out-degree in the Web and in Wikipedia. In the Web, the in-
and out-degree tend to be independent which justifies the distinction between
hubs and authorities [10]. In Wikipedia the in- and out-degrees are dependent
but this dependence is not absolute.
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Fig. 3. Cumulative functions for Angular Measures

Finally, the dependence between out-degree and PageRank in the Web and
Wikipedia in Figure 3(d) resembles the patterns observed for in-degree and Page-
Rank.

6 The Θ Rank Correlation Measure

We start by noting again that the estimator of the angular measure described in
Section 4 is based on a rank transformation. This is clearly seen from formula
(4) where only rank of the parameters X and Y plays a role. This observation
naturally leads to a new measure for rank correlations.

In summary, our idea is as follows. As before, we define r1
i and r2

i as a ranking
order of page i in scheme 1 and 2, respectively, where i = 1 . . . n. Now we suggest
to represent the difference between the two rank positions of i by the angle

Θi = arctan(r1
i /r2

i ).

For example, in Figure 4, Θi is depicted for a node that has rank 3 in scheme 1
and rank 6 in scheme 2. Note that this is exactly the angle in [0, π/2] computed
in (4) in order to construct the spectral measure estimator. The value Θ close to
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π/4 means a relatively small change in ranking. On the other hand, Θ around
π/2 means that the node i is much better off with scheme 2, and the value close
to 0 says that the node is ranked much higher by scheme 1. Thus, we actually
measure the rank difference for node i in radians! Having computed Θi for every
i (or for a certain set of highly ranked nodes i) we construct a corresponding
empirical cumulative distribution function for Θ. As in the previous section, the
resulting angular measure can be used to characterize the rank correlations.

We note that we characterize the rank correlation by a measure or a plot
rather than a number. Compared to the common rank correlation measures
such as Kendall’s τ and Spearman’s ρ, our proposed measure has an important
advantage that it is able to reveal the slightest rank disturbance among highly
rank nodes while neglecting even moderate perturbations among lowly ranked
nodes. Indeed, Kendall’s τ and Spearman’s ρ are defined as

τ = 1 − 2d∆

n(n − 1)
, and ρ = 1 − 6

∑n
i=1 d2

i

n(n2 − 1)
,

where d∆ is the number of pairs in the symmetric difference of {(r1
i , r1

j ), 1 ≤ i <

j ≤ n} and {(r2
i , r

2
j ), 1 ≤ i < j ≤ n}; and di = r1

i − r2
i is the difference between

two ranks of page i. Now, if we consider the nodes ranked 1, . . . , n, and swap the
ranks 1 and 10, then we get τ = 1 − 2 ∗ 18/n(n− 1), ρ = 1 − 6 ∗ 162/n(n2 − 1),
and for our correlation measure at node 1 we obtain Θ1 = arctan(1/10) ≈ 0.1,
that is close to the x-axis, and is a visible deviation from π/4. On the other
hand, swapping the numbers 1001 and 1010 yields the same values of τ and ρ,
but Θ1001 = arctan(1001/1010) ≈ π/4. Thus, the Θ rank correlation measure
actually evaluates the rank disturbance visible for users. Certainly, the arctan(·)
function makes our measure symmetric with respect to the schemes 1 and 2.

Naturally, in this framework, it is also possible to compute such angular mea-
sure only for the top ranked pages. This can be done along the same lines as
in Section 4 as follows. Based on the polar transformation (4) we can separate
top ranked pages by considering only points {Θi,k : Ri,k > 1}. Here the question
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Fig. 5. Cumulative functions for Angular Measures for PageRank (c=0.5) and Page-
Rank (c=0.85)

of choosing k does not arise anymore. Indeed, the technique involving Starica
plot was needed to get an idea where the power law behavior ‘starts’ in order
to measure statistical dependency for the heavy-tailed data as in [20]. On the
other hand, if we are interested in rank correlations, we may simply pick the
k that gives us the top proportion of pages we are interested in. Note that by
increasing k we do not change the observed values of Θ, we merely increase their
number. As a result, in the angular measure, each observation will simply have
less weight. On contrary, decreasing k means ‘zooming in’ the rank perturbations
on the top.

One more advantage of the proposed correlation measure is the fast and easy
implementation since for each node i, only the fraction r1

i /r2
i has to be computed.

Below we present the example of the proposed rank correlation measure in
Growing Networks, Web and Wikipedia. We rank the three data sets by using
the definition of PageRank (2), where the damping factor is equal to c = 0.5
and c = 0.85. In Figure 5 we plot cumulative functions for angular measures for
k = 100 and the values of k’s that have been chosen according to the Starica
plots as described in Section 4 (see e.g. Figure 2).
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For Growing Network data set we observe the strong correlation between
ranking schemes. We can also conclude that in Wikipedia the change in the
damping factor affects only about 20% of considered pages, in the top-hundred
group as well as in the larger group. For the Web data, the correlation between
ranking is not significant for approximately half of the pages. However, for the
top pages, the difference in the damping factor mixes up the order of ranking.

7 Discussion

Analysis of dependencies in real-life graph and synthetic data contributes to-
wards a better understanding and modeling of complex graph structures. Clearly,
for adequate modeling, it is not sufficient to maintain power laws. For instance, it
was already argued in [7] that robustness of Internet power law router graph is in
strong disagreement with a preferential attachment model. Likewise, our analy-
sis clearly reveals a striking disagreement of the preferential attachment graph
with dependence structure of the Web and Wikipedia. Better models have to
be sought and existing models have to be thoroughly analyzed before we can
conclude that they adequately reflect important features of complex networks.

The idea of a spectral measure estimator is naturally extended to yield the Θ
rank correlation measure. The main idea of this measure is that we characterize
the rank correlations by a cumulative distribution of Θi’s, where i = 1, . . . n.
This way, one can actually see how many pages change their ranks significantly.
Such measure is substantially more informative than just one number, that rep-
resents the correlation in the whole graph. For instance, Melucci [13] noticed that
Kendall’s τ tends to grow close to one for large data sets. The author provides
an example where Kendall’s τ for ranking orders of only a few hundred Web
pages becomes almost 1, in spite of the large number of rank perturbations. We
remark however that if for some reason having one number is necessary, one can
always compute, e.g. the expected deviation of Θ from π/4.

As mentioned before, the proposed correlation measure is quite harsh with
respect to lowly ranked nodes. Indeed, the node ranked 1000 must fall all the
way to 2000 to make the same effect as number 1 becoming number 2. We
would like to emphasize that such discrepancy is especially suitable for ranking
order emerging from a heavy-tailed data, such as PageRank or in-degree. This
is because in such data, there is a huge difference between the highest values of
the realizations, cf. [8].
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