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Abstract. With the rapidly grown evidence that various systems in nature and 
society can be modeled as complex networks, community detection in networks 
becomes a hot research topic in many research fields. This paper proposes a 
new genetic algorithm for community detection. The algorithm uses the 
fundamental measure criterion modularity Q as the fitness function. A special 
locus-based adjacency encoding scheme is applied to represent the community 
partition. The encoding scheme is suitable for the community detection based 
on the reason that it determines the community number automatically and 
reduces the search space distinctly. In addition, the corresponding crossover and 
mutation operators are designed. The experiments in three aspects show that the 
algorithm is effective, efficient and steady.  

Keywords: complex network, community detection, genetic algorithm, 
modularity. 

1   Introduction 

Recent researches indicate that a large body of diverse systems in many different 
domains can be represented as complex networks [1, 2]. Examples include the 
internet, WWW, social networks, citation networks and etc. Most of these networks 
are generally sparse in global yet dense in local. They have vertices in a group 
structure that the vertices within the groups have higher density of edges while 
vertices among groups have lower density of edges [3]. This kind of structure is called 
the community which is an important network property and can reveal many hidden 
features of the given networks. Hence, community identification is a fundamental step 
for discovering what makes entities come together, but also for understanding the 
overall structural and functional properties of large network [4]. 

Since the community has played a crucial rule in complex network, community 
structure identification has created a great interest among physics and computer 
society. There has been many methods and algorithms proposed so far to reveal the 
underlying community structure in complex networks. The algorithms require the 
definition of community that imposes the limit up to which a group should be 
considered a community [23]. A community detection algorithm’s success in finding 
communities heavily depends on how it defines a community. A popular quantitative 
definition called network modularity Q, proposed by Girvan and Newman [16], is 
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widely used as a quality metric for assessing the partitioning of a network into 
communities. Most of the recent algorithms use the network modularity as quality 
metric like Newman’s fast algorithm for very large networks [9] and the algorithm 
using extremal optimization [23]. The search for the largest modularity value is a NP-
hard problem, since the space of all possible partitions grows faster than any power of 
the system size [21]. For this reason, recent many algorithms adopt various heuristic 
strategies to optimize this metric. However, many algorithms have a high computa-
tional complexity, and thus they are not suitable for a complex network with a large 
size. As a consequence, it is desire to design a high efficient algorithm.  

This paper proposes a new genetic algorithm for community detection (GACD). 
The algorithm optimizes the modularity Q to obtain the community partition. A high 
efficient locus-based adjacency encoding scheme is applied to represent the 
community partition. The genetic representation not only reduces the search space 
distinctly but also determines the community number automatically. Based on the 
encoding scheme, the novel crossover and mutation operators are designed. These 
designs make the complex of GACD linear growth with the edges and vertices 
number of the network. Three experiments are done to validate the performance of 
GACD in three aspects. The first experiments use seven real social networks and 
compare GACD with three popular methods including GN [7], GN fast [18] and GA 
proposed by Tasgin and Bingol [22] (GATB). The results show that GACD obtains 
the maximum Q for most problems and it is much faster than GN and GATB. The 
second experiment on the random network and the email network shows that GACD 
is steady. In addition, the third running time experiment on a scalable network 
confirms that GACD has a linear complexity with the size of the network.  

2   Related Works 

There have been many different approaches and algorithms to analyze the community 
structure in complex networks. The algorithms use methods and principles of physics, 
artificial intelligence, graph theory and even electrical circuits. The spectral bisection 
methods [10] and the Kernighan-Lin [11] algorithm are early solutions to this 
problem in computer society. The spectral approach bisects graph iteratively, which is 
unsuitable to general networks. For the Kernighan-Lin algorithm, it requires a priori 
knowledge about the sizes of the initial divisions. In social network analysis (SNA), a 
group of algorithms focus on the discovery of the so-called cohesive sub-structure [3], 
including the cliques [12], and quasi-cliques [13, 14] ect. These dense sub-structures 
often impose extra restrictions on the community definitions. Meanwhile, the average 
size of these sub-structures is always small, so people may get a great number of 
them, which actually hides the global organization of the network. Another widely 
used technique in SNA is the hierarchical clustering [8] which groups similar vertices 
into larger communities.  

One of the most known algorithms proposed as far, Girvan-Newman (GN) 
algorithm, is a divisive method by iteratively cutting the edge with the greatest 
betweenness value [7, 16]. The algorithm can generate an optimized division of the 

network with )( 3mO  time complexity according to the optimized network. Radicchi 
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et al have proposed a similar methodology with GN [17] by using the edge-clustering 

coefficient as a new metric with a smaller time complexity )( 2mO . To further 

improve the efficiency, Clauset, Newman and Moore have also proposed a fast 

clustering algorithm [18] with )log( 2 nnO  time complexity on sparse graph which 

combine pairs of nodes to generate the maximal Q∆  iteratively until it becomes 

negative.(where m is the edge number and n is the node number) 
An important issue in community detection is how to quantitatively measure the 

quality of the community partitions. A quantitative definition, network modularity, 
proposed by Grivan and Newman [7, 16] has been widely used in recent studies as the 
quality metric for assessment of partitioning a network into communities: 

∑ −=
i

iii ae )(Q 2  where i is the index of the communities, iie is the fraction of edges, 

that connects two nodes inside the community i, to the total number of edges in the 
network and iia is the faction all the edges whose at least one node in the community i 

to the total number of edges in the network. This measure essentially compares the 
number of links inside a given module with the expected values for a randomized 
graph of the same size and same degree sequences. Some other quantitative measures 
have also been proposed. The Hamiltonian-based method introduced by Reichardt and 
Bornholdt (RB) is based on considering the community indices of nodes as spins in a 
q-state Potts model [19]. Recently Arenas, Fernandez and Gomez (AFG) proposed a 
multiple resolution procedure that allows the optimization of modularity process to go 
deep into the structure [20]. The modularity Q is the special case of these two 
criterions. Once the modularity is chosen as the relevant quality function, the problem 
of community detection becomes equivalent to modularity optimization. The 
optimization problem is not trivial, since the decision version of modularity 
maximization is indeed NP-complete [21]. 

Many heuristic search algorithms have been applied to solve the optimization 
problem. The extremal optimization method, applied by Duch and Arenas, uses the 
artificial intelligence method in a recursive divisive manner [5]. The simulated 
annealing is used to obtain more results, but this method is computationally very 
expensive [24]. In addition, the genetic algorithm, as an effective optimization 
technique, has also been used to optimize Q [22]. However, the inefficient genetic 
representation makes the algorithm unsuitable for large scale problem in fact. Arenas, 
Fernadez and Gomez introduce the tabu heuristic to optimization the modularity, 
which also obtained a good performance [25].  

The current algorithms are successful approaches in community detection. 
However, most algorithms have large time complexities that make them unsuitable 
for very large networks. In addition, some algorithms have data structures like 
matrices etc, which are hard to implement and use in very large networks. Most of the 
algorithms also need some priori knowledge about community structure like number 
of communities etc. However, it is impossible to know these values in real-life 
networks. All these factors make it desire to design a simple but high effective 
algorithm. 
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3   Genetic Algorithm for Community Detection 

This section introduces the new genetic algorithm for community detection in detail, 
including the main components of the genetic algorithm: the framework of the 
algorithm, the crucial genetic representation and the corresponding operators etc. 

3.1   Framework of the Algorithm 

Our algorithm is based on optimization of network modularity using genetic 
algorithm. A genetic algorithm (GA) is a search technique used in computing to find 
exact or approximate solutions to optimization and search problems. Genetic 
algorithms are categorized as global search heuristics which is inspired by 
evolutionary biology. Genetic algorithms are implemented as a computer simulation 
in which a population of abstract representations (called chromosomes or the 
genotype of the genome) of candidate solutions (called individuals or phenotypes) to 
an optimization problem evolves toward better solutions. The evolution usually starts 
from a population of randomly generated individuals and happens in generations. In 
each generation, the fitness of every individual in the population is evaluated, 
multiple individuals are stochastically selected from the current population (based on 
their fitness), and modified (crossover and mutation) to form a new population. The 
new population is then used in the next iteration of the algorithm. Commonly, the 
algorithm terminates when either a maximum number of generations has been 
produced, or a satisfactory fitness level has been reached for the population. The 
framework of the algorithm used in the paper can be seen in Fig.1. 

To apply GA to the community detection problem effectively, there are much work 
to be done. As for the community detection problem, a special genetic representation 
should be designed to encode a community partition, and the corresponding genetic 
variation operators need to be designed. These choices are nontrivial and are crucial 
for the performance and particularly for the scalability of the algorithm. Some 
encodings may work well for networks with a few tens or hundreds of data points, but 
their performance breaks down rapidly for larger scale. The design of effective GA 
for community detection requires a close harmonization of the encoding, and the 
operators, so that the effective search space is reduced and the search can be guided 
effectively.  

3.2   Genetic Representation 

The biological and social complex networks are usually represented as graphs 
consisting of nodes and links, and then the communities to be detected are groups of 
nodes. When GA is applied to community detection, a community partition must be 
encoded in a character string (i.e. genotype) with the genetic representation, and 
inversely the genotype (i.e. a solution of the problem or an individual in the 
population) also can be decoded into a community partition. We employ the locus-
based adjacency representation and illustrate it in Fig.2. In this graph-based 
representation, each individual g consists of n genes nggg ,,, 21 and each ig  can 

take one of the adjacent nodes of node i. Thus, a value of j assigned to the ith gene, is 
then interpreted as a link between node i and j: in the resulting partition solution, they  
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Procedure GACD(size, gens, ]1,0[],1,0[ mc pp )

//size is the size of the population size.  gens is the running generation. 
// mc pp ,  are the crossover and mutation ratio respectively, and 1mc pp .

:P
for each i in 1 to size do

//initialization 

),(

)(

)(_:

i

i

i

sPfillin

sevaluate

isolutioninitializes

end for 
for g in 1 to gens do
//main loop

i := 0; :P
while i < size do

if random deviate R(0,1)< cp

then
      ),(, 11

''
iiii sscrossoverss

    else  

      
)(

)(

11
'

'

ii

ii

smutates

smutates

end if 
2: ii

),();,(

)();(

1
''''

1
''

ii

ii

sPfillinsPfillin

sevaluatesevaluate

end while 
),( 'PPPupdate

end for 
return P[0] 

end procedure 
)(_ isolutioninitialize  //initialize individual i according to the genetic representation. 

)( isevaluate  //evaluate the fitness of is  according to modularity Q.

),( isPfillin  //add individual is into P, and sort P in the decreasing order of their 

fitness.

),( 'PPPupdate //select first size individuals with maximal fitness from PP and

fill in P in order.  
)(),,( 1 iii smutatesscrossover  //crossover and mutation genetic operator respectively. 

 

Fig. 1. Main framework of GACD 

 

Fig. 2. Illustration of the locus-based adjacency representation. (a) shows the topologic of the 
graph representing a complex network. (b) shows one possible genotypes. (c) shows how (b) is 
translated into the graph structure, for example node 0 links to node 3, since gene 0g is 3. (d) 

shows the partition result. 
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procedure decode 
current_cluster := 1 
for each i in 1 to N do 

 cluster_assign := -1 
end for 
for each i in 1 to N do 

ctr := 1 
if iassigncluster _ = -1 then

1:

:

:

_:_

ctrctr

iprevious

gneighbour

clustercurrentassigncluster

ctr

i

i

while 1_ neighbourassigncluster

do

    

1:

:

_

:_

:

ctrctr

gneighbour

clustercurrent

assigncluster

neighbourprevious

neighbour

neighbour

ctr

end while 

if
_

_

clustercurrent

assigncluster
ctrprevious then

1: ctrctr
while 1ctr do

    
neighbour

previous

assigncluster

assigncluster
ctr

_

:_

ctr:=ctr-1
end while 

else
current_cluster:=

current_cluster+1
end if 

end if 
end for 

  number_of_clusters:=current_cluste

end procedure 

 

Fig. 3. Efficient decoding of the locus-based adjacency representation 

will be in the same community. The decoding of this representation requires the 
identification of all connected components. All nodes belong to the same connected 
component are then assigned to one community. Note that, using a simple 
backtracking scheme, this decoding step can be done in linear time and the pseudo-
code is illustrated in Fig.3. 

According to the genetic structure, we find that the encoding approach can not 
represent all partition of nodes. For example, the genetic representation could not 
combine two disconnected subgraphs into one community. Someone could argue that 
the solutions with a good community structure may be not in the solutions space 
constructed by the genetic representation. Fortunately, Brandes etc. have analyzed the 
basic structural properties of the clustering with maximum modularity and proposed 
the following theoretical results [21]. 

 
Property 1. There is always a clustering with maximum modularity, in which each 
cluster consists of a connected subgraph. 

Property 2. A clustering of maximum modularity does not include disconnected 
clusters.       

Although the modularity optimization has resolution limit [24], the community 
partition with a large modularity usually is a good solution. Since the genetic 
representation contains all possibility of connected subgraphs, these properties  
 



1304 C. Shi et al. 

 

Fig. 4. Illustrate an example of the crossover operator. The position of genes selected from the 
source chromosomes are 8g  in A and 0g in B. 

promise that the community with a good structure can be represented with the genetic 
representation. Moreover, the representation is well-suited for the use with standard 
crossover operators such as uniform, one-point or two-point crossover. 

3.3   Operators 

Based the locus-based adjacency representation, the crossover operation in GACD is 
done by selecting two chromosomes randomly as illustrated in Fig.4. For simplicity, 
the chromosomes taking place in crossover are called source and destination 
respectively. First, a gene is selected randomly from the source chromosome, and then 
we iteratively search the gene values that the gene link to and transfer these values in 
source chromosome to the corresponding genes in the destination chromosome. An 
example of the operation of crossover on the encoding employed is shown in Fig.4. 
The exchange of gene segments is bidirectional. The crossover operator has the 
following advantages: (1) it is prone to replicate the good structures generated by 
evolution to the new individual; (2) it is efficient to generate the individual with 
different structure. The computational complexity is )(lO (where l is the length of the 

gene segment, namely the size of the community selected.) l is usually smaller than n. 
In the mutation operation, we randomly select some genes and assign them with 

other randomly selected adjacent nodes.  
In the initialization process, we randomly generate some individuals. For each 

individual, each gene ig  randomly takes one of its adjacent nodes of node i. 

3.4   Discussion 

When GA is applied to a real problem, the most important issue is to design a suitable 
encoding scheme according to the characteristic of the problem. A good encoding 
scheme not only deduces the scope of the search space, but also facilitates to design 
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the operators. As a consequence, the encoding scheme decides the performance of GA 
to some extent. The locus-based adjacency encoding scheme used has several major 
advantages for community detection. Most importantly, there is no need to fix the 
number of communities in advance, as it is automatically determined in the decoding 
step. Many methods need some priori knowledge like community number or 
threshold settled, whereas GACD need not any additional knowledge beforehand. 
Another important advantage is that the search space constructed by the 
representation is reduced distinctly. In the former genetic algorithm, Tasgin and 
Bingol [22] use a number ranging from 1 to n to represent the community a node 

belonging to, which cause the search space with the complexity )( nnO . Brandes etc. 

cast the problem of maximizing modularity into an integer linear program (ILP) [21] 

with the complex )2(
2nO in the search space. Since each node only links to its 

adjacent node, the complex of the search space constructed by locus-based adjacency 

representation is )( ndO (d is the degree of nodes). For most real problems, d is much 

smaller than n. The reduced searching space makes GACD search the more accurate 
solution with less time-consuming. 

The fitness evaluation function (i.e., calculating the Q value) is the most time-
consuming process in the algorithm. Calculating the objective value has the 
complexity )(mO , and the decoding process has the complexity )(nO . As a 

consequence, the fitness evaluation based on an individual has the 
complexity )( nmO + . The whole complexity of GACD is ))(( nmgsO + which is 

linear with the scale of the network. (g is the running generation, and s is the 
population size.) The running generation and population size directly affect the 
performance of the algorithm. However, increasing the population size or running 
generation does not yield better results after some point. As the constant parameters, 
these values (i.e., g, s) do not increase the time-complexity of the algorithm. As we 
know, most community detection algorithms have a large time-complexity [5]. 
Compared with these algorithms, the complexity of our algorithm is small.  

4   Experiments 

In order to validate the performance of GACD, this paper does the experiments in 
three aspects. The first experiment compares GACD with other three well known 
algorithms by seven popular social networks to verify the efficiency and effectiveness 
of GACD. The second experiment validates the steady of the algorithm through the 
running result on random network and real network with the obvious community 
structure. The third experiment observes the relationship of the running time and the 
size of the network. The experiments are carried out on a 3.4GHz and 2G RAM 
Pentium Ⅳ computer running Linux. 

To validate the efficiency and effectiveness of GACD, we compare GACD with 
other three algorithms including GN, GN fast and GATB. Seven real social networks 
coming from ref [15] are used in the paper. These test problems are used widely as 
benchmark in community detection [6, 7, 9, 16, 18, 22]. The networks have different 
scales with the number of vertices ranging from 34 to 22963. The parameters of GA  
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Table 1. Parameters setting in the experiment 

 Vertice 
Number 

Edge Number Population 
Size 

Running 
generation cp  mp  

Karate (P1) 34 78 50 20 0.8 0.2 
Football (P2) 115 616 50 70 0.8 0.2 
Enron (P3) 120 576 50 100 0.8 0.2 
Celegansneural (P4) 297 1179 50 100 0.8 0.2 
Tomcat (P5) 1607 6235 500 500 0.8 0.2 
Internet (P6) 8712 23305 500 500 0.8 0.2 
as-22july06 (P7) 22963 48436 500 2000 0.8 0.2 

Table 2. Comparing results of four different algorithms. N represents the number of 
communities; Q is the modularity Q value; and T represents the running time (the unit is 
second). P1-P7 is the problems in Table 1. 

GN GN Fast GATB GACD 
N Q T N Q T N Q T N Q T 

P1 5 0.401 1 3 0.381 1 5 0.379 1 4 0.419 1

P2 10 0.597 2 7 0.577 1 10 0.575 1 11 0.604 1

P3 7 0.484 1 5 0.483 1 15 0.436 1 5 0.508 1

P4 33 0.312 200 4 0.369 1 79 0.274 1 6 0.369 1

P5 27 0.8 13230 27 0.8 4 234 0.734 659 43 0.797 85 

P6 -- -- -- 29 0.520 34 3630 0.151 6938 150 0.530 550

P7 -- -- -- 39 0.637 114 -- -- -- 192 0.639 2138
 

and GACD are same, and they are shown in Table 1. The experimental results are the 
average values of ten runs, and they are shown in Table 2. For most problems, GACD 
achieves the maximum Q, which shows that GACD is an effective algorithm for 
community detection. Considering the running time, GN Fast is fastest, and GACD is 
faster than other two algorithms. For the problem with large scale (e.g., P6, P7), GN is 
not able to obtain a result in the reasonable time, since the algorithm needs a huge 
memory. It is similar to GATB. Through GATB and GACD both are based on genetic 
algorithm, their different genetic representations cause the different performance. 
Since the complex of the search space constructed by GACD is smaller than that of 
GATB, GACD finds the larger Q value with less time. GATB uses a number ranging 
from 1 to n to represent the community a node belonging to, which causes that there 
exists so many clusters (up to n) in the beginning phrase. It costs huge memory to 
store the clusters, and it makes the algorithm very inefficient in fact.  

Note that since the core of GACD is stochastic, different runs could yield in 
principle different partitions. We have performed 50 runs of the algorithm for the 
email network with the obvious community structure and for a random network with 
the same number of links and nodes to check the consistency of the proposed method. 
In Fig. 5, we present the results of the fraction of times a couple of nodes are 
classified in the same partition. The community structure is clearly revealed for the 
email network; whereas this structure is inexistent for the random network. The 
experiment demonstrates that GACD is a steady algorithm. 
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                          Random                                                     Email 

Fig. 5. Fraction of nodes classified in the same partition over 50 realization of the algorithm. 
The color of the position (i,j) corresponds to the fraction of times that node i and j belong to the 
same partition. 

 

Fig. 6. Relationship of the running time and the size of network. (a) is the relationship of the 
running time and the vertices number. (b) is the relationship of the running time and the edge 
number.  

 
In order to further validate the efficiency of GACD, we do experiments to observe 

the relationship of the running time and the size of the network. The example is the 
network used in ref [24]. The scalable network K-m,n is made of m identical 
complete graphs with size of n nodes, and a link connects two adjacent complete 
graphs. In the experiment, n is 20, m ranges from 50 to 250 with an interval of 20. To 

compare the running time fairly, the population size is 200, cp and mp are 0.8 and 0.2 
respectively, and the stopping criterion of GACD is that the algorithm has converged 
(i.e. the best individual and worst individual have the same fitness). The result is the 
average of 10 runs as shown in Fig. 6. It is clear that the running time increases 
linearly with the vertices number and edge number, which confirm the complexity of 
GACD (see section 3.4). 
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5   Conclusion 

This paper proposes a new genetic algorithm for community detection (GACD). GACD 
optimizes the modularity Q to detect community with a special genetic algorithm. The 
locus-based adjacency encoding scheme is used to represent a community partition. The 
encoding scheme is suitable for the community detection, and has the following 
advantages: (1) the search space can be reduced distinctly; (2) the community number 
can be determined automatically; (3) the decoding process is highly efficient. According 
to the encoding scheme, the effective crossover and mutation operators are designed. 
The theorem analysis shows that GACD has a linear complexity with the vertices and 
edge number of the network. Three experiments are done to verify GACD’s 
performance. In first experiment, seven real social networks are used to validate the 
effectiveness and efficiency of GACD. Compared with GN, GN fast and GATB, GACD 
finds the maximum Q for most problems, and its running time is smaller than GN fast 
and GATB. The second experiment shows that GACD is steady for the network with 
the apparent community structure. Through observing the relationship of the running 
time and the size of network, the experiment further confirms that the running time of 
GACD is linear growth with the scope of the network.  

Recently, Fortunato and Barthelemy have showed mathematically that the 
optimization of modularity has a resolution limit that is, modularity optimization fails 
to find small communities in large networks [24], and thus the modularity optimiza-
tion may be not a good method to community detection. However, the genetic 
algorithm (especially the genetic representation) we proposed can be used as a general 
optimization technology in complex network.  
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