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Abstract. We apply statistical physics to study the task of resource al-
location in random networks with limited bandwidths for the transporta-
tion of resources along the links. We derive algorithms which searches
the optimal solution without the need of a global optimizer. For net-
works with uniformly high connectivity, the resource shortage of a node
becomes a well-defined function of its capacity. An efficient profile of
the allocated resources is found, with clusters of node interconnected by
an extensive fraction of unsaturated links, enabling the resource short-
ages among the nodes to remain balanced. The capacity-shortage rela-
tion exhibits features similar to the Maxwell’s construction. For scale-
free networks, such an efficient profile is observed even for nodes of low
connectivity.
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1 Introduction

Analytical techniques developed in statistical physics have been widely employed
in the analysis of complex systems in a wide variety of fields, such as neural net-
works [1,2], econophysical models [3], and error-correcting codes [2,5]. Recently,
a statistical physics perspective was successfully applied to the problem of re-
source allocation on sparse random networks [6,7]. Resource allocation is a well
known network problem in the areas of computer science and operations man-
agement [8,9]. It is relevant to applications such as load balancing in computer
networks, reducing Internet traffic congestion, and streamlining network flow of
commodities [10,11].

In this paper, we analyze resource allocation on networks with finite band-
widths. We derive algorithms which enable us to find the optimal solutions with-
out the need of a global optimizer. Compared with conventional techniques such
as linear or quadratic programming [14], the adopted approach in this paper
reduces the computational complexity. Furthermore, the analysis allows us to
understand the underlying mechanisms during resource redistribution, on both
scale-free and regular networks (i.e. networks with uniform connectivity). An
efficient profile of the allocated resource in found wth features similar to the
Maxwell’s construction.
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2 The Model

We consider a network with N nodes, labelled i = 1, . . . , N . Each node i is
randomly connected to c other nodes. The connectivity matrix is given by Aij =
1, 0 for connected and unconnected node pairs respectively. We first develop a
theory for sparse networks, namely, those of intensive connectivity c ∼ O(1) �
N , and subsequently consider its validity in networks of general connectivity,
such as scale-free networks.

Each node i has a capacity Λi randomly drawn from a distribution ρ(Λi). Pos-
itive and negative values of Λi correspond to supply and demand of resources
respectively. The task of resource allocation involves transporting resources be-
tween nodes such that the demands of the nodes can be satisfied to the largest
extent. Hence we assign yij ≡ −yji to be the current drawn from node j to i,
aiming at reducing the shortage ξi of node i defined by

ξi = max
(
−Λi −

∑
(ij)

Aijyij , 0
)
. (1)

The magnitudes of the currents are bounded by the bandwidth W , i.e., |yij | ≤W .
To minimize the shortage of resources after their allocation, we include in the

total cost both the shortage cost and the transportation cost. Hence, the general
cost function of the system can be written as

E = R
∑
(ij)

Aijφ(yij) +
∑

i

ψ(Λi, {yij|Aij = 1}). (2)

The summation (ij) corresponds to summation over all node pairs, and Λi is a
quenched variable defined on node i.

In the present model of resource allocation, the first and second terms corre-
spond to the transportation and shortage costs respectively. The parameter R
corresponds to the resistance on the currents, and Λi is the capacity of node
i. The transportation cost φ(yij) can be a general even function of yij . In
this paper, we consider φ and ψ to be concave functions of their arguments,
that is, φ′(y) and ψ′(ξ) are non-decreasing functions. Specifically, we have the
quadratic transportation cost φ(y) = y2/2, and the quadratic shortage cost
ψ(Λi, {yij|Aij = 1}) = ξ2i /2.

3 Analysis

The analysis of the model is made convenient by the introduction of the variables
ξi. It can be written as the minimization of Eq. (2) in the space of yij and ξi,
subject to the constraints

Λi +
∑
(ij)

Aijyij + ξi ≥ 0, ξi ≥ 0, (3)

and the constraints on the bandwidths of the links |yij | ≤W .
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Introducing Lagrange multipliers to the above inequality constraints with the
Kuhn-Tucker condition, the function to be minimized becomes

L =
∑

i

[
ψ(ξi) + μi

(
Λi +

∑
(ij)

Aijyij + ξi

)
+ αiξi

]

+
∑
(ij)

Aij

[
Rφ(yij) + γ+

ij(W − yij) + γ−ij (W + yij)
]
, (4)

where μi ≤ 0, αi ≤ 0, γ+
ij ≤ 0 and γ−ij ≤ 0. Optimizing L with respect to yij ,

one obtains

yij = Y (μj − μi) with Y (x) = max
{
−W,min

[
W, [φ′]−1

(
x

R

)]}
. (5)

The Lagrange multiplier μi is referred to as the chemical potential of node i, and
φ′ is the derivative of φ with respect to its argument. The function Y (μj − μi)
relates the potential difference between nodes i and j to the current driven from
node j to i. For the quadratic cost, it consists of a linear segment between
μj − μi = ±WR reminiscent of Ohm’s law in electric circuits. Beyond this
range, y is bounded above and below by ±W respectively. Thus, obtaining the
optimized configuration of currents yij among the nodes is equivalent to finding
the corresponding set of chemical potentials μi, from which the optimized yij ’s
are then derived from Y (μj −μi). This implies that we can consider the original
optimization problem in the space of chemical potentials.

We introduce the free energy at a temperature T ≡ β−1,

F = −T lnZ, (6)

where Z is the partition function

Z =
∏
(ij)

(∫ W

−W

dyij

)
exp
[
−βR

∑
(ij)

Aijφ(yij)− β
∑

i

ψ(Λi, {yij |Aij = 1})
]
. (7)

The statistical mechanical analysis of the free energy can be carried out using
the Bethe approximation, which is valid in the limit of low connectivity. In this
approximation, a node is connected to c branches of the tree, and the correla-
tions among the branches are neglected. In each branch, nodes are arranged in
generations, A node is connected to an ancestor node of the previous generation,
and another c− 1 descendent nodes of the next generation.

We consider the vertex V (T) of a tree T. We let F (y|T) be the free energy
of the tree when a current y is drawn from the vertex by its ancestor node. One
can express F (y|T) in terms of the free energies F (yk|Tk) of its descendents
k = 1, . . . , c− 1,
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F (y|T) = −T ln

{
c−1∏
k=1

(∫ W

−W

dyk

)
exp
[
−β

c−1∑
k=1

F (yk|Tk)− βR
c−1∑
k=1

φ(yk)

−βψ
(

max(−ΛV (T) −
c−1∑
k=1

yk + y, 0)
)]}

, (8)

where Tk represents the tree terminated at the kth descendent of the vertex,
and ΛV (T) is the capacity of V (T). We then consider the free energy as,

F (y|T)=NTFav+FV (y|T), (9)

where NT is the number of nodes in the tree T, and Fav is the vertex free energy
per node. FV (y|T) is referred to as the vertex free energy. Note that when a
vertex is added to a tree, there is a change in the free energy due to the added
vertex. In the language of the cavity method [4], FV (y|T) are equivalent to the
cavity fields, since they describe the state of the system when the ancestor node
is absent. In the zero temperature limit, we obtain a recursion relation,

FV (y|T) = min
{yk||yk|≤W}

[
c−1∑
k=1

(
FV (yk|Tk) +Rφ(yk)

)

+ψ

(
max(−ΛV (T)−

c−1∑
k=1

yk + y, 0

)]
− Fav. (10)

Fav(y|T) =

〈
min

{yk||yk|≤W}

[
c∑

k=1

(
FV (yk|Tk) +Rφ(yk)

)

+ψ

(
max(−ΛV (T) −

c∑
k=1

yk, 0

)]〉

Λ

. (11)

4 Distributed Algorithms

A distributed algorithm can be obtained by iterating the chemical potentials of
the nodes. The optimal currents are given by Eq. (5) in terms of the chemical
potentials μi which, from Eqs. (1) and (4), are related to their neighbors via

μi =

⎧⎪⎨
⎪⎩

0 for h−1
i (0) > 0,

h−1
i (0) for −ψ′(0) ≤ h−1

i (0) ≤ 0,
g−1

i (0) for h−1
i (0) < −ψ′(0),

(12)

where hi(x) and gi(x) are given by

hi(x) = −Λi −
∑

j

AijY (μj − x), gi(x) = ψ′ ◦ hi(x) + x, (13)
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with function Y again given Eq. (5). hi(x) is the shortage of resource at node
i when μi takes the value x. ψ′ ◦ hi(x) is then the corresponding dissatisfaction
cost per unit resource of node j. This provides a simple local iteration method
for the optimization problem in which the optimal currents can be evaluated
from the potential differences of neighboring nodes.

An alternative algorithm can be obtained by adopting message-passing ap-
proaches, which have been successful in problems such as error-correcting codes
[12] and probabilistic inference [13]. However, in contrast to other message-
passing algorithms which pass conditional probability estimates of discrete vari-
ables to neighboring nodes, the messages in the present context are more com-
plex, since they are free energy functions FV (y|T) of the continuous variable y.
Inspired by the success of replacing the function messages by their first and sec-
ond derivatives in [7], we follow the same route and form two-parameter messages
Let (Aij , Bij) ≡ (∂FV (yij |Tj)/∂yij .∂

2FV (yij |Tj)/∂y2
ij). These are the messages

passed from node j to its ancestor node i, based on the messages received from
its descendents in the tree Tj . To obtain recursion relation of the messages, we
minimize in the space of the current adjustments εjk the vertex free energy

Fij =
∑
k �=i

Ajk

[
Ajkεjk +

1
2
Bjkε

2
jk +Rφ′jkεjk +

R

2
φ′′jkε

2
jk

]
+ ψ(ξj), (14)

subject to the constraints∑
k �=i

Ajk(yjk + εjk)− yij + Λj + ξj ≥ 0, ξj ≥ 0, (15)

together with the constraints on bandwidths |yjk + εjk| ≤W . φ′jk and φ′′jk repre-
sent the first and second derivatives of φ(y) at y = yjk respectively. We introduce
Lagrange multiplier μij for constraints (15). After optimizing the energy function
of node j, the messages from node j to i are given by

Aij ← −μij , (16)

Bij ←

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for h−1
ij (0) > 0,

{∑
k �=iAjk(Rφ′′jk +Bjk)−1

×Θ
[
W−

∣∣∣∣yjk − Rφ′
jk+Ajk+μij

Rφ′′
jk+Bjk

∣∣∣∣
]}−1

for −ψ′(0) ≤ h−1
ij (0) ≤ 0,

{
ψ′′(ξ)−1 +

∑
k �=iAjk(Rφ′′jk +Bjk)−1

×Θ
[
W−

∣∣∣∣yjk − Rφ′
jk+Ajk+μij

Rφ′′
jk+Bjk

∣∣∣∣
]}−1

for h−1
ij (0) < −ψ′(0),

(17)
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where

gij(x) = [ψ′ ◦ hij ](x) + x, (18)

μij =

⎧⎪⎨
⎪⎩

0 for h−1
ij (0) > 0,

h−1
ij (0) for −ψ′(0) ≤ h−1

ij (0) ≤ 0,
g−1

ij (0) for h−1
ij (0) < −ψ′(0),

(19)

and hij(x) is defined by

hij(x) = yij − Λj −
∑
k �=i

max
{
−W,min

[
W, yjk −

Rφ′jk +Ajk + x

Rφ′′jk +Bjk

]}
. (20)

Since the messages are simplified to be the first two derivatives of the vertex
free energies, it is essential for the nodes to determine the working points at
which the derivatives are taken. Optimal currents yjk are thus computed and sent
backward from node j to the descendent nodes k 	= i. These backward messages
serve as a key in information provision to descendents, so that the derivatives
in the subsequent messages are to be taken at the updated working points.
Minimizing the free energy (14) with respect to yjk, the backward message is
found to be

yjk ← max
{
−W,min

[
W, yjk −

Rφ′jk +Ajk + μij

Rφ′′jk +Bjk

]}
. (21)

An important result of our study is that for the frictionless case with ψ′(0) =
0, the message-passing algorithm, in the two-parameter approximation, yield
solutions identical to the previous algorithm, which is exact for all connectivities,
as long as the algorithms converges. This is a remarkable result since the message-
passing algorithm is originally derived for dilute networks only.

5 The High Connectivity Limit

We consider the case that the bandwidth of individual links scales as W̃/c when
the connectivity increases, where W̃ is a constant. Thus the total bandwidth W̃
available to an individual node remains a constant.

We start by writing the chemical potentials using Eq. (12),

μi = min
[
Λi +

N∑
j=1

AijY (μj − μi), 0
]
. (22)

In the high connectivity limit, the interaction of a node with all its connected
neighbors become self-averaging, making it a function which is singly dependent
on its own chemical potential, namely,
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N∑
j=1

AijY (μj − μi) ≈ cM(μi). (23)

Physically, the function M(μ) corresponds to the average interaction of a node
with its neighbors when its chemical potential is μ. Thus, we can write Eq. (22) as

μ = min[Λ+ cM(μ), 0], (24)

where μ is now a function of Λ, and we have

M(μi) =
∫ ∞

−∞
dΛρ(Λ)Y (μ(Λ)− μi) (25)

where we have written the chemical potential of the neighbors as μ(Λ), assuming
that they are well-defined functions of their capacities Λ.

To explicitly derive M(μ), we take advantage of the fact that the rescaled
bandwidth, W̃/c vanishes in the high connectivity limit, so that the current
function Y (μj−μi) is effectively a sign function, which implies that the current on
a link is always saturated. (This approximation is not fully valid if c is large but
finite and will be further refined in subsequent discussions) Thus, we approximate

M(μi) =
W̃

c

∫ ∞

−∞
dΛρ(Λ)sgn[μ(Λ)− μi]. (26)

Assuming that μ(Λ) is a monotonic function of Λ, and for Gaussian distribution
of capacities, μ(Λ) is explicitly given by

μ = min
[
Λ − W̃ erf

(
Λ− 〈Λ〉√

2

)
, 0
]
. (27)

This equation relates the chemical potential of a node, i.e. the shortage after
resource allocation, to its initial resource before. Resource allocation through a
large number of links results in a well-defined function relating the two quantities.

Eq. (27) gives a well-defined function μ(Λ) as long as W̃ ≤ √π/2. However,
when W̃ >

√
π/2, turning points exists in μ(Λ) as shown in Fig. 1(a). This

creates a thermodynamically unstable scenario, since in the region of μ(Λ) with
negative slope, nodes with lower capacities have higher chemical potentials than
their neighbors with higher capacities. Mathematically, the non-monotonicity of
μ(Λ) means that sgn[μ(Λ)−μi] and sgn(Λ−Λi) are no longer necessarily equal,
and Eq. (27) is no longer valid.

Nevertheless, Eq. (22) permits another solution of constant μ in a range of
Λ. Hence, we propose that the unstable region of μ(Λ) should be replaced by a
range of constant μ as shown in Fig. 1(b) analogous to Maxwell’s construction
in thermodynamics.

In the high connectivity limit, resources are so efficiently allocated that the
resources of the rich nodes are maximally allocated to the poor nodes. By
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ΛΛ

μ μ

Unstable Region

Λ< Λ> Λ>
Λ<

(a) (b)

A

B

Fig. 1. Maxwell’s construction on μ(Λ)

considering the conservation of resources, and letting (Λ<, μo) and (Λ>, μo) be
the end points of the Maxwell’s construction as shown in Fig. 1(b). we arrive at

−
∫ Λ>

Λ<

dΛρ(Λ)μo −
(∫ Λo

Λ>

+
∫ Λ<

−∞

)
dΛρ(Λ)μ(Λ)

= −
∫ Λo

−∞
dΛρ(Λ)Λ− Λo

∫ ∞

Λo

dΛρ(Λ). (28)

where Λo is given by Λo = W̃
∫ Λo

−∞ dΛρ(Λ). Nodes with Λ ≥ Λo send out their
resources without drawing inward currents from their neighbors, and can be
regarded as donors. Substituting Eqs. (24), (25) in the range Λ < Λ< and Λ >
Λ>, we arrive at the condition

μo

∫ Λ>

Λ<

dΛρ(Λ) =
∫ Λ>

Λ<

dΛρ(Λ)μ(Λ), (29)

which implies that the value of μo should be chosen such that the areas A and
B in Fig. 1(b), weighted by the distribution ρ(Λ), should be equal.

For capacity distributions ρ(Λ) symmetric with respect to 〈Λ〉, we have μo =
〈Λ〉 = (Λ< + Λ>)/2. As a result, the function μ(Λ) is given by

μ(Λ) =

⎧⎪⎪⎨
⎪⎪⎩
〈Λ〉 for μ< < μ < μ>,

min
[
Λ− W̃ erf

(
Λ−〈Λ〉√

2

)
, 0
]

otherwise,
(30)

where as Λ< and Λ> are respectively given by the lesser and greater roots of the
equation x = 〈Λ〉+ W̃ erf[(x− 〈Λ〉)/√2].

Nodes i with chemical potentials μi = 〈Λ〉 represent clusters of nodes in-
terconnected by an extensive fraction of unsaturated links, which provides the
freedom to fine tune their currents so that the shortages among the nodes are
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uniform. They will be referred to as the balanced nodes. The fraction fbal of
balanced nodes is given by the equation

fbal = erf
(
W̃fbal√

2

)
. (31)

Note that fbal has the same dependence on W̃ for all negative 〈Λ〉. The inset of
Fig. 4 shows that when the total bandwidth W̃ increases beyond

√
π/2, the frac-

tion of balanced nodes increases, reflecting the more efficient resource allocation
brought by the convenience of increased bandwidths. When W̃ becomes very
large, a uniform chemical potential of 〈Λ〉 networkwide is recovered, converging
to the case of non-vanishing bandwidths.

Fig. 2. The simulation results of μ(Λ) for N = 10000, c = 15, R = 0.1, 〈Λ〉 = −1
and W̃ = 3 with 70000 data points, compared with theoretical prediction. Inset: The
corresponding results for W̃ = 1.2.

We compare the analytical result of μ(Λ) in Eq. (30) with simulations in
Fig. 2. For W̃ >

√
π/2, data points (Λ, μ) of individual nodes from network

simulations follow the analytical result of μ(Λ), giving an almost perfect overlap
of data. The presence of the balanced nodes with effectively constant chemical
potentials is obvious and essential to explain the behavior of the majority of data
points from simulations. On the other hand, for W̃ <

√
π/2, the analytical μ(Λ)

shows no turning point as shown in the inset of Fig. 2. Despite the scattering of
data points, they generally follow the trend of the theoretical μ(Λ).

Our analysis can be generalized to the case of large but finite connectivity,
where the approximation in Eq. (26) is not fully valid. This modifies the chemical
potentials of the balanced nodes, for which Eq. (26) has to be replaced by

M(μ) =
W̃

c

[∫ ∞

Λ>

dΛρ(Λ)−
∫ Λ<

−∞
dΛρ(Λ)

]
+
∫ Λ>

Λ<

dΛρ(Λ)
(
μ(Λ)− μ

R

)
. (32)
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We introduce an ansatz of a linear relationship between μ and Λ for the balanced
nodes, namely,

μ = mΛ+ b. (33)

After direct substitution of Eq. (33) into M(μ) given by Eq. (32), we get the
self-consistent equations for m and b,

m =
R

R+ c erf
(

Λ>−〈Λ〉√
2

) , b =
c erf

(
Λ>−〈Λ〉√

2

)

R+ c erf
(

Λ>−〈Λ〉√
2

)〈Λ〉. (34)

Thus, the Maxwell’s construction has a non-zero slope when the connectivity is
finite.

We remark that the approximation in Eq. (32) assumes that the potential
differences of the balanced nodes lie in the range of 2RW̃/c, so that their con-
necting links remain unsaturated. Note that the end points of the Maxwell’s
construction have chemical potentials 〈Λ〉 ± RW̃/c respectively, rendering the
approximation in Eq. (32) exact at one special point, namely, the central point of
the Maxwell’s construction. Hence, this approximation works well in the central
region of the Maxwell’s construction, while deviations are expected near the end
points.

In the simulation data shown in Fig. 3, the data points of (Λ, μ) from different
ratios of R/c follow the trend of the corresponding analytical results, both within
and outside the linear region, with increasing scattering within the linear region
as R/c increases. As expected, there are derivations between the analytical and
simulational results at the two ends of the linear region, with smoothened cor-
ners appearing in the simulation data, especially in the case of R/c = 2/20.

Fig. 3. Simulation results of (Λ, μ) for N = 2 × 105, W̃ = 3, c = 12 and 〈Λ〉 = −5
at different values of R, each with 65000 data points. as compared to the theoretical
predictions. Inset: the corresponding chemical potential distribution P (μ) of the 3 cases.
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We note that when R/c increases, the gradient of the linear region increases,
corresponding to a less uniform allocation of resources.

Remarkably, as evident from Eq. (34), even with constant available band-
width W̃ , increasing connectivity causes m to decrease, and hence sharpens the
chemical potential distribution. The narrower distributions correspond to higher
efficiency in resource allocation. It leads us to realize the potential benefits of
increasing connectivity in network optimization even for a given constant total
bandwidth connecting a node.

6 Scale-Free Networks

We have considered the allocation of resources in regular networks in the high
connectivity limit. However, recent studies of complex networks show that many
realistic communication networks have highly heterogeneous structure, and the
connectivity distribution obeys a power law [15]. These networks, commonly
known as scale-free networks, are characterized by the presence of hubs, which
are nodes with very high connectivities, and are found to modify the network
behavior significantly. Hence, it is interesting to study the allocation of resources
in scale-free networks.

The simulation results are presented in Fig. 4, where we plot the data points
of (Λ, μ) from nodes of c = 3 in scale-free networks. Despite their low connec-
tivity, their capacity-shortage relation exhibit the flat distribution characteristic
of the Maxwell’s construction, coinciding with the analytical results of the high
connectivity limit. This shows that the presence of hubs in scale-free networks
increases the global efficiency of resource allocation, leading to a more uniform
distribution of resources.

-6 -4 -2 0 2 4
Λ

-2.5

-2

-1.5

-1

-0.5

0

μ

Networks of  uniform c = 3
Nodes of c = 3 in Scale-free network
Theoretical

0 2 4
0

0.5

1

f ba
l

W
~

Fig. 4. Simulation results of (Λ, μ) for networks of N = 2 × 105, W̃ = 3, R = 0.1
and 〈Λ〉 = −1 with (a) uniform connectivity of c = 3 and (b) scale-free network of
P (c) ∼ c−3 with c ≥ 3. each with 2500 data points. as compared to the theoretical
predictions Eq. (34). Inset: the dependence of the fbal in Eq. (31) on the bandwidth W̃ .
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To confirm this advantage of the scale-free topology, we also plot in the figure
the data points obtained from networks of uniform connectivity c = 3. Evidently,
the data points are much more scattered away from the Maxwell’s construction.

7 Conclusion

We have applied statistical mechanics to study an optimization task of resource
allocation on a network, in which nodes with different capacities are connected by
links of finite bandwidths. By adopting suitable cost functions, such as quadratic
transportation and shortage costs, the model can be applied to the study of real-
istic networks. We employ the Bethe approximation to derive recursive relations
of the vertex free energies, which are useful in both algorithmic and analytic
aspects.

In particular, the study reveals interesting effects due to finite bandwidths. A
remarkable phenomenon is found in networks with fixed total bandwidths per
node, where bandwidths per link vanish in the high connectivity limit. For suffi-
ciently large total bandwidths, clusters of balanced nodes self-organized to have a
uniform shortage reminiscent of the Maxwell’s construction in thermodynamics.
In scale-free networks, such clusters even include nodes with low connectivity,
implying a more efficient resource allocation compared to networks with uniform
connectivity. We believe that the techniques presented in this paper are useful
in many different network optimization problems and will lead to a large variety
of potential applications.
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