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Abstract. Complex biological systems often characterize nonlinear dy-
namics. Employing traditional deterministic or stochastic approaches to
quantify these dynamics either fail to capture their existing deviant ef-
fects or lead to combinatorial explosion. In this work we devised a novel
approach that projects the biological functions within a pathway to a
network of stochastic events that are random in time and space. By ap-
plying this approach recursively to the object system we build the event
network of the entire system. The dynamics of the system evolves through
the execution of the event network by a simulation engine which com-
prised of a time prioritized event queue. As a case study we utilized the
current method and conducted an in-silico experiment on the metabolic
plasticity of a cardiac myocyete. We aimed to quantify the down stream
effects of insulin signaling that predominantly controls the plasticity in
myocardium. Intriguingly, our in-silico results on transcription regulatory
effect of insulin showed a good agreement with experimental data. Mean-
while we were able to characterize the flux change across major metabolic
pathways over 48 hours of the in-silico experiment. Our simulation per-
formed a remarkable efficiency by conducting 48 hours of simulation-time
in less that 2 hours of processor time.

1 Introduction

A complex system is a subset of a world comprised of many components whose
interactions with the rest of the world or another subset is properly defined. The
behavior of a complex system could properly perceived through the aggregate
effects of its components. An organism could be viewed as a system or collection
of systems at different hierarchical levels. The boundary of a system is defined
by its components which for a bio-system could range from organism to organ,
tissue, cell, molecule, and atom. The degree of complexity between levels grows
exponentially from top to bottom. In the current study a cell draws the sys-
tem boundary and molecules are the interacting components of this system. The
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respond of a cell to an exogenous signal (antigens, hormones, pressure or temper-
ature change, etc) shaped from endogenous activities within the cellular networks
that attempt to maintain the cell homeostasis. To gain insight on the dynamics
of this respond at the system level, interaction of the underlying components
must be properly characterized in time and space. In this study we propose a
novel stochastic discrete event-based methodology [1] to conduct system level
in-silico experiments on a typical eukaryotic cell. We elucidate our method by
deploying that on the cardiac myocyte along with insulin signal as a case study
to validate the significance of our approach. The idea is to learn the system
level effects of an exogenous signal through the changes imposed on the dynam-
ics of Signal Transduction Network, (STN), Transcription Regulatory Network
(TRN), and Metabolic Network (MTN) of the cell following the perception of
the signal. The rest of the paper is organized as follows: we allotted the rest of
this section to provide a background on the quantitative models proposed for
the heart cell, on section two the modeling steps in the proposed approach along
with the simulation algorithm is described, section three devoted to application
of the current schema on the insulin signaling pathway in the heart-cell, section
four provides the results for the in-silico experiment, section five discusses the
key pros and cons of the approach, and we end the paper by drawing conclusion
in section six.

1.1 Background

Since 1960 that Denis Noble proposed the first model of the heart, numerous
quantitative models have been proposed for the heart from organ to cell level.
These models could broadly be classified into two main families: physiological
models and pathway models. The former class includes a combination of me-
chanical and biochemical models that focuss on capturing the physiological and
electrophysiological dynamics of heart and its tissues under different physio-
logical and biochemical conditions. Models in [2,3] are typical examples of this
class of models. This top-down modeling approach offers a course grain analysis,
therefore is not suitable for detail analysis of intra-cellular networks. The latter
class has a more microscopic focus which intends to model one or more pathways
from the cellular networks and seeks to quantify their dynamics, discover new
pathways, complexes, etc. Instances of such models could be found in [4,5]. In
order to predict the dynamics of biological functions latter class subscribes to
either one of the following approaches: i) deterministic approach where a sets of
ordinary differential equations (ODE) or partial differential equations (PDE) is
formed based on biochemical reactions and diffusion to address the rate of change
in concentrations of molecular parts. These ODEs/PDEs are then numerically
solved to determine the dynamics of the underlaying system. ii) The stochas-
tic approach which comprises strains of Gillespie [6] algorithm to approximate
Chemical Master Equation (CME) [7], where the system is mapped into sets of
chemical kinetic equations which evolves in Monte Carlo steps. Arkin and Sami-
olov [8] have shown that non-classical behavior of biological networks cause their
dynamics to substantially diverge from their average. Therefore, deterministic
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approaches based on classical chemical kinetic (CCK) which assumes equilib-
rium across the entire course of system’s evolution would not be an appropriate
method to model many of biological systems. This claim remains valid even for
the systems with higher molecular abundance. Although Gillespie based family
of algorithms are suitable for capturing the behavior of biological functions; how-
ever, despite the efficiency enhancements they archived owing to approximation
techniques such as tau-leaping, they still suffer from high computational com-
plexity. None of these approaches promises a suitable model for a system that
comprises network of biological functions (e.g. transcription function, signaling
phospo-interaction, metabolic reaction) that manifest several order of magni-
tude difference in their temporal dynamics. In a system whose components (i.e.
network nodes) manifest such temporal heterogeneity sequential evolution of
fast processes would exhaust the execution of slower ones. The complex network
of cellular processes (

⋃{STN, TRN, MTN}) in a cardiac myocyte is a typical
example of above systems.

To layout a modeling frame-work that contend to such heterogeneity in an
in-silico experiment we introduce the concept of myocardial event (myvent) that
accounts for an individual biological process within a cardiac myocyte. Not-
ing that dynamics of the system is captured through changes in the count of
molecular parts in the course of an in-silico experiment. These dynamics evolves
through the execution of a network of myevents. Each myevent is an object from
a specific class of myevents that has a random execution time with known first
and second moments. The ability to bundle one or more myevents of a same
class grants a mesoscopic scale to this modeling approach. This property avoids
exhaustive computations for a system that comprises a network of processes that
are temporally heterogeneous.

2 Approach

Observations confirm that at the molecular level the cellular behavior arises
from the stochastic interaction between molecular parts [8,9]. Such observations
is the key motivation in applying stochastic discrete event-based (SDE) method
in capturing the dynamics of a cellular function. Hence, identifying molecular
functions in a cardiac myocyte and mapping those into sets of myvents is funda-
mental to our approach. Each myevent has three attributes: (i) The stochastic
physicochemical model that approximates the temporal dynamics for a typical
class of myevents (i.e. cytoplasmic reaction, membrane reaction, transcription,
etc.), (ii) The molecular resources (input/output) associated with a myevent,
(iii) The compartment(s) within or across which a myevent is executed. In the
current study for the first attribute of the a myevent we either adopt a physic-
ochemical model from the literature or replace that with a relevant probability
distribution that can approximate the experimental data. Also to avoid further
complexity we only consider cytoplasm, nucleus, and mitochondria compart-
ments for a cardiac myocyte. In a SDE in-silico experiment, simulation time is
the representation of the physical time of the system being modeled. Each event
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is associated a time-stamp indicating when that event occurs in the physical sys-
tem being simulated. The event time-stamp is computed from the knowledge of
the previous event that has triggered the current event, together with the event
execution-time which is a realization of the random number that characterizes
the event dynamics. The dynamics of resource utilizations with progression in
time unveil the complete internal picture of a complex biological system at the
molecular level. Applying this doctrine to study the system level dynamics in
a cardiac myocyte, demands the following check-list for characterizing the sys-
tem parameters: (i) Identify the list of discrete myevents that can be included
in the model based on the available knowledge of the system; (ii) Identify the
resources of interest for the execution of the myevents function which are being
used by the biological process for each discrete event; (iii) Compute the time
taken to complete this biological discrete event. For this purpose, it is important
to mathematically relate all event parameters which affect the interaction of the
resources in a particular biological function; (iv) Identify the next myevent or
set of myevents initiated on the completion of a myevent. If multiple discrete
myevents are possible after completion of a myevent, the next myevent is chosen
probabilistically, based on the biological pathway of the function being modeled.
This probability calculation depends on the myevent-set and the properties of
the myevents within the set.

Once the above check list is satisfied the discrete event simulator scheduler
which is a time prioritized event queue pops individual myevents from the queue
and system proceeds. Upon the execution of each myevent, molecular resources
of the system is updated, system time is moved forward, and new myevents are
pushed into the event queue from the next-myevents list of current myevent. The
pseudo code for the algorithm that governs a SDE in-silico experiment is given in
Fig. 1.(left) and the simulation engine architecture is depicted in Fig. 1.(right).

SDES Algorithm for Cardiac myocyte :-

1.begin

2. Initialize:Random number generators

, global parameters,

myevent parameters,compartments,

simulator clock, trigger event

3. while the event queue is not empty

4. begin

5. pop the myevent from head of queue

6. update the simulation time

7. Invoke the model

8. retrieve the input resources

9. if all the input resources are available

10. begin

11. Utilize the random number generator

to determine event times

for the next sets of events

12. update molecular resources

13 generate and push next set of

myevents to the event queue

14. end

15. end

16.end.

Fig. 1. (Left) The SDES algorithm pseudo code for cardiac myocyte model; (Right)
The architecture of simulator engine
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In a compartmentalized environment there will be two superclass of myevents
apart from their types: the local myevent (eij , i = j) and cross compartment
myevent (eij , i �= j). Subscripts i and j are the source and destination com-
partments across which the event is executed. Execution of a local myevent only
effects molecular resources in the compartment local to that myevent, where a
cross compartment myevent potentially changes the resources in both source
and destination compartments.

3 Modeling the Cardiac Myocyte Plasticity

Metabolic plasticity is the capacity of a cell to adopt to alternative available
metabolic substrates as the source for its energy requirement. In order to model
the plasticity of a cardiac myocyte at the system level first we need the to identify
the pathways in signal transduction, transcription regulatory, and metabolic
networks that pertain to such functionality. Further, identify the myevents that
comprise each biological function within these pathways. Then associate each
myevent with the proper stochastic model, input resources, and output resources.
Subsequently interconnect those myevents in a recursive fashion to form the
myevent network of that function. The above process that maps a biological
functions from its physiological context to an event based context is referred
to as eventology of that function. By recursively applying the eventology to the
system we can form the event network of the whole system.

3.1 Eventology of the Signaling Pathways

Cardiac myocytes should have flexibility in their fuel selection in order to be
consistent in meeting their energy requirements. Metabolic flux modulation could
be regulated at many levels, two of the promising flux modulations in cardiac
myocytes are through the control of metabolite uptake and gene expression level
[10]. Insulin which is an essential peptide hormone of endocrine system that
secretes from β-cells in pancreas is predominantly involved in the fuel selection
at both levels. Although the propagation of the insulin signal within the cell
influences divers cellular functions such as mitogenic, cell growth, etc.; however,
in this work we focus on the signaling information that culminates on the two
modulatory effects.

The insulin signal is sensed by binding the insulin to insulin receptors (INSR)
on the membrane of cardiac myocytes and belong to the family of ligand-
activated tyrosine kinase (RTK) receptors [11]. The information of the insulin
signal is propagated within the cell through a non-linear signaling network [12].
The inherent robustness is the de-facto rule of survival in the evolutionary pro-
cess of biological systems. Therefore, most of these systems are robust to the
large set of stresses and demonstrate the butterfly effect to substantially smaller
sets. Setting this fact vis-a-vis the complexity of system enables us to reduce the
complexity by two strategies: i) by eliminating the components or aggregating
their detail to a higher level where it is proven or speculated to have lesser im-
pact on the objective system, ii) exclude a subset of the system from the analysis
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Fig. 2. The insulin (left) and fatty acid (right) signal transduction networks diagram

with the assumption that the rest of the system is in the equilibrium interaction
with the current subset. With this strategy we have abstracted the insulin signal
transduction hierarchy from excessive details and included those components
where a consensus exists on their impact on the cell metabolism [10].

The insulin signal transduction network (STN) that has the above property
could be found in KEGG pathway database [13]. We imported their STN and
modified the original version based on data published elsewhere to include some
of missing components that were necessary for our work as well as excluded the
excessive details. Fig. 2 shows the signal transduction networks for insulin and
fatty acid that we used in our in-silico experiment. The myevent diagram for the
insulin signaling pathway of Fig. 2 is depicted in Fig. 3. The color code is used
to represent the myevents with similar physicochemical (e.g phosphorylation,
activation, transport) class. The physicochemical class of each myevent was ex-
plored from literature. A myevent whose physicochemical class was unidentified
was assigned to a biochemical reaction class. Noting that, since signal transduc-
tion and transcription regulatory networks are interrelated we included a subset
TRN that is affected by the insulin in the event diagram. Noting that Fig. 3
does not include the events that pertain to the fatty acid signal which is par-
tially depicted in right corner of Fig. 2. In the myevent legend the three capital
letters following the name of each myevent specifies the class of that myevent
(e.g. TRN: transcription, ACT: activation, PPR: phosphorylation, INA: insulin
receptor activation). A self feedback in the event digram induces the signal pro-
rogation by one fold from the feedback point. These loops are added to the map
empirically by comparing the in-silico results and experimental data.
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Fig. 3. The myevent diagram above depicts selected events for insulin STN in Fig. 2.
Events with purple color belong to TRN.

Fig. 4. Event diagram of protein synthesis in eukaryotes

3.2 Models for Glucose and Fatty Acid Uptake

Glucose and Fatty Acids comprise > %90 of the energy resources of cardiac tis-
sues [14]. Hence, in this work we decided to focus on modeling uptake pathways of
these two substrates. In adult heart Glucose is taken into the cell mainly by glu-
cose transporter 4 (Glut4) [15]. Insulin promotes the Glut4 membrane transport
through two parallel pathways. These two pathways which both originate from
the insulin receptor protein (INSR) activation complement each others role in
mediating the glucose uptake. Phosphorylated aPKCλ/ξ is a down stream prod-
uct of a phosphorylation signaling cascade from the first pathway which enables
the Glut4 vesicle transporters (GSV) to move to the vicinity of the membrane
[16]. Upon activation INSR phospho-activates the APS protein that initiates
the second pathway. Activation of APS initiates a sequence of activations and
interactions that involve more than seven proteins [17]. Through a sequence of
complex interactions the Glut4 which at the time is present in the vicinity of
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plasma membrane is first docked then tethered and ultimately fussed into the
membrane [16]. In our in-silico experiment we abstract the outlined process into
following three myevents : GSV activation myevent (associated with reaction
model in [18] discussed later in the paper), GSV transport myevent (associated
with diffusion model in [19], and Glut4 tether myevents (associated with in model
[20]). Fig. 5.(a) shows the discrete even representation of the glucose uptake. We
made a subtle modification to the model in [20] which mainly includes adding a
capacity to each membrane receptor to handle the group transport activity for
GSV. For the Fatty Acid (FA) uptake we focused to model the mechanism for
which a strong consensus exists and tried to implement that for a long chain
fatty acid (LCFA). Note that choosing a fatty acid with different chain length
(e.g. short or medium) mainly affects the oxidation reactions and not the uptake
mechanism. The plasma isoforms of FATBP and FAT/36 can participate in pas-
sive diffusion by increasing the dissociation rate of albumin, and in facilitated
transport by interacting with FATP and importing the FA into cytoplasm [21].
This system adjusts the rate of FA uptake with mitochondrial demand to avoid
accumulation of FA in cytoplasm which could be hazardous for the cell. Once
the FA entered the cytoplasm, it then binds to cytoplasmic isoform of FATBP
and transported to the vicinity of the mitochondrial outer membrane. Acyl-CoA
Synthase (ACS) converts the Long Chain Fatty Acid (LCFA) to LC acyl-CoA.
To participate in the β-Fatty Acid oxidation LC acyl-CoA should be transported
into the mitochondria. To cross the impermeable mitochondria membrane the
fatty acid transport pathway utilizes the Carnitine palymitoyltransferase (CPT)
system. CPT composed of L−carnitine, acylcarnitnie translocase (ACT) and
two transfer proteins i.e. CPT1 and CPT2 [22]. Carnitine palymitoyltransferase
1 is a transmembrane protein located on the outer membrane of mitochon-
dria and delivers the LC acyl-CoA to carnitine to form LC acylcarnitine. ACT
hands the LC acyl-CoA over to CPT2 through the intermembrane space. The
second transfer protein replaces the carnitine group of LC acylcarnitine with
CoA and releases the LC acyl-CoA in the mitochondria to participate in the
β-fatty acid oxidation pathway [22]. CPT1 is sensitive to Malonyl CoA which is
the product of Acetly CoA carboxylation in cytoplasm this reaction is catalyzed
by Acetyl CoA Carboxylase (ACC). Hence Malonyl CoA is a negative regulator
of β-fatty acid oxidation. The event-based model of the FA uptake depicted in
Fig. 5.(b). The associated model for the designated myevents are as follows:
FA uptake associated with model in [20], FA transport and FA mitochondrial
transport both associated with fast reaction model (described in supplementary
materials1). In the FA mitochondrial transport we have modeled the process
by breaking the transport between the metabolic and signaling networks. More
specifically the binding FA to CPT1 is handled by the signaling network as one
bimolecular reaction [18]. Shuttling LC acylcarnitine to the CPT2 is handled
by a metabolic reaction which is catalyzed by CPT2. The reason for breaking
the event between metabolic and signaling network originates from the set of

1 Supplementary section not included due to the space limitations and is available
upon request from the corresponding author.
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(a) (b)

Fig. 5. (a) The myevent diagram for glucose uptake process. (b) Fatty acid uptake
myevent diagram.

metabolic reactions that we used to model the metabolic reaction network in
cardiac myocytes.

3.3 Eventology of Protein Synthesis

Down stream effect of a signal might effect the gene expression and consequently
the protein synthesis. Protein synthesis is the core process of life which involves
a very complex and not completely known regulatory mechanism. Although, we
are still far behind from a comprehensive and detailed quantitative model of
protein synthesis; however, our knowledge of central dogma is just enough to
propose an event based abstraction that meets the requirements to fit into the
in-silico experiment paradigm.

Protein synthesis in eukaryotes compromises an orchestrated sequence of
events including: chromatin remodeling, gene transcription, pre-mRNA splicing,
mRNA nuclear transport and mRNA translation. These events involve sophisti-
cated evolution and regulatory mechanisms whose detail discussion is beyond the
scope this paper. Hence, we briefly browse through the major concepts that will
contribute to our modeling effort. Transcription and translation in eukaryotes
is very complex and much of their details yet not properly understood. General
mechanism of transcription and translation discussed in [23] and elsewhere. In
[24] general concepts involved in mammalian gene transcription is described
and a qualitative model for their assembly is proposed. Transcription and RNA
II-TFIIB are structurally analyzed in [25] and mechanism of RNA II elongation
is discussed in [26]. Binding of TATA Box Proteins (TBP) is essential for gene
expression, in [27] regulation of gene expression by TBP is elucidated. Kinetic
analysis of gene transcription is provided in [28]. Following the gene expression
the pre-mRNA will be spliced to generate messenger mRNA. Each mRNA should
be transported to cytoplasm and translated by the ribosomal proteins (tRNA)
to give birth to the protein it encodes. The process of transporting the mRNA
to cytoplasm is referred to as nuclear transport which it self has divers and
complex mechanisms [29]. Also the kinetics of mRNA nuclear transport is stud-
ied in [30]. Following the export of mRNA to the cytoplasm ribosomal protein
(tRNA) translates the codons in mRNA to the proper amino acids. The mecha-
nism of translation initiation is given in [31] while the molecular mechanism of
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translation is described in [32]. Also it has been shown that protein synthesis is
non-linear and has a bursty dynamic [33].

Nevertheless, the details of gene expression is far more complicated than de-
scribed above, we have abstracted the protein synthesis process as a network of
myevents. These myevents could be categorized into two classes of explicit and
implicit events based on the mechanism of their initiation. Former, includes those
myevents whose trigger is explicitly indicated in the qualitative models such as
transcription event, splicing event, etc. The latter class includes those myevents
that will be executed although they are not explicitly included in the qualitative
models, examples of those include: protein decay, mRNA decay, transcription
termination, etc.

The protein synthesis is the product of collaborative effort between the tran-
scription regulatory and signaling networks. Therefore, suppose an external sig-
nal in its downstream activates the transcription factor α, upon activation α is
transported into the nucleus. Further assume that as a result gene β is affected.
The effect of α on gene expression is interpreted by the gene regulatory network,
our abstracted mechanism of gene regulation will be discussed shortly. In the
case of positive regulation, β − mRNA is produced, transported to cytoplasm,
and translated to protein B. Fig. 4 shows the event diagram of this model where
the red arrows point to the implicit events and black arrows to the explicit
events. As observed in the diagram a myevent could belong to both categories
and the only difference is the mechanism for triggering an event with respect to
the qualitative model.

For chromatin remodeling we assumed to have SWI/SNF remodeling complex,
since it is the most preserved remodeling complex across eukaryotes and has no
sequence specificity [34]. Researchers in [35] and elsewhere have reported the data
on different aspects of chromatin remodeling. We were able to fit their reported
data (result not shown) for the rate of nucleosome in-cis translocation (base-
pair/sec) into a gamma distribution (α = 2.50±0.17, β = 4.67±0.35). Therefore,
temporal dynamics of the remodeling myevent is modeled with gamma distribu-
tion. Also we assumed a nucleosome occupancy of 0.3 for all promoter regions.
For the transcription event we used the model proposed in [36]. This model uses
a birth and death Markov chain to determine the rate of the transcript produc-
tion. They have modeled the process based on number of RNA PII that binds to
the gene and the elongation rate of RNA PII. We have adapted and calibrated
the model to become consistent for eukaryotic based on the parameters given in
[37,38] (e.g. basal RNA PII elongation rate (40 bases/s), etc.). For the splicing
myevent we assume to have a constitutive splicing [39] where each a pre-mRNA
spliced at a rate of 0.25 per minute [30] which is negative exponentially dis-
tributed around the mean. For the pre-mRNA and mRNA decay myevents we
applied the exponential decay processes with a rates according to to half life of
these species reported in [40,33]. We used a simple stochastic diffusion model
proposed in [19] to estimate temporal dynamics of mRNA nuclear transport
based on kinetics reported in [41]. For estimation of translation myevents time,
we applied the markov model proposed in [36] for translation in prokaryotes



Modeling a Complex Biological Network with Temporal Heterogeneity 477

and calibrate the parameters based on experimental data in [38,30]. The protein
decay myevent has an exponential decay process with rate reported in [42]. The
transcription termination event has a constant time which we obtained empiri-
cally while calibrating the simulator.

3.4 Transcription Regulatory Network and In-Silico Regulatory
Model

More than 150 genes have been identified that are positively or negatively regu-
lated by the insulin [43]. Amongst genes affected by insulin, < 50 genes reported
as myocardial genes [44]. We sought to collect as many genes that has been
reported and is regulated by either insulin or fatty acid signaling pathways in
the heart muscle cell [12,43]. To abstract the expression and inhibition of the
target gene ‘X’, we attribute each gene with a status flag and a time stamp.
The status flag can hold one of the following three states: being expressed(BE),
already inhibited (AI), or no activity (NA). The time stamp indicates the time
for the last change in the status flag of the gene. Transition of the gene sta-
tus from NA to either BE or AI is triggered by the transcription myevents. To
handle the transition form BE or AI to NA a specific Gene Status Check (GSC)
event is predicted that is executed periodically and compare the target gene time
stamp with current time. If the difference between the two times is greater that
a GENE HOLD STATUS constant then it shifts the gene status to NA. Based
on current model there is no direct shift between BE and AI states.

The input to the a transcription myevent is a transcription factor ‘T’. Exe-
cution of a transcription event indicates that resource for ‘T’ is available. The
non-empty set g includes all the genes that are up/down regulated by transcrip-
tion factor ‘T’, upon execution of a transcription event one of these genes is
selected for the status change with probability p = 1

|g| . Based on wether the se-
lected gene ‘X’ belongs to up-regulated or down-regulated subset of g, its flag is
changed accordingly. The set of transcription factors (TFs) that we included in
our in-silico along with their target genes is available in supplementary material.

3.5 Metabolic Reaction Model

Glycolysis I, TCA cycle, pyruvate metabolism, and β-fatty acid oxidation path-
ways are the major pathways dedicated to precursor substrates metabolism in
cardiac myocytes. In our experiment we considered the set of metabolic reac-
tions that comprises the above metabolic. This set composed of 109 reactions
consistent with human metabolic reactions reported in BiGG database [45]. Each
reaction is identified by a unique reaction ID that we borrowed from the original
record in the BiGG (list of these reactions is given in supplementary materials).

For a metabolic reaction myevent we consider a lumped metabolic event whose
effects on metabolites is based on the Flux Balance Analysis (FBA) approach
[46]. Implementing such strategy requires a metabolic myevent to be local.
However, keeping metabolic myevents local will cause metabolite explosion in
some compartment (e.g. mitochondria) and metabolite starvation in the others
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(e.g. cytosol). To circumvent this issue we define a new cross compartment event
called metabolite squad myevent (MetabSquad) that executed regularly every τ
squad unit of time and redistributes the metabolite across pairs of neighbor com-
partments. Ωk(i, j) ≤ 1, ∀i, j : i �= j is the portion of metabolite k molecules
in compartment i to be transported to neighbor compartment j. This ratio is
estimated in an iterative fashion. A pair of cellular compartments that can have
direct molecular transport between themselves are called neighbor compartments.

We employed FBA approach to determine the flux across the metabolic re-
actions. From a reaction flux we can determine the change in molecular-count
of a specific metabolite in the entire set of metabolic reactions in an arbitrary
epoch during experiment, given the steady state condition. The essence of the
FBA for a metabolic reaction founded on the assumption that the cell tends to
maximize the biomass yield in the steady state condition. The emerging prob-
lem is then mapped into a linear optimization problem where the solution to
this problem are optimum fluxes across sets of metabolic reactions given: the
reactants, products, and enzymes concentrations. The method to manipulate
the flux for a reaction across each metabolic myevent inter-arrival time briefly
includes following steps: (i) determine active reactions from the availability of
their participant molecular parts, (ii) determine the reaction direction by com-
paring the equilibrium constant of the reaction to the ratio of

∑
[procuts] to∑

[reactants] , where brackets in brackets indicate the concentration, (iii) de-
termine the weight of a reaction with respect to all set of reactions ( weight
of a reaction is inversely proportional to the number of reactions in which its
reactants participate), (iv) determine the reaction flux during time tmtb with
respect to the enzyme turnover number and metabolite constrains. tmtb is the
inter-arrival time between two metabolic myevetns which could be set to an ar-
bitrary constant value. The dilemma for setting tmtb value is choosing between
efficiency and the precision of the simulation (i.e. large versus short periods).

Noting that any myevent that appeared in the event networks and was not
discussed individually was modeled using stochastic reaction model proposed in
[18]. The model equation for the reaction between reactants A and B is replicated
here:

p(tA·B)=e(−λtA·B), λ−1 =
nA(rA+rB)2

V

√
8πkBT (mA + mB)

mA · mB
exp(

−EAct

kBT
)(1)

In the above equation λ is reaction rate, nA is molecular count of reactant A,
rx and mx are the average molecular radius and molecular mass of reactant x,
respectively, kB is the Boltzmann constant, T is the absolute temperature and
EAct is the activation energy of the reaction. Noting that, this model subjects
to further approximations given in supplementary materials.

4 In-Silico Results

The traces of plasticity is also observable in the expression profile of those genes
contributing to a specific substrate metabolism. On the other hand, metabolism
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of an abundant metabolite subjects to the promising availability of the transport
proteins and metabolic enzymes specific to that metabolite. Hence, a higher
gene expression profile is expected for the underlaying genes. Van Bilsen and
his colleagues [47] conducted an experiment for the rat heart and identified the
expression patterns for some of the genes contributing to the glucose and fatty
acid oxidations in the rat heart.

In such experiment the cardiac myocytes were forced to follow a certain pat-
tern in substrate (glucose and fatty acid) metabolism. The pattern imposed by
feeding the model animals with glucose rich food for 8 hours (feeding period)
and then letting them starve for the next 40 hours(fasting period). The starva-
tion forces the body to release the fat stored in adipocytes into the blood. This,
would let the other cells (e.g. cardiac myocyte) to uptake and oxidize the fatty
acids for their functions, which obligates activating the fatty acids-dependent
uptake and oxidation pathways. To validate our approach we utilized the pro-
posed methodology to conduct the above experiment in-silico at the molecular
level. To date of this paper no in-silico simulation tool or quantitative model has
been reported to have the capacity of capturing the system-level dynamics of a
cellular network for such a pro-long duration (i.e 48 hours).

To design the experiment we supplied 1.4 nM of each signaling proteins, 1.4
nM of each metabolic enzymes, and a basal level of transcript for each of the
genes listed in supplementary materials. Also 11 mM of the Octadecaontate (n-
18:0) which is a saturated stearic fatty acid was supplied as the exogenous fatty
acid resource. To mimic the short feeding period followed by a longer fasting
period we supplied the initial concentration of the glucose such that it would
last for ∼ 8 hours, where fatty acid concentration would last for entire course of
experiment. Hence, for the 40 hours following the initial 8 hours of experiment
only fatty acid would be available as the metabolic substrate. Noting that we
suspended the insulin signal once the glucose supply reached %5 of its initial
concentration. The choice of the stearic or palmitic fatty acid would not skew
the results since the stearic acid is converted to a palmitic acid by metabolic
reaction R FAOXC180 which is an oxidation-reduction reaction in β-fatty acid
oxidation pathway.

The fold change in concentration of the transcripts for those genes whose
data could be validated with published data is depicted in Fig. 6. Comparison
is shown at two time points for the feeding scenario discussed earlier between
the in-silico and empirical results. As observed the CPT1 which is a member
of CPTS increased during the fasting and ACADL which is Long-chain specific
acyl-CoA dehydrogenase was also induced during that period. The in-silico re-
sults shows that HK2 (hexokinase 2) which is a glycolysis pathway metabolic
enzyme remained constant during fasting where the empirical data suggested re-
duction by half fold for the same period. This may suggests a potential inhibitory
regulation which is not included in our simulation. Although both results agree
on the increase for Fatty acid-binding protein (FABP) during the fasting pe-
riod; however, in-silico results show a significantly higher fold which demands
for further regulatory mechanism not implement by our gene regulatory model.
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Fig. 6. Change in the expression profile of selected myocardial genes for normal feeding
period (after 8 hours) and fasting period after 48 hours. In-silico results and empirical
data are shown in blues and greens, respectively.

This proposition stays valid for ATP-citrate synthase (ACLY ) too, but this time
during the feeding period.

In Fig. 7.(a) we have shown the transcription regulatory effect of current
feeding scenario at four time points for the entire set of genes. The genes that
induced by FOXO1 show exponential increase in their expression profile after
5 hours of simulation. This happened because the insulin signal which would
negatively regulate those genes gradually diminished. Although the increase in
the expression level of these genes was expected; however, the reported quantities
in their expression profile subject to further validation with empirical data. Many
of the genes involved in fatty acid transport and oxidation pathway show a one
to two folds increase which is in agreement with the experimental data reported
elsewhere. Since very limited data was available on negative regulatory effects
of current transcription factors we were not successful to capture their negative
regulatory effects on the gene expression profiles.

To further observe the metabolic plasticity of a myocardial cell we also looked
into the metabolic fluxes, ATP synthesis and some substrates concentration pro-
file during the course of experiment. Fig. 7.(b) shows that during the early hours
experiment both exogenous substrates were highly utilized in energy production
of the cell, as a result ATP concentration increased exponentially. The concen-
tration of D-Glucose-6P follows an exponential decay which indicates a very high
utilization of glucose in cell. After initial raise in the concentration of intermedi-
ate metabolites, for the hours between 6 to 20 we observe a decline in the slope of
Stearoyl-CoA(18:0CoA) decay. The smoother slope is the consequence of nega-
tive regulation of CPT1 by Malonyl-CoA as well as marginal inhibitory effect of
insulin signal on fatty acid transport system [48], which we incorporated in the
event network as a slow reaction myevent on FAT/CD36. Reduction of Malonyl-
CoA concentration was followed by increased the activity of CPT1 which further
increased the rate of fatty acid oxidation after the first day (24 hours).

Fig. 8 shows the fluxes across all active metabolic reaction in Glycolysis I,
TCA cycle, pyruvate metabolism, and β-fatty acid oxidation pathways during
the course of in-silico experiment. The radius of circles show log(flux) value of
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Fig. 7. Effect of 8 hours period of normal feeding followed by 40 hours of fasting
on: (a) gene expression profile for all the genes in transcription regulatory network
underlaying the current in-silico experiment. (b) concentration of D-Glucose-6P(red),
Stearoyl-CoA(18:0CoA) (gray), and ATP in blue.

the reactions which were measured in 45 minute intervals, x and y axis are the
time and reaction index, respectively. From here we reconfirm that roughly there
was no flux across glycolysis pathway after 8 hours, where the flux across fatty
acid reactions fluxes varied but sustained during the entire course of experiment.

Following is a list of selected parameters along with their values that we used
in the simulation: Average myocardial cell volume = 40 × 10−15 m3 reported
in [49], nucleus volume is ∼ %10 of the cell volume [23], in myocardial cell
mitochondria occupies ∼ %30 of the cell volume [50], from data in literature we
estimated there are ∼ 4660 cardiac myocytes per 1mg wet cells (varies among
the samples). To convert any molecular counts in heart muscle to nano-Molar
concentration we divided the counts by 240.88×102. The weight per amino acid
was considered 0.11 KDa and an average weight of a eukaryotic cell ∼ 10−9

grams. The activation energy 9 < Ea < 21 kbT was used for the reaction model
governed by Eqn. 1 and temperature was set to T = 300 K. The complete list
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Fig. 8. Reaction fluxes for 25 active reactions: radius of each circle represents the log
value of the flux per reaction, numbers on the y axis correspond to the reaction indices
on the list to right of the chart

of parameters and their values is available upon the request from corresponding
author (amin.mazloom@mssm.edu).

The simulation engine was entirely written in JAVA where JVM was run-
ning in Windows XP environment. The in-silico experiment was conducted on
a stand alone Dell XPS-3000 machine, which had dual core 2.1 GHz P4 Intel
processors and 4 GB of DDR2 RAM. Forty eight hours of simulation time took
approximately two hours of CPU time.

5 Discussion

The proposed approach significantly reduced the computational cost of the
experiment. Computation complexity is a major factor that challenges most
system-level simulation efforts in biological networks. Appropriate design of the
insulin and fatty acid event diagrams which forms the road map for evolution
of the systems dynamics is essential in the of success of current approach. Al-
though there is no general role to follow for designing the details of an event
diagram, for instance where to incorporate a loop or when to aggregate a group
of events (e.g GLUT4 tethering and fusion events); nevertheless both experience
and practice as well as relevant data from biochemical and biological experi-
ments are particularly important. Including a loop could increase the speed of
the signal propagation in the subnetwork originated from that node by one fold.
Furthermore on the border of the signal transduction and metabolic networks
consistency in selecting of input/output resources is crucial for the evolution of
the system. Also most of the laboratory experiments on myocardium are at the
tissue and organ-level. Hence, we often have to apply certain approximations
or assumptions to re-scale experimental data to be beneficial for our in-silico
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simulation. Such mappings are not always trivial due to the missing vital data
components. The accuracy in capturing the dynamics of a myevents is directly
proportional to the precision of parametric physicochemical model that is asso-
ciated with the model. In the current study in several cases we applied a single
parameter probability distribution, further study is required to replace those
distributions with more realist and accurate formalisms. The proposed regula-
tory mechanism projects the regulatory effect of a TF to a stochastic binary
parameter with constant life time. Undoubtedly, real transcription regulatory
mechanisms are far more complex, yet we observed that the current model could
be a starting point in designing more complex and yet efficient transcription
regulatory models that fit the system level simulation paradigm of complex bi-
ological systems. Although the outlined approach demonstrated a high capacity
for system level simulation of a complex biological system such cardiac my-
ocytes; however, big knowledge gaps in the structure of the target system could
significantly diminish these capacity. Also designing a stochastic phytochemical
model that can properly capture the temporal behavior a biological process is a
particularly challenging task.

6 Conclusion

We established a novel framework in simulating the dynamics of biological net-
works with temporal heterogeneity across multiple cellular compartments. Inher-
ent stochasticity that exists in the cell environment is conserved in the current
in-silico framework. Furthermore, the proposed approach is scalable, very effi-
cient and fairly accurate compared to available methods for system level mod-
eling of biological systems. The promising capacities of the current approach
was demonstrated by utilizing that in conducting an in-silico experiment on the
metabolic plasticity of cardiac myocytes. We believe that current method could
be very constructive in hypothesis testings experiments, drug target analysis,
and cellular level study of diseases . Also the application of this approach is not
limited to the heart cell and could potentially be applied in any cell lineage.
Although the proposed method is sound in efficiency, yet demands substantial
work especially in establishing more promising physicochemical models as well
as the gene regulatory model to grant further accuracy to the results.
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