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Abstract. Understanding the complexity of the cellular machinery rep-
resents a grand challenge in molecular biology. To contribute to the de-
convolution of this complexity, a novel inference algorithm based on linear
ordinary differential equations is proposed, based on high-throughput gene
expression data. The algorithm can infer (i) gene-gene interactions from
steady state expression profilesAND (ii)mode-of-action of the components
that can trigger changes in the system. Results demonstrate that the pro-
posedalgorithmcan identify both informationwithhighperformances, thus
overcoming the limitation of current algorithms that can infer reliably only
one.

Keywords: gene network, gene expression, reverse engineering, Ordi-
nary Differential Equations (ODE), compound mode-of-action.

1 Introduction

Thanks to the fast moving and recent advancements in technology, our society is
assisting to an unprecedent high-throughput production of information coming
from a variety of areas of human activity. This comprises, but is not limited
to, economic, social and biological data. In particular, we focus our attention
on biomolecular data. To deconvolute the structure underlying such data, cross
fertilization from diverse areas of research, and notably the introduction of exact
sciences in the realm of biology, has been a fundamental requirement to mine the
complex interaction that explains the data we observe. However, the task is far
from completed, and although economical, sociological and molecular systems
own peculiar characteristics, advances in the deconvolution of the complexity
in any of these areas bears the potential to significantly contribute to explain
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the complexity of the global system we live in. In the area of molecular biology
several high-throughput platforms are quickly becoming available [1], however,
gene expression data represents at the moment the most abundant source of
molecular high-throughput information. This work focuses on the identification
of networks of interaction among genes. Networks of interactions identify gen-
eral relationships among the nodes of the network (genes), thus, a link in the
network may not represent a physical interaction (carried on by intermediate
molecules such as proteins). However, these algorithms can be extremely pow-
erful in the initial characterization of unknown systems, taking advantage of
low-cost, high-throughput screens and generating relevant in silico hypotheses
that can be further and efficiently tested in wet lab. Moreover, these algorithms,
thanks to their ability to reconstruct networks on genome-wide data, offer a sys-
temic perspective of the interactions. Depending on the model adopted, these
methods can infer a causality in the relationship (directed networks) or rather a
simple ’connection’ among items (undirected networks). Many methods [2] have
been proposed to reverse-engineer gene expression data, that can either take
advantage of the evolution in time of the state of the system (time series, i.e.
[3]), or of different equilibrium states reached by the system (steady state, i.e.
[4]). Our approach focuses on the latter, more abundant, steady state data. To
achieve different equilibrium states of the system, the system is perturbed in dif-
ferent ways (i.e. knock-out, knock-down, alterations in the growing medium) and
the resulting expression data is collected once the system has reached the novel
equilibrium. Algorithms that handle these data typically output a representation
of the gene network in the form of a graph or an adjacency matrix (here called
A, [4,5,6]). These networks represent the relationships occurring among genes,
and offer a first impression of the complex pathways that are being activated in
the system under study. Alternatively these algorithms offer an estimation, for
example in the form of a ranked list, of the genes that were directly affected by
the perturbation in the experiments [7] (here called P ). When the perturbation
is obtained adding a compound in the environment of the cell, the genes iden-
tified by P represent the direct targets of the perturbing agents that have been
used to alter the equilibrium. This identifies an information extremely valuable
in areas such as chemogenomics, where the identification of a small molecule’s
direct target (also called transcriptional perturbations) can provide fundamental
information on its use as a drug. Because of this, P is also known to repre-
sent the mode-of-action of the perturbing compound. So far, a priori knowledge
of the direct targets of perturbation was required for a proper identification of
A [4], or alternatively, the identification of an estimate of P was not able to
produce a reliable representation of A [7], due to the high sensitivity of the al-
gorithms to errors in P . With our novel approach we aim at the identification of
both the gene network (A) and the single direct target matrix (P ), overcoming
the current limitation, while preserving and improving both performances. Our
approach can handle efficiently experiments resulting in single transcriptional
perturbations. Single transcriptional perturbations are useful to be quantified
when the entity of a single gene knock-down is unknown and when the action
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of perturbagens is supposed to target predominantly an individual (unknown)
transcript or protein, rather than several elements of a pathway. In the follow-
ing we present related methods (Section 2), details of our algorithm (Section 3),
validation results (Section 4) and their interpretation (Section 5).

2 Related Work

Number of approaches are being designed and tested to uncover the complexity
of molecular interactions. In the following we briefly describe currently used tools
based on Bayesian theory (Banjo, [6]), information science approach (ARACNe,
[5]) and ordinary differential equations (ODE, NIR and MNI [4,7]), that have
proven to be useful in the identification of gene networks or compounds mode-of-
action. All the above methods can handle steady-state data. Banjo [6] generates a
network space and screens then the best network structures attributing the most
appropriate conditional density function, by optimization of an objective func-
tion (Bayesian Dirichlet equivalence, or Bayesian information criterion). Banjo
can reconstruct signed directed network indicating regulation among genes, but
it cannot infer networks involving cycles (or loops). ARACNe (Algorithm for Re-
construction of Accurate Cellular Networks, [5]) is regarded as an information-
theoretic approach to gene network inference. It computes mutual information
(MI, [8]) for all pairs of genes profiles to estimate the independence between
genes and uses strategies (Data Processing Inequality, DPI) to successfully fil-
ter out the number of false-positive interactions. ARACNe cannot reconstruct
directed networks. Our approach is strongly rooted in two ODE-based methods
previously developed and validated. Namely, we used as a starting point NIR [4]
able to infer the network of genes interactions (A), provided the perturbations
(P ) are known, and MNI [7], able to rank the most likely direct target genes of
perturbations (estimate of P ). Briefly, these algorithms aim at the identification
of the function that describes the variation of gene expression matrix x over time
x′ = f(x, p), with x representing the steady state expressions of the N genes in-
volved in the network across M experiments, f is a non linear function that mod-
els how the expression values x and M experiments provoking external influences
p modify the genes’ activity. Assuming steady state and small perturbations,
these equations can be linearized around the equilibrium state, and become, for
a scalar element of the expression matrix x′

il =
∑

j aijxjl + pil = aT
i · xl + p

il
with i, j = 1..N indicating genes and l = 1..M experiments. In matricial form
and at equilibrium this becomes AX = −P , with A being the N by N network
matrix (aij represents the action of gene j on gene i), X the expression data
(xil represents the expression of gene i in experiment l) and P the matrix of
transcriptional perturbations (pil represents the transcriptional perturbation of
gene i in experiment l), explaining the origin of our notations. These approaches
assume that only a limited number of connections among genes are possible, to
reflect the structure of the molecular pathways. Based on this sparsity assump-
tion, NIR uses multiple linear regression to infer the connections among genes.
Conversely, MNI is trained on the expression data in X to evaluate A and P
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through an iterative process based on the minimization of an objective function
(Sum of Square Errors, SSE).

3 Method

Our approach aims at identifying A and P based solely from the expression
data X , thus overcoming the necessity to have a priori information on the direct
target of the perturbation (P ), which is very often an important unknown of the
problem. To achieve this goal, we sought to chain the two algorithms in order
to use the prediction of MNI to feed NIR and infer the network. To do so, our
algorithm uses iteratively M − 1 experiments in X to predict the M -th column
(experiment) of P , as a ranked list of most likely targets. Due to the intrinsic
noise of the data and the limited deterministic predictive power of MNI, the
reliable identification of A, P is not trivial, especially when predicting complex
data, as it can be shown in Section 4, in the varying performances of MNI+NIR,
which represent the trivial chaining of the 2 algorithms (output of MNI used
directly as P for NIR, see Figure 1(a)). For this reason, other strategies had to
be integrated, schematically shown in Figure 1(b). Based on previous acronyms
(and on the obsessive search for the network identification) we call this new
approach Mode of Action & Network Identification Approach (MANIA).

In this approach, an estimate of P is produced by MNI, called PMNI , this
matrix contains the top ranking perturbations (we tested 1 and 10 top best,
parameter topP ), while all other values of PMNI are set to zero. When choosing
the single top perturbation option (topP = 1), the algorithm should perform at
its best, provided MNI reliably identifies the correct transcriptional perturba-
tion as the most likely (i.e. the best prediction is indeed the gene target). In this
case, in fact, no noise is added; however, we also tested the algorithm preserv-
ing the top 10 best predictions (topP = 10), to offer backup solutions in case
MNI is not able to find the correct perturbation as first choice. The core step
of the algorithm consists of the strategy used to clean PMNI from the incorrect

Fig. 1. Schematic view of the trivial chaining of MNI and NIR and of the strategies
implemented in MANIA, discussed in Section 3
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predictions, so that only the appropriate perturbation is used in NIR to predict
A. This strategy consists of two steps. The first is the iterative computation of
all the solutions for a given row of A, using all the predictions offered by PMNI .
The solutions are then ranked and only the topM best are preserved (along with
the corresponding perturbations) while computing the following rows. However,
this step alone is not sufficient, since, often, the solution that minimizes the
objective function (SSE) produces a local minimum of the objective function.
Choosing this solution can result in the identification of a unique minimum for
P and thus for all the rows of A. To overcome this issue, information about the
previous rows computed in A are used. Thus, another parameter (windows) has
been introduced to indicate the number of rows used as previous knowledge to
calculate and minimize SSE. In particular, SSE is computed on all the topM
solutions as X = −A−1

tmpP , where Atmp is the identity matrix (self-relation is
always assumed true) with the corresponding windows rows replaced by the so-
lutions already computed. By construction A is always invertible. For each row
of A and P only the best topM solutions are preserved before computing the
following rows of A, P . In our simulations, we set windows = 5 and topM = 200.
In our experience, these values represent a good compromise between computa-
tion time and accuracy. Pseudocode in Algorithm 1 gives more details about the
process.

4 Experimental Results

To validate our approach, we used two known benchmark datasets (here called
Dataset 1 [2] and Dataset 2 [9]), and compared our performances to state-of-the-
art algorithms briefly summarized in Table 1. These algorithms were used with
their default parameters values.

Dataset 1. This dataset consists of 20 instances of expression matrices X with
100 genes and 100 experiments, obtained from 20 instances of network matrices
A with sparsity 10 (indicating a maximum of 10 possible interactions for each
gene), and single perturbation for P (identity matrix). Gaussian noise (10%) is
added to expression data to better mimic real data. Performances are computed
using positive predictive value (PPv, also called accuracy) defined as TP/(TP +
FP ) and Sensitivity TP/(TP + FN), where TP ,FP and FN stand for True
Positive, False Positive and False Negative, respectively. Results were averaged,

Table 1. Network inference algorithms used for performances comparison

Software Download link Model
BANJO www.cs.duke.edu/ amink/ Bayesian method

software/banjo
ARACNe www.amdec-bioinfo. Information-theory method

cu-genome.org/html
MNI/NIR http://dibernardo.tigem.it/ ODE based method

wiki/index.php
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Input: gene expression profiles matrix X, user defined parameters

Output: Adjacency matrix A of gene network; mode-of-action matrix P

N:number of genes;

M: number of experiments;

topP: max number of perturbations proposed by MNI preserved in PMNI

per experiment;

topM: max number of solutions preserved per each row of A;

windows: max number of previously computed row preserved;

for i← 1 to M do
Compute PMNI(:, i) with MNI from X(:, [1..i − 1, i + 1..M ]);

end
Sort PMNI columnwise in descending order → pIdx sorted index

matrix of PMNI;

arrayA1:topM ← NULL;

arrayP1:topM ← NULL;

for i← 1 to N do
for j ← 1 to topP do

Create perturbation matrix Pmat in two steps:

(a). Pmat← O(zero-matrix);

(b). Pmat(pIdx(j,m), m)← PMNI(pIdx(j,m), m) , where

1 ≤ m ≤M ;

Get j-th perturbation vector Pi(j, :) = Pmat(j, :);
for k ← 1 to Total number of all combinations of non-zero perturbations
in Pi(j, :), say Pijk do

compute i-th row of A, i.e. Aijk, with NIR and perturbation

Pijk;

compute Atmp,ijk as identity matrix with windows rows of

arrayAh(1 ≤ h ≤ topM) and Aijk as i-th row;

compute Ptmp,ijk as zeros matrix with previous windows rows

of arrayPh(1 ≤ h ≤ topM) and Pijk as i-th row;

compute SSEijk = (X − A−1
tmp,ijk · Ptmp,ijk)2 ;

end

end
Rank SSE and select topM Aijk solutions;

for h← topM do
arrayAh = [arrayAh(1 : i− 1, :); Atmp,h(i, :)] ;

arrayPh = [arrayPh(1 : i− 1, :); Ptmp,h(i, :)] ;

end

end
A = arrayA1;

P = arrayP1;

Algorithm 1. Pseudocode for MANIA. Matricial notations follow Matlab syntax:
M(:, i) indicates column i in matrix M , M(i, :) indicates row i in matrix M .
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and proved to be stable with st.dev < 0.08 in all cases (standard deviations of
PPv/sensitivity for undirected networks are 0.07/0.07, and 0.06/0.06 for directed
networks).

Dataset 2. This dataset comes from the Dream2 Competition (Heterozygous
InSilico 1, Challenge 4) organized by the DREAM (Dialogue for Reverse Engi-
neering Assessments and Methods, [9]) consortium, whose objective is to cat-
alyze the interaction among researchers and improve progresses in the area of
cellular network inference. Data was generated using simulations of biological
interactions. Namely, the rate of synthesis of the mRNA of each gene is con-
sidered to be affected by the level of mRNA of other genes. For these reasons,
this represents a valuable and challenging benchmark to test reverse engineering
approaches. This dataset contains steady state levels of 50 genes of an hypo-
thetical wild-type organism and 50 heterozygous knock-down strains. All ODE
algorithms were tested assuming the number of connections associated with each
gene (connectivity of the network, and sparsity of the matrix) is 10, including
self-connection. Data were preprocessed with log-transformation of the expres-
sion ratio for each gene (knock-down vs wild-type strains). Ratios corresponding
to null levels of expression in wild-type were treated as unknown values, and
were set to zero as it was done in [4]. Standard deviation of each entry of the
data matrix X was computed against the 25-nearest neighbors of the gene of
interest, with the approach illustrated in [4]. Finally before computing A, the
absolute value of PMNI was normalized column-wise for numeric stability con-
sideration, however this step does not affect the results. Besides evaluating PPv
and Sensitivity (ROC curves), the adjacency matrix A was also scored following
the procedure adopted in the DREAM 2 Challenge, after scoring the connections
of A (normalizing the absolute values). Results were graded using the area under
the curve (AUC) for ROC (false positive vs true positive rate) and precision-
versus-recall curve (Prec vs Rec)) for the whole set of predictions. For the first

Table 2. Matrix A performance results of Dataset 1. MNI+NIR represents the trivial
chaining of MNI and NIR, with no strategy to identify the best performances and
keeping the single first best and 10 first best predictions of MNI (called respectively
MNI+NIR1 and MNI+NIR10). The same values were used for MANIA. Random refers
to the expected performances of an algorithm that selects pairs of genes randomly and
then infers an edge between them.

Directed Undirected

Algorithm PPv Sensitivity PPv Sensitivity

MNI+NIR1 0.84 0.75 0.86 0.76
MNI+NIR10 0.18 0.15 0.27 0.23
MANIA1 0.89 0.81 0.95 0.81
MANIA10 0.75 0.68 0.79 0.70

NIR 0.96 0.86 0.97 0.87
ARACNe - - 0.56 0.28
BANJO 0.42 - 0.71 0.00
Random 0.10 - 0.19 -
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k predictions (ranked by score, and for predictions with the same score, taken
in the order they were put in the prediction files), Precision was defined as the
fraction of correct predictions to k, and Recall was the proportion of correct
predictions out of all the possible true connections.

Figure 2 is the graphical version of the results of Table 3.
Table 4 and Figure 3 give the results produced by the algorithms for the

performances on the directed network. Although MANIA always shows good

Table 3. Performance Results on Dataset 2 on A undirected network

Precision at nth Correct Prediction AUC

Algorithm 1st 2nd 5th 20th Prec vs Rec Curve ROC Curve

MNI+NIR1 1.0000 1.0000 0.8333 0.4651 0.2859 0.6965
MNI+NIR10 0.0909 0.0609 0.1219 0.1639 0.1158 0.6230
MANIA1 0.5000 0.4000 0.5556 0.5714 0.3513 0.7957
MANIA10 1.0000 1.0000 0.6250 0.5405 0.3014 0.7191

NIR 1.0000 1.0000 1.0000 1.0000 0.5968 0.8202
ARACNe 1.0000 1.0000 0.5000 0.3279 0.2143 0.6658
BANJO 1.0000 0.3333 0.3125 0.4167 0.1900 0.5925
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Fig. 2. Performances for A on Dataset 2. AUC Curves for undirected network.

Table 4. Performance Results on Dataset 2 on A directed network

Precision at nth Correct Prediction AUC

Algorithm 1st 2nd 5th 20th Prec. vs Rec Curve ROC Curve

MNI+NIR1 0.5000 0.6667 0.5556 0.3279 0.1921 0.6999
MNI+NIR10 0.1429 0.2222 0.1724 0.1835 0.1107 0.6864
MANIA1 0.5000 0.4000 0.6250 0.3846 0.2258 0.7877
MANIA10 1.0000 0.6667 0.5556 0.3448 0.2066 0.7232

NIR 1.0000 1.0000 1.0000 1.0000 0.5781 0.8314
BANJO 0.5000 0.6667 0.2174 0.0559 0.0724 0.5441
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Fig. 3. Performances for A on Dataset 2. AUC Curves for directed network.

Table 5. Performance Results on Dataset 1 and Dataset 2 for the ODE-based algo-
rithms that can predict P

Dataset 1 Dataset 2

PPv Sensitivity PPv Sensitivity

MNI+NIR1 0.870 0.870 0.540 0.540
MNI+NIR10 0.094 0.920 0.066 0.660
MANIA1 0.950 0.860 0.750 0.540
MANIA10 0.798 0.830 0.526 0.600

performances, in this test, interestingly, it also clearly outperforms other ODE-
based algorithms. Possible reasons for this are discussed in Section 5.

5 Discussion

We have tested our approach against 4 different algorithms and across 2 datasets
interpreted as directed and undirected networks. In general, MANIA can perform
better than the state-of-the-art non-ODE approaches listed in Table 1, which
were used by setting parameters to their default values, and comparably well or
superiorly to ODE approaches as NIR or MNI+NIR. Our objective was to infer
A with performances as close as possible to NIR, which we considered as our gold
standard [2]. Before discussing further the performances, it is worth noting that
comparison between MNI+NIR and MANIA were done with the purpose to as-
sess the validity of the enhancements proposed, compared with our simpler idea
of directly chaining the two approaches (MNI and NIR). We figured that, given
the reasonably good performances of MNI on the identification of one perturba-
tion, MNI+NIR would be advantaged when used with the parameter topP = 1,
which offers to NIR the best possible P . In order to perform a fair comparison,
MANIA was also tested with this value of the parameter, however, we expected
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MANIA to perform better when it can take advantage of more proposed solu-
tions. Our final goal was to assess if, despite the expected variable performances
of the two algorithms with different parameter setting, MANIA could be able
to identify solutions with global better performances. This is indeed true for
the final output of A, and performances remain superior or comparable for the
identification of P , indicating that the modification introduced in the multiple
regression step defined in MANIA contribute to improve the final results. Overall
MANIA has proved to be comparable or to outperform the simplified approach
MNI+NIR, even when using identical parameter topP , thus, it guarantees more
stable performances, and offers results comparable to NIR, with no need for a
priori information on P . With respect to the identification of P , MANIA shows
stable and robust results comparable or outperforming MNI+NIR. These results
are confirmed when coming to the identification of A. In particular, when tested
against simple models for simulations (Dataset 1) the performances of MANIA
and MNI+NIR are inferior to NIR, however they do not degrade much and both
algorithms have the fundamental advantage to infer A from expression data only.
In the validation on Dataset 2 a more complex and realistic model, these trends
are confirmed, with even less variance in the performances, and highlighting the
superiority of MANIA. This supports the introduction of the algorithmic vari-
ations peculiar to MANIA. Since NIR was the best algorithm tested on this
dataset in the Challenge DREAM 2, the possibility to preserve or degrade lit-
tle the performances under more difficult conditions, represents an important
achievement. In general, compared to the best performing algorithm NIR, MA-
NIA has comparable performances in accuracy and the great advantage of not
requiring a priori knowledge on the targets of the perturbations. Compared to
NIR+MNI it has higher ability to remove the noise in matrix P, a characteristic
that becomes more and more crucial when the network represents more complex
interactions. Although at this level of analysis this is only speculation, it is quite
reasonable to assume that real network are indeed complex ones. At the other
hand, the lack of a priori information about P makes MANIA need to search
for an optimal P in a space spanned by PMNI , which increases its computation
effort when compared to NIR or MNI+NIR. From the Algorithm in section 3,
the main time cost is in the line of the computation of SSE involving inversion
which takes O(N3), thus MANIA scales as O(N4). Therefore MANIA can infer
networks with up to about thousands of vertices in reasonable time. However,
MANIA is easily parallelized (row-wise computations of A), and can thus handle
larger networks in reasonable time.

6 Conclusion

In this paper, a new reverse-engineering algorithm (MANIA) has been proposed,
which effectively couples two assessed approaches MNI and NIR and overcomes
their limitations, while preserving their performances. In our simulation exper-
iments, we have shown that MANIA can identify the network of interactions
among genes from steady state experiments provided single perturbations are
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causing the expression variations. This covers several applications, like single
gene knock-down or systematic small molecules testing [10], when assuming the
perturbation affects a single target. These are two widely used experimental
approaches with applications in chemo- and pharmaco-genomics and model or-
ganism research. Although MANIA performed encouragingly, it is worth noting
that there is only one single gene perturbed in each experiment in the system
under study. Our current work consists in the identification of a proper heuristic
for extending this application to multiple perturbation targets and apply the
validation to a larger variety of cases.
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