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Abstract. The causal states of computational mechanics define the
minimal sufficient (prescient) memory for a given stationary stochas-
tic process. They induce the ε-machine which is a hidden Markov model
(HMM) generating the process. The ε-machine is, however, not the min-
imal generative HMM and minimal internal state entropy of a generative
HMM is a tighter upper bound for excess entropy than provided by statis-
tical complexity. We propose a notion of prediction that does not require
sufficiency. The corresponding models can be substantially smaller than
the ε-machine and are closely related to generative HMMs.
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1 Introduction

Computational mechanics is a theory developed by Crutchfield, Young, Shalizi
and others ([1,2]). It tackles the problem of building predictive models of sta-
tionary stochastic processes1 and finding the minimal such model. This problem
is solved by the so-called ε-machine which operates on the causal states. Al-
though the ε-machine is a hidden Markov model (HMM) and minimal under the
assumptions of computational mechanics, it is (in general) distinct from and can
be much larger than the minimal HMM capable of generating the process. In the
literature, this distinction is not always clear. Also, minimal entropy of a gen-
erative HMM provides a tighter upper bound for excess entropy than statistical
complexity does (see Example 7).

In the present paper, we compare and highlight the difference between the ap-
proach of computational mechanics, which is based on the fundamental concept
of sufficient statistics, and the construction of the minimal generative HMM. We
propose a notion of predictive model that is weaker than sufficiency and thereby
allows for smaller models. More specifically, we require our models to be able to
generate a prediction of the future that follows the same conditional distribu-
tion as the real future (Section 4). It turns out that if a process is generated by

1 Extensions to spatio-temporal systems exist, but we do not consider them here.

J. Zhou (Ed.): Complex 2009, Part I, LNICST 4, pp. 265–276, 2009.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009
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an HMM, the minimal predictive model in our sense cannot be larger than the
original HMM. We have already presented main idea and results of the present
paper in [3]. Therefore, we omit the proofs of the propositions in this less tech-
nical review; they can be found in the appendix of [3]. Complementary to [3], we
discuss the relation between excess entropy, statistical complexity and the size
of generative HMMs (Corollary 6 and Example 7).

2 Sufficient Statistics and Causal States

Consider a stationary stochastic process X� = (. . . , X−1, X0, X1, . . .) on a dis-
crete alphabet D. We interpret X−�0 as the observed past and X� as the future,
which we want to predict. Not all information of X−�0 is necessary for predict-
ing X�. Therefore, one tries to compress the relevant information in a memory
variable M , which assumes values in a set M of memory states, via a memory
kernel (transition probability) mem. This is illustrated as

X−�0
��

mem
�������������� X�

M

Sometimes, we call both the memory variable M and the memory kernel mem
simply memory. No confusion arises, as one determines the other. For technical
simplicity, we restrict to countable M, although this restriction is not necessary
(see the appendix of [3]).

The usual approach in computational mechanics is to consider the special
case of deterministic functions instead of memory kernels mem, but recently an
extension to stochastic maps has been considered by Still and Crutchfield ([4]).
We adopt this extension and do not require mem to be deterministic, allowing
for a stochastic assignment. That is

mem : D−�0 → P(M) measurable,

where P(M) denotes the set of probability measures on M. Note that M is embed-
ded in P(M) via Dirac measures and thus a (measurable) deterministic memory
function f : D−�0 → M induces a memory kernel memf (x−�0) = δf(x−�0), where
δm is the Dirac measure in m. In general, mem reduces the information about
the future, which is expressed by the following inequality:

I(M : X�) ≤ I(X−�0 : X�) =: E(X�).

where I denotes the mutual information between two random variables2 and
E is the excess entropy, an important complexity measure also known as ef-
fective measure complexity and predictive information ([5,6]). In computational

2 X−�0 and X� are not discrete-valued. Their mutual information is defined by the
limit I(X−�0 : X�) := supn,m I(X[−n,0] : X[1,m]) = limn→∞ I(X[−n,0] : X[1,n]).
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mechanics, one requires that the memory preserves all information about the
future. This property is called prescient ([2]) and formalized by

I(M : X�) = E(X�). (1)

It is this central requirement that ensures minimality of causal states (Proposi-
tion 1) and ε-machine while ruling out smaller hidden Markov models. We will
relax it in Section 4 to a different notion of “predictive”. Requirement (1) is
equivalent to conditional independence of past and future given the memory:

X−�0 ⊥⊥ X� | M.

Using the language of statistics, we say that such a memory is sufficient for the
future, or simply that M is a sufficient memory. Sufficient memories are the
candidates for predictive models proposed by computational mechanics. It is nat-
ural to ask how big a sufficient memory has to be and how to obtain a minimal
one. There are mainly two possibilities to measure the size of a memory: cardinal-
ity |M| of the set of memory states and Shannon entropy H(M) of the memory
variable. Both notions of size, however, yield the same notion of minimality and
the unique solution is given by the causal states, which are constructed in the
following way: We identify two history trajectories, x−�0 , x̂−�0 ∈ D−�0 , if they
induce the same conditional probability on the future, i.e.

x−�0 ∼ x̂−�0 :⇔ P (X� | X−�0 = x−�0) = P (X� | X−�0 = x̂−�0) .3

The causal state C(x−�0 ) of x−�0 is its equivalence class,

C(x−�0) := { x̂−�0 | x−�0 ∼ x̂−�0 },
and the function C defines a deterministic sufficient memory (see [2]).4 Its set of
memory states is the set of causal states,5

MC := Im(C) =
{

C(x−�0)
∣
∣ x−�0 ∈ D−�0

}
,

and the memory kernel memC is defined by memC(x−�0 ) = δC(x−�0), the Dirac
measure in the corresponding causal state. It is well-known that the set MC of
causal states is the minimal prescient partition of D−�0 . Consequently, memC

is the minimal sufficient deterministic memory. This property easily extends to
the non-deterministic case:

Proposition 1 (minimality of causal states). Any sufficient memory with
set M of memory states and memory variable M satisfies

|M| ≥ |MC| and H(M) ≥ H(MC).
3 P (X | Y = y) = P (X | Y = ŷ) means that P (X ∈ B | Y = y) = P (X ∈ B | Y = ŷ)

for every measurable set (event) B.
4 We fix a regular version of conditional probability P (X� | X−�0). Therefore, the

function C is measurable and the causal states are measurable subsets of D−�0 .
5 In general, MC need not be countable. Here, we restrict to processes with a countable

number of causal states. For the more general case, see the appendix of [3].
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Due to the minimality of the causal states, their entropy

CC(X�) := H(MC)

is an important complexity measure called statistical complexity. It is evident
from (1) that statistical complexity is lower bounded by excess entropy.

A memory kernel mem does not only induce a (random) memory state M =
M0 at time zero, but a whole stationary process M� of memory states. The
conditional distribution of M� is computed as

P (M[0,T ] = m[0,T ] | X� = x�) =
T∏

k=0

mem(x]−∞,k]; mk), T ∈ �0,

where we use the notation [0, T ] for the discrete interval { 0, . . . , T } and M[0,T ] =
m[0,T ] for M0 = m0, . . . , MT = mT . Note that the process M� of a sufficient
memory need not be Markovian. However, the memory process of the minimal
sufficient memory, i.e. the process of causal states, is always Markovian ([2]).

3 Hidden Markov Models (HMMs) and ε-Machine

Sufficient memories, such as given by the causal states, contain all information
about the future that is available in the past. How do we actually extract this
information and justify the term “model” for sufficient memories? In compu-
tational mechanics, the ε-machine describes the mechanism of prediction. It is
defined as a stochastic output automaton, i.e. a “machine” with the following
components: It has a set S of internal states and is initialized by one of these
states according to some initial probability distribution μ ∈ P(S). We assume S
to be countable for technical simplicity. At each time step t, depending on the
current internal state St, an output symbol Yt+1 from the finite alphabet D and
a new internal state St+1 are (stochastically) generated. This is modeled by a
joint transition probability gen from the internal states to output symbols and
internal states:

gen : S → P(D × S).

Thus the pair (gen, μ) of generating mechanism and initial distribution induces
processes S�0 , Y�0 of internal states and output symbols. The situation is illus-
trated as

S0
��

���
��

��
��

S1
��

����
��

��
� S2 ···· ST−1

��

����
���

�� ST

Y1 Y2 ···· YT−1 YT

The joint distribution of internal- and output process is computed according to

P (S[0,T ] = s[0,T ], Y[1,T ] = y[1,T ]) = μ(s0)
T∏

k=1

gen(sk−1; yk, sk), T ∈ � .6

6 gen(s; y, ŝ) denotes the probability of the pair (y, ŝ) w.r.t. the measure gen(s).
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Stochastic automata are also widely known as edge-emitting hidden Markov mod-
els.7 We use this terminology, but for brevity we call the pair (gen, μ) hidden
Markov model (HMM ) and always mean edge-emitting HMM.

If the initial distribution μ is gen-invariant, i.e. if

μ(s) =
∑

ŝ∈S, d∈D

μ(ŝ) gen(ŝ; d, s) ∀s ∈ S,

then the processes S�0 and Y�0 are (jointly) stationary and uniquely extended
to processes S� and Y� respectively. We then call the HMM stationary. Because
our aim is to investigate given processes X� with time set �, we assume in
this section that μ is gen-invariant. If the law of the output process Y� of a
stationary HMM (gen, μ) coincides with the law of the given process X�, the
HMM is a generative model for the process of interest: we can easily simulate and
investigate statistical properties of X� by means of the HMM. We call such an
HMM generative. A generative HMM is a possibility, how the process X� might
have been produced, although it is of course highly non-unique. The question
about a minimal generative HMM suggests itself. With “minimal” we either
mean minimal cardinality |S| of the set of internal states or minimal entropy
H(μ) = H(S0) of the invariant initial distribution. Unlike in the situation of
sufficient memories, these two notions do not coincide (see Example 7).

Finding the minimal generative HMM is intrinsically difficult,8 but every suf-
ficient memory M induces an HMM, thus providing an upper bound. In general,
the process of internal states of the associated HMM cannot have the same dis-
tribution as the process M� of memory states, because the latter process need
not be Markovian. The (first order) Markov approximation of the joint process
(M�, X�), however, yields the desired HMM:

Proposition 2 (sufficient memories induce generative HMMs). Let
mem be a sufficient memory kernel and M� its process of memory states. Then
a generative HMM is given by S := M, μ(s) := P (M0 = s) and

gen(s; d, ŝ) := P (X1 = d, M1 = ŝ | M0 = s).

Example 3 (ε-machine). If we take the causal states as sufficient memory, the
HMM (genC, μC) constructed in Proposition 2 is the ε-machine of computational
mechanics. As the process of causal states is already Markovian, the ε-machine
fully describes the (statistics of the) time evolution of the causal states. ♦
The causal states provide the minimal sufficient memory and induce the ε-
machine. But is the latter also the minimal generative HMM? In general, the
answer is “no”. The ε-machine may be arbitrarily much bigger than the minimal
HMM. It can be infinite or even uncountable, while there is a generative HMM
7 “Edge-emitting” means that in visualizations as transition graphs the output sym-

bols appear as edge labels.
8 A geometric condition for minimality in terms of cardinality was specified by Heller

in [7], but no constructive algorithm is known to us.
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0 1

1|p

0|p

0|1 − 2p 1|1 − 2p1|p 0|p

Fig. 1. Transition graph of the generator defined by (2). Circled nodes are internal
states and edges are transitions, labeled with output symbol x and transition proba-
bility q as “x|q”.

with only two internal states. This was already mentioned by Crutchfield in [8],
but not everyone who applies computational mechanics seems to be aware of the
fact. In the following, we give an example of this phenomenon.

Example 4 (uncountable ε-machine). We define the observable process X�

by a stationary HMM with D := S := { 0, 1 }. It is clear that there is a generative
HMM with two internal states, namely the original one. Nevertheless, the number
of causal states (and thus the ε-machine) turns out to be uncountable. The
initial distribution μ of the HMM is the uniform distribution. With a parameter
0 < p < 1

4 , we define the generator by

gen(s; x, ŝ) :=

⎧
⎪⎨

⎪⎩

1 − 2p, if ŝ = x = s

p, if x �= s

0, otherwise
. (2)

See Figure 1 for an illustration of the transition graph. It is easy to check that
μ is gen-invariant. One can show (see [3]) that the conditional probability for
the internal state given a finite history behaves as follows: There exist intervals
In(x[−n,0]), disjoint for fixed n, such that

P (S0 = 1 | X[−n,0] = x[−n,0]) ∈ In(x[−n,0])

and the intervals are nested for increasing n, i.e.

In+1(x[−n−1,0]) ⊂ In(x[−n,0]).

Note that P (S0 | X−�0) = limn→∞ P (S0 | X[−n,0]) (a.s.) and that histories
inducing different expectations on S0 also induce different expectations on X�.
Consequently, every causal state contains at most two (infinite) histories.9 ♦
9 This is true for the canonical version of conditional probability P (X� | X−�0 =

x−�0) = limn→∞
∑1

s=0 P (S0 = s | X[−n,0] = x[−n,0])P (X� | S0 = s). Note that
this limit always (not only a.s.) exists. Other choices may produce identifications on
sets of measure zero, but still lead to uncountably many causal states.
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0 1

1| 1
2
(1 − ε)

0| 1
2
(1 − ε)

0| 1
2
(1 + ε) 1| 1

2
(1 + ε)

Fig. 2. ε-machine for a “nearly i.i.d.” Markov process

Analogously to statistical complexity, one can consider the minimal internal-
state entropy of a generative HMM:

Definition 5. Let X� be a stationary process. We call the quantity

Chmm(X�) := inf
(gen,μ)

H(μ),

where the infimum is taken over all generative HMMs, generative complexity.

For any generative HMM, Y−�0 → S0 → Y� is a Markov chain and I(Y−�0 :
Y�) = I(X−�0 : X�). Therefore, the internal state entropy H(μ) = H(S0) is
lower-bounded by the excess entropy. Together with Proposition 2 we obtain

Corollary 6. E(X�) ≤ Chmm(X�) ≤ CC(X�)

The following example demonstrates that for some processes both inequalities in
Corollary 6 are strict. It also illustrates that HMMs with minimal entropy need
not have the minimal number of internal states.

Example 7. Let D := { 0, 1 } and consider the stationary Markov process Xε
�

defined by

P (Xε
0 = d) := 1

2 and P (Xε
n+1 = d̂ | Xε

n = d) :=

{
1
2 (1 + ε), if d = d̂
1
2 (1 − ε), if d �= d̂

.

Xε
�

is a disturbed i.i.d. process with disturbance of magnitude ε towards a con-
stant process: For ε = 0, it is i.i.d. and for ε = 1 it is constantly 0 or 1, each with
equal probability. For 0 < ε ≤ 1, there are two causal states which correspond to
the last observed symbol. The ε-machine is visualised in Figure 2 and statistical
complexity is given by

CC(Xε
�
) = H(Xε

0) = ln(2),

regardless how small the parameter ε is. At ε = 0, ε → CC(Xε
�
) has a disconti-

nuity and assumes the value 0. The excess entropy behaves differently: at ε = 1
and ε = 0 it coincides with statistical complexity, but it is continuous in ε and
behaves like 1

2ε2 for small ε. It can easily be calculated:

E(Xε
�
) = I(Xε

1 : Xε
0) = 1

2

(
(1 + ε) ln(1 + ε) + (1 − ε) ln(1 − ε)

)
.

Now we show that for sufficiently small ε > 0, the generative complexity is
strictly greater than excess entropy and strictly smaller than statistical com-
plexity, i.e. E(Xε

�
) < Chmm(Xε

�
) < CC(Xε

�
).
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0 2 1

0|1 − ε

0| ε
2

1| ε
2

1|1 − ε

0|ε 1|ε

0| 1−ε
2

1| 1−ε
2

Fig. 3. HMM for the same Markov process as in Figure 2. The internal state entropy
is lower, as node 2 carries nearly all weight: με(2) = 1 − ε.

It is clear that no HMM can do with less than two internal states, but we can
construct an HMM with lower internal state entropy on three states. The idea
is to have one state corresponding to the i.i.d. process and getting most of the
invariant measure when ε is small. The other two states correspond to the distur-
bances towards constantly 0 and 1 respectively. More precisely, let S := { 0, 1, 2 }
and consider the stationary HMM given by the generator visualized in Figure 3

together with the invariant initial distribution με(s) =

{
1 − ε, if s = 2
ε
2 , if s ∈ { 0, 1 } .

It is straightforward to verify that this HMM indeed generates Xε
�
. The internal

state entropy is given by

H(με) = −(1 − ε) ln(1 − ε) − ε ln( ε
2 ) ε→0−→ 0.

Thus it is smaller than CC(X�) for sufficiently small ε. On the other hand, any
generative HMM has to take the “disturbance of magnitude ε” into account: It
is easy to see that no single internal state can get greater invariant measure than
1 − ε

2 . Thus the generative complexity is lower bounded as follows:

Chmm(Xε
�
) ≥ L := −(1 − ε

2 ) ln(1 − ε
2 ) − ε

2 ln( ε
2 ) ≥ − ε

2 ln( ε
2 ).

This bound converges to zero slower than linearly in ε. Consequently, for suffi-
ciently small ε, excess entropy cannot be achieved or approximated by entropies
of generative HMMs. The different entropies are plotted in Figure 4. ♦

4 Predictive Interpretation of HMMs

We have seen that there can be a huge discrepancy between minimal sufficient
memory and minimal generative HMM. The requirement of sufficiency is based
on a certain understanding of “prediction”. Here, we propose an alternative,
weaker notion of prediction that allows for a predictive interpretation of all
HMMs.

We model prediction by two steps: First the past X−�0 is processed by a
memory kernel mem, like in Section 2 but without the sufficiency assumption.
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CC(Xε
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E(Xε
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Fig. 4. Internal state entropy of the HMM of Figure 3, statistical complexity, excess
entropy and the lower bound L for the generative complexity are plotted against the
parameter ε. For ε = 0, all values are 0 and for ε = 1, all values are ln(2).
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�� S2 ······ ST−1
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Fig. 5. The process of generating Y� as prediction of X�. The dotted lines symbolize
that X� may have arbitrary dependencies and need not be Markovian.

Then the actual prediction is done by generating a predicted future Y�. To this
end we assume a generator gen, which uses the set of memory states as internal
states and is initialized by the random memory state M0 produced by mem.
Thus gen, or rather the (non-invariant) HMM

(
gen, mem(X−�0)

)
, generates the

prediction Y� as in Section 3. The situation is illustrated as

X−�0
��

mem ���������
X�

M0
gen′

�� Y�

where gen′ is the kernel from M = S to D� obtained by iterating gen and pro-
jecting to the output. Figure 5 shows the situation in more detail. The resulting
joint conditional distribution is given by
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P (S[0,T ] = s[0,T ], Y[1,T ] = y[1,T ] | X−�0 = x−�0 )

= mem(x−�0 ; s0)
T∏

k=1

gen(sk−1; yk, sk), T ∈ �.

Due to the intrinsic stochasticity, we cannot expect the prediction Y� and the
actual future X� to coincide. But we require that the distributions, conditioned
on the known past X−�0 , are identical. This is the best one can possibly do and
means that actual and predicted future cannot be distinguished statistically,
based on the observed past.

Definition 8. The pair (mem, gen) is called predictive model of X� if
mem : D−�0 → P(M) is measurable, gen : M → P(D × M), and the process
Y� generated by the HMM

(
gen, mem(X−�0)

)
satisfies

P (Y� | X−�0) = P (X� | X−�0) a.s.

A memory kernel mem (resp. generator gen) is called predictive if there exists
a generator gen (resp. memory mem) such that (mem, gen) is a predictive model.

If mem is a sufficient memory kernel and gen the associated generator constructed
in Proposition 2, it is straightforward to see that (mem, gen) is a predictive model.
Thus we obtain:

Proposition 9. Sufficient memory kernels are predictive.

One could say that a predictive memory is sufficient for prediction. Then, how-
ever, sufficiency for prediction does not imply sufficiency in the sense of statistics.
In fact, predictive memories can be much smaller than any sufficient memory:
Assume any generative HMM (gen, μ). We know from Example 4 that for cer-
tain processes the number of internal states can be substantially smaller than the
number of causal states. But now we show that gen is predictive, i.e. the HMM
induces a predictive model and thus in particular a predictive memory kernel
mem. Of course mem is in general not sufficient but has only as few memory
states as the generative HMM.

Proposition 10 (generative HMMs are predictive). Let (gen, μ) be a gen-
erative HMM. Then gen is predictive, i.e. there is a memory kernel mem, such
that (mem, gen) is a predictive model. More specifically, we can choose

mem(x−�0 ) := P (S0 | Y−�0 = x−�0 ).

If (genC, μC) is the ε-machine, then the memory kernel mem constructed in
Proposition 10 recovers the causal state projection, i.e. mem = memC. In partic-
ular, this memory mem is deterministic. Of course, for general generative HMM,
the associated memory need not be deterministic. Even more, it cannot be de-
terministic whenever the HMM is smaller than the corresponding ε-machine: In
the following proposition we see that determinism implies sufficiency.
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Proposition 11 (determinism implies sufficiency). If mem is a predic-
tive memory kernel and deterministic, i.e. mem = memf for some measur-
able f : D−�0 → M, then mem is sufficient. In particular, |M| ≥ |MC| and
H(M) ≥ H(MC).

5 Summary and Discussion

There are two aspects of prediction: a memory which compresses the past to a
set of memory states (such as the causal states) and an encoding of the mecha-
nism of prediction (such as the ε-machine). Looking at the memory part, suffi-
ciency is a natural requirement, which leads to minimality of causal states and
ε-machine. Sufficiency is the central assumption of computational mechanics. It
has to be stressed, however, that the ε-machine is not the minimal generative
hidden Markov model. Analogously to statistical complexity CC(X�), we defined
generative complexity Chmm(X�) as size in terms of entropy of the minimal gen-
erative HMM and obtained that E(X�) ≤ Chmm(X�) ≤ CC(X�), where E(X�)
is the excess entropy. Furthermore, we gave an example, where both inequalities
are strict. We proposed a different notion of “predictive” and compared it to
the sufficiency requirement used in computational mechanics. According to our
notion, it has to be possible to generate a prediction Y� for the future with the
same statistical properties as the real future X�, conditioned on the observed
past, i.e. P (Y� | X−�0) = P (X� | X−�0). It turned out that predictive in this
sense is strictly weaker than sufficient and that any generative HMM can be
interpreted as predictive in our sense.

Extending the model class from sufficient to predictive includes models that
are substantially smaller than the ε-machine. At the same time, it preserves
a notion of predictive power which we consider quite natural. Nevertheless,
we have to point out two drawbacks of our approach: Firstly, constructing a
minimal HMM is intrinsically difficult, whereas efficient algorithms are avail-
able for the construction of the ε-machine from data. Secondly, and conceptu-
ally more important, the memory state is no longer a complete substitute for
the past. Given a sufficient memory, the complete conditional future distribu-
tion that corresponds to an observation x−�0 is encoded in a single memory
state m ∈ M. On the other hand, assume that we have observed a particular
past x−�0 and want to use a predictive model for sampling the conditional fu-
ture distribution several times. We first choose a memory state m according
to mem(x−�0) and then initialize gen with m for generating a prediction y�.
We repeat this sampling procedure and obtain the correct future distribution
P (Y� | X−�0 = x−�0) = P (X� | X−�0 = x−�0). But if we “forget” the history
state x−�0 and, instead of sampling new m’s according to mem(x−�0 ), initialize
gen always with the same m, the resulting distribution of Y� can be different
from P (X� | X−�0 = x−�0 ). Thus, we have to memorize the distribution (the
information state) mem(x−�0 ) of the initial memory states m. It is easy to show
that the number of these information states is lower bounded by the number
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of causal states, because the map from history to information state defines a
predictive deterministic memory, which is sufficient according to Proposition 11.

Currently, we do not know which of the two notions of prediction is more
natural in which situations, and further steps towards revealing and comparing
operational aspects of prediction are subject of our research.
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