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Abstract. Reconstructing gene network structure from Microarray
time-series data is a basic problem in Systems Biology. In gene regu-
lation networks, the time delays and the combination effects which are
not considered by most existent models are key factors to understand
the genetic regulatory networks. To address these problems, this paper
proposed a fast algorithm to learn initial network structures for gene net-
works from time-series data by employing the Granger causality model
to analyze the time delays and the combination effects for gene regu-
lation. The simulation results on a synthetic network and the ethylene
pathway in Arabidopsis show that the proposed algorithm is a promise
tool for learning network structures from time-series data.

Keywords: partial Granger causality, gene regulatory networks, time
series data, projection pursuit.

1 Introduction

Gene networks controlling how genes are up and down regulated in response to
signals play a key role in the life phenomena [1], such as development, metaboliz-
ability, adaptability, immunity, etc. Earlier, the genetic networks are investigated
by constructing the mathematical model of few genes, and the characteristics of
the biology networks are analyzed through simulation [2]. These approaches work
well in the small scale networks. Nowadays, the invention and application of high-
throughput technologies make it possible to study the genes in the genome scale
enabling the quantitative understanding of large gene networks [3]. For analysis
in the genome scale, it is more suitable to reconstruct the network models of the
genetic regulatory networks from data [4]. Recently, as more and more biology
databases available, reverse engineering cellular networks has become a hot issue
in biology, computer science, as well as mathematics, and the results of these
researches are fruitful [5, 6, 7]. Methods for gene network reconstruction have
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been proposed on the basis of statistical analysis such as Boolean models [8],
differential equation models [9], Beyesian networks [10], and so on.

In recent years, learning the structures of Bayesian networks from massive
data to reconstruct the gene networks from Microarray data attracted many
scholars’ attention [11, 12, 13, 14, 15]. Actually, the data used by Bayesian net-
works is produced by the perturbation experiments which usually knock out a
gene and study the downstream effects, i.e., these data reflect the stationary
status of the gene networks response to a stimulus. However, the use of pertur-
bation experiments is limited due to technical and biological reasons [16]. Time-
series expression data which imply a number of regulatory interactions have been
widely used to study biological systems in many different species [17]. To model
the time-series Microarray data, the dynamic Bayesian network (DBN) which
has been shown to be appropriate for representing complex stochastic non-linear
relationships among multiple random variables has been employed [18].

The initial structure of gene networks plays a key role in the present structure
learning algorithms [19,20,21,22] for DBN, since the learning algorithms usually
start from prior network structures which are constructed by expert according
to the background knowledge, and perform heuristic searches in the space of
directed acyclic graphs to improve the network structure in the light of the in-
formation contained in data. Unfortunately, the complexity of the prior network
structure avoids structure missing, but exponentially increases the computation
complexity of the learning algorithm. Considering the combination effects in
the regulation, one has to do the permutation test m2m−1 times for the gene
network with m genes. Besides, the published learning algorithms of DBN are
almost based on the first order Markov assumption of the variables, but many
researches on the practical data sets challenge this assumption [23, 24].

To address these problems, we proposed a learning algorithm for DBN from
Microarray time-series data without the first order Markov assumption. This
algorithm consists of three steps: first, the Granger causality model are em-
ployed for pairs of genes with their time sequence expression data to build an
initial network; second, the false regulations in the initial network are deleted by
partial-Granger causality; third, if necessary, it depends on the practical data,
we could apply the partial-Granger causality to further filter out the false reg-
ulation between genes by computing the combination effects of the conditional
candidate genes. The application results of the proposed algorithm on both the
simulation data and the practical data show that it is a promising method of
dynamical network structure learning.

2 Method

Consider a gene network with n genes, denoted by G = (G1 , G2, · · · , Gn) and
the expression of the genes are jointly stationary. The expression time series with
length T of the genes in this network are available, gi(t) ∈ R+ (i = 1, 2, · · · , n,
t = 1, 2, · · · , T ) is the stochastic time process for each gene. The main aim of this
paper is to reconstruct the structures of the gene networks from the Microarray
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time-series data. Since the most concern of this study is the relationship between
changes of genes, we can assume that EGi(t) = 0 for all i.

2.1 Granger Causality

Assume that each process Gi(t) (i = 1, 2, · · · , n) admits an autoregressive rep-
resentation

Gi(t) =
∞∑

p=1

a(i)
p Gi(t − p) + εi(t), var(εi(t)) = σ2

εi
. (1)

Jointly, they are represented as

Gi(t) =
∞∑

p=1

a(i|j)
p Gi(t − p) +

∞∑

q=1

b(i|j)
q Gj(t − q) + εi|j(t), var(εi|j(t)) = σ2

εi|j . (2)

The intensity of causal influence of Gj on Gi can be measured by

FGj→Gi =
σ2

εi

σ2
εi|j

− 1. (3)

If Gi and Gj are independent, then bq are uniformly zero and σεi = σεi|j ; other-
wise, the expression of Gj will be helpful for the prediction of Gi, i.e., σεi > σεi|j .
Hence, it is clear that FGj→Gi = 0 when there is no causal influence from Gj to
Gi, and the greater the value of FGj→Gi is the more strong the causal influence
will be. With the expression data, if the orders in this model (2) are determined
by some criterion (e.g., Akaike Information Criterion, AIC) as Pi and Qj for Gi

and Gj , respectively, the variances can be estimated as follows:

σ̂εi =
1

T − 2Pi

T∑

i=Pi+1

ε̂2
i , (4)

σ̂εi|j =
1

T − 2Pi − 2Qj

T∑

i=Pi+Qj+1

ε̂2
i|j , (5)

where ε̂i and ε̂i|j are the residuals of models (1) and (2), respectively. Then, we
have

F̂Gj→Gi =
σ̂εi

σ̂εi|j
− 1 ∼ F (2Qj , T − 2Pi − 2Qj). (6)

Given a significance level F1, an F test of the null hypothesis that Gj does not
have causality influence on Gi. Now, the dynamic network structure can be given
below:

M (1) =
(
(m(1)

ij )
)

, (7)

where

m
(1)
ij =

{
1, F̂Gj→Gi > F1;
0, otherwise.

(8)
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2.2 Partial-Granger Causality

The conditional independence confuses pairwise algorithms, for instance, gene
Y is correlated with gene Z when X → Y and X → Z, i.e., given X , Y and
Z are conditional independence. To filter out the fake edges from the learning
structure, the partial-Granger causality (P-G-C) is induced.

When m
(1)
ij = 1 (i �= j, i, j = 1, 2, · · · , n), the conditional independence

between Gi and Gj given Gk will be examined for each k = 1, 2, · · · , n and
k �= i, k �= j. Consider the following models

Gi(t) =
∞∑

p=1

a(i|k)
p Gi(t−p)+

∞∑

q=1

c(i|k)
q Gk(t− q)+εi|k(t), var(εi|k(t)) = σ2

εi|k , (9)

Gi(t) =
∞∑

p=1

a(i|j,k)
p Gi(t−p)+

∞∑

r=1

b(i|j,k)
r Gj(t− r)+

∞∑

q=1

c(i|j,k)
q Gk(t− q)+ εi|j,k(t),

(10)
where

var(εi|j,k(t)) = σ2
εi|j,k

.

Similarly, we assume that the noise terms in these models are white noise, and
the null hypothesis that Gj is conditional independence with Gi given Gk, i.e.,
b
(i|j,k)
r in (10) are uniformly zero, could be tested with the following statistic:

FGj→Gi|Gk
=

σ2
εi|k

σ2
εi|k,j

− 1, (11)

and its estimation with the observation data is similar to (6):

F̂Gj→Gi|Gk
∼ F (2Rj|k, T − 2Pi|k − 2Qk − 2Rj|k), (12)

where Pi|k, Rj|k and Qk are orders given by AIC for Gi, Gj and Gk, respectively.
Given the significant level F2, the F test can be performed to filter out the
fake correlations in M (1) to get the initial dynamical network structure M (2) as
follows:

m
(2)
ij =

{
0, for m

(1)
ij = 1 and F̂Gj→Gi|Gk

≤ F2;
m

(1)
ij , otherwise.

(13)

In gene networks, the number of conditional genes is n−2 for each regulation
pair indicated by M (1), i.e., we need to compute the P-G-C n2(n − 2) times in
the worst case. Besides, the combination effect of the conditional genes can not
be exclude in this one by one version of P-G-C. Let the set of the conditional
genes denoted by G(i, j) = G\{Gi, Gj}, and the causality model can be given
below:

Gi(t) =
∞∑

p=1

ai|G(i,j)
p Gi(t − p) +

∑

k �=i,j

∞∑

q=1

c(k)
q Gk(t − q) + εi|G(i,j)(t), (14)
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Gi(t) =
∞∑

p=1

a(i|X(i,j),j)
p Gi(t − p) +

∞∑

r=1

brGj(t − r)

+
∑

k �=i,j

∞∑

q=1

c(k,j)
q Gk(t − q) + εi|G(i,j),j(t). (15)

Generally, it is not practical to perform F test for this model, since the number
of parameters in this model is most likely to be much bigger than the sample
size of the data, i.e., the parameters can not be well estimated with limited
sample size. Next, let’s give a fast algorithm to compute the multivariate partial
Granger causality in a projection pursuit manner.

For Gj → Gi, let Gks ∈ G(i, j)(s = 1, · · · , n − 2), then define

H(t) = I − BT (t)(BT (t)B(t))(−1)B(t), (16)

where
B(t) = (Gk1(t), Gk2 (t), · · · , Gkn−2(t)), t = 1, 2, · · · , T.

Then, the effects of the conditional variables could be excluded from variable
pairs of (Gi, Gj) by

G′
i(t) = H(t)Gi(t), (17)

G′
j(t) = H(t)Gj(t), (18)

and the partial-Granger causality model can be defined as follows:

G′
i(t) =

∞∑

p=1

a(i)
p G′

i(t − p) + εi(t), (19)

G′
i(t) =

∞∑

p=1

a(i|j)
p G′

i(t − p) +
∞∑

q=1

bqG
′
j(t − q) + εi|j(t). (20)

Performing the F test with the statistic

F̂Gj→Gi|G(i,j) ∼ F (2Qj, T − 2Pi − 2Qj), (21)

the network structure M (2′) = (m2′
ij) is established by

m
(2′)
ij =

{
0, for m

(1)
ij = 1 and F̂Gj→Gi|G(i,j) < F2′ ;

m
(1)
ij , otherwise.

(22)

Now the multivariate Granger causality needs to be computed for a pair of
regulation genes only once. The steps of the main algorithm of this paper are
described as follows:
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MAIN ALGORITHM

Step 1. Data Centralizing: Gi is replaced by Gi − 1
T

∑T
t=1 Gi(t) for i = 1, 2,

· · · , n;
Step 2. G-C analysis: The network M (1) is given by calculating the statistics

F̂Gj→Gi as (6);
Step 3. P-G-C analysis: Univariate P-G-C analysis is performed to build net-

work structure M (2) according to (13);
Step 3′. P-G-C analysis: Multivariate P-G-C analysis is carried out to exclude

false relationships in the network structure (22).

In this algorithm, you can choose to use Step 3 or Step 3′ in your application:
when the prior knowledge about the conditional gene of a pair of regulation genes
is available, Step 3 needs to be run only for the candidate conditional gene; If
no prior information is available or the combination effects is noticeable, Step 3′

is preferred.

3 Experimental Results

3.1 Synthetic Dynamical Networks

We first test our algorithm of structure learning for the synthetic network of
5 genes consisting 5 regulations [25]. As presented on Fig. 1(a), the directed
edges represent the regulations between genes which can also be formulated by
a dynamical system:

x1(t) = 0.95
√

2x1(t − 1) − 0.9025x1(t − 2) + ε1(t),
x2(t) = 0.5x1(t − 2) + ε2(t),
x3(t) = −0.4x1(t − 3) + ε3(t),

x4(t) = −0.5x1(t − 1) + 0.25
√

2x4(t − 1) + 0.25
√

2x5(t − 1) + ε4(t),

x5(t) = −0.25
√

2x4(t − 1) + 0.25
√

2x5(t − 1) + ε5(t).

Without loss of generality, we may set ε1 ∼ N(0, 0.6), ε2 ∼ N(0, 0.5), ε3 ∼
N(0, 0.3), ε4 ∼ N(0, 0.3), ε5 ∼ N(0, 0.6) and, for simplicity, we assume that
∀i �= j, Cov(εi, εj) = 0.

As described in last section, our algorithm learns the network structure from
data by many steps, and thereby the learning results given by Step 2 and Step 3′

are portrayed in Fig. 1(b) and Fig. 1(c), respectively. Fig. 1(b) shows many fake
relationships, such as gene1 → gene5, an indirect casual interaction generated
by gene1 → gene4 together with gene4 → gene5. From Fig. 1(c), we can see that
except for the edge gene4 → gene5 the edges of the original synthetic network
have all be reconstructed from the simulation data, meanwhile no false edge
have been learned from the data. The result presented in Fig. 1 is one of the
results given by the proposed algorithm with threshold values 0.9 and 0.9 with
no repeat, and the length of the time series, i.e., the sample size, generated by
the synthetic network is 500. Clearly, the sample size and the threshold values
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gene 1

gene 2 gene 3 gene 4

 gene 5

(a)

gene 1

gene 2 gene 3

gene 4 gene 5

(b)

gene 1

gene 2 gene 3 gene 4

gene 5

(c)

Fig. 1. The numerical experimental results of our algorithm on the synthetic network.
(a) the original synthetic network; (b) the learned structure by G-C analysis; (c) the
learned structure by Step 3′

of the F -tests, which are key factors for the performance of our algorithm, need
further investigation.

Practically, the sample size are often limited, so the performance of our algo-
rithm, as a function of sample size is also instructive. The sensitivity (SE) and
the specificity (SP) have been employed to quantitatively compare the perfor-
mances of our algorithm over different sample sizes. The SE of an approach to
learn the gene regulations from expression data is a measure of the probability
to detect the regulation by this approach but does not say whether any candi-
date regulation is truly a transcriptional regulation, and it can be computed by
the number of true positives (TP) and the number of true regulations in gene
network (NG) as follows

SE =
TP
NG

× 100%. (23)

The SP measures the accuracy of a given approach, and can be estimated from
the percentage of the predicted regulation of this approach that are present in
the reference gene network by the following equation:
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SP =
TP
NL

× 100%, (24)

where NL stands for the number of edges in the learned network structure. For a
given sample size, the data are iteratively generated from the synthetic network,
and the network structure is learned from these data by our algorithm with
some threshold values. A total of 50 repeated for each experimental setting are
conducted and the averages of the sensitivity and the specificity are computed.
The numerical experimental results are shown in Fig. 2 by our algorithm with
different threshold values vary from 70 to 700. Clearly, no matter which threshold
values are chosen, the SE and the SP totally increase with the sample size.

Note that the results in Fig. 2 also show that the proposed algorithms with dif-
ferent threshold values exhibit different performances. Therefore, the two thresh-
old values, in which one for the F -test in G-C analysis and the other for the F -test
in P-G-C analysis, deserve to be discussed in details. In this paper, we set the
two threshold to be the same value. As the threshold values specify the confi-
dence level of the F -test in the algorithm, the higher value of the threshold will
get higher specificity and lower sensitivity. For a given sample size 90, Fig. 3(a)
shows the box plots for the performance comparison between the proposed meth-
ods with different threshold values ranging from 0.5 to 0.98. The p-values of the
one-way analysis of variance are both 0 for the recall percentage and the preci-
sion percentage given by the proposed algorithms with different threshold values,
which means the effect of threshold values on the performance of our algorithm is
statistically significant. Fig. 3(b) illustrates the average performance level varia-
tion against the threshold value and the threshold value somewhere between 0.7
and 0.8 reaches the balance between sensitivity and specificity.
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Fig. 2. Performance comparison of our methods on the data sets with different sample
sizes
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(a) Box plots for SE and SP
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(b) Average performances against threshold values

Fig. 3. Performance comparison of our methods with different threshold values

3.2 Genetic Regulatory Networks

In practice, the gene regulatory networks or the signaling pathways are much
more complex than the synthetic one. For example, the actually interactions
between genes are expected to be nonlinear and noisy instead of the linear in-
teractions in the synthetic network. Therefore, the results given by the proposed
algorithm with gene expression data only provide initial dynamical network
structure of the genetic regulatory networks for further analysis, such as Bayesian
networks. Here, in this paper, we applied our algorithm on the Microarray time-
series data of 7 genes (ETR1, ETR2, ERS1, ERS2, EIN4, CTR1 and MPK6)
related to the detection of ethylene stimulus provided by the functional analy-
sis of regulatory genes involved in Arabidopsis leaf senescence at Warwick HRI,
which have 22 time points in each time series and 16 replicates. Table. 1 lists
the gene catma id 1. Fig. 4 illustrates the results obtained by the proposed al-
gorithm. Since the space is limited, the description details of these genes can be

1 The aim of the Complete Arabidopsis Transcriptome MicroArray (CATMA) project
(http://www.catma.org/) was the design and production of high quality Gene-
specific Sequence Tags (GSTs) covering most Arabidopsis genes.
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Table 1. Gene name and catma id discussed in this paper

Gene Name Catma id

ETR1 At1g66340 CATMA1a55610
ETR2 At3g23150 CATMA3a23140
ERS1 At2g40940 CATMA2a39280
ERS2 At1g04310 CATMA1a03150
EIN4 At3g04580 CATMA3a03560
CTR1 At5g03730 CATMA5a02913
MPK6 At2g43790 CATMA2a42185

ETR1

ETR2

ERS1

ERS2

EIN4

CTR1

MPK6

Fig. 4. Learned network structure by the proposed algorithm

found on the web site of the Complete Arabidopsis Transcriptome MicroArray
(CATMA) project (http://www.catma.org/).

During the past decade, the reference plant Arabidopsis have been well studied
and the ethylene is a gaseous plant hormone involved in many life process [26].
We’ve already known that the ethylene is perceived by a family of five membrane-
associated receptor (ETR1, ETR2, ERS1, ERS2 and EIN4) in Arabidopsis, and
the ethylene binding leads to functional inactivation of the receptors which are
negative regulators of ethylene responses. In the presence of ethylene, CTR1
which is another negative regulator of the pathway loses its ability to repress the
downstream genes. That’s the early events of ethylene perception and signaling.
However, the detailed network structure of these genes needs to be further inves-
tigated, and a MAPK pathway involving MPK6 in Arabidopsis has recently been
proposed in operating downstream of CTR1 as a positive regulator in the path-
way. From the result given by the proposed algorithm, we can see that except for
EIN4 and ERS2 the other ethylene receptors are all have directed relationship
with CTR1. The existence of the directed edge from CTR1 to MPK6 supports
that the MAPK cascade is involved in this pathway.

The coefficients in the partial Granger casuality model have been listed in
Table 2. We set the maximum order for delay to be 5 and the AIC is used to se-
lect the optimal order. On the diagonal, the coefficients are for the autoregulatory
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Table 2. Coefficients given by partial Granger Casuality model

ETR1 ETR2 ERS1 ERS2 EIN4 CTR1 MPK6

ETR1 0.2479 -0.0638 0.4304
-1.0446 -1.1091

ETR2 0.15 0.7018 -0.0798
-0.4192 -0.1611

ERS1 -0.7355 0.1045 -0.0224
1.1327 0.6591

ERS2 -0.1398 0.1535 0.0239 0.1793
0.2747 0.2808

EIN4 0.1822 -0.087 -0.0056
-0.2256 -0.4767

CTR1 -0.4751 0.1063 -0.251
0.4915 0.2538

MPK6 0.243
-0.477

equation (19); and the left coefficients are for the partial Granger casuality equa-
tion (20). For example, the first entry in this table means the autoregulatory
equation for ETR1 is

G′
ETR1(t) = 0.2479G′

ETR1(t − 1) + ε. (25)

We may say it is the positive autoregulation that works behind the expression
behavior of ETR1. However, for MPK6, there is a second order delay, which
makes some confusion:

G′
MPK6(t) = 0.243G′

MPK6(t − 1) − 0.477G′
MPK6(t − 2) + ε. (26)

This can be explained biologically that MPK6 not only has a directly positive
autoregulation but also has some negative regulation which might be works in
some negative loop instead of the directly regulation. Therefore, there will be
a delay in this negative effect, which means that some genes other than the 7
genes we studied here also have great effects on the regulation of MPK6, i.e.,
more genes need to be included in this network for further understanding.

In Table 2, the second entry is the coefficients of the partial Granger model
which describes how ETR1 regulates ETR2 excluding the influence of the other
5 genes. And it can be written as follows:

G′
ETR2(t) = −0.0638G′

ETR2(t − 1) − 1.0446G′
ETR1(t − 1) + ε. (27)

Similarly, the above equation may help us to understand the negative regulation
from ETR1 to ETR2, which indicates that the receptors are not function inde-
pendently. As listed in Table 2, the autoregulation for ETR2 is a positive one,
but in the partial Granger model the first coefficient in (27) is −0.0638, which
represents a negative autoregulation. It can be explained as follows: the autoreg-
ulation coefficients on the diagonal of the result table describe regulations that
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ETR1

ETR2

ERS1

ERS2

EIN4

CTR1

MPK6

Fig. 5. Reconstructed gene network for the ethylene response pathway in Arabidopsis

include all genes influences. Instead of the effects contributed to by the whole
gene set, the partial Granger causality model excludes the regulation effect on
ETR2 given by the genes other than ETR1. That’s to say, the autoregulation can
not be determined at the current stage. Therefore, the combination effects must
be considered during the reconstruction of genetic regulatory networks, and par-
tial Granger causality model provides us a promise tool to address this problem.
At last, the result shown on Fig. 4 can be redrawn with more details about the
negative or positive regulations between the genes, which is shown in Fig. 5.

4 Conclusion

Reconstructing gene regulatory networks from Microarray time-series data has
been a big challenge in systems biology due to the complex regulatory relation-
ships among genes and the limit of available data. Many algorithms have been
developed to deal with this reverse engineering problem, and most of them need
to start from the initial network structures which affect the sensitivity and speci-
ficity of these algorithms. In this paper, an algorithm for learning structure from
expression time-series data has been proposed by applying the partial Granger
causality model. Instead of the first order Markov assumption, the proposed
algorithm considers the multiple delays of the regulation effects by optimally de-
termining the orders in the model with AIC. The present learning algorithms for
Bayesian networks are embarrassed by the exponential computation complexity.
However, in our algorithm, the combination effects of the candidate conditional
genes need to be computed only once for each pair of regulation genes in the pro-
jection pursuit manner. Despite the linear assumptions inherent in the Granger
causality models, the results reported above indicate that it is a promise tool for
reconstructing gene networks. Therefore, one of the further investigation direc-
tion of this algorithm is its nonlinear extension.
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