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Abstract. We address packet-level traffic allocation problem for real-
time media streaming under multipath network environment. Based on
an in-depth analysis of multipath real-time streaming model, also con-
sidering fluctuation of multipath network status as well as burst of media
sending rate, we suggest that traffic load should be allocated to paths
in proportion to the paths’ available bandwidths, which minimizes the
overall bandwidth overload probability. Moreover, due to the smallest
transmission unit is packet, in order to execute the traffic allocation
policy exactly, weighted size-aware packet distribution algorithm is pro-
posed to avoid the actual traffic deviation due to variance of packet sizes.
Simulation results show that the proposed algorithm outperforms other
traditional algorithms, especially for reducing packet late arrivals, which
has negative impaction in real-time transmission.

Keywords: traffic allocation, multipath, real-time streaming, available
bandwidth, path redundance.

1 Introduction

In despite of the development of novel network infrastructures and constantly
increasing bandwidth, Internet media streaming applications still suffer from lim-
ited and fluctuated bandwidth. Multipath streaming transmission has recently
been proposed as a solution to overcome packet networks limitations [1], [2], [3].
It allows to increase the streaming bandwidth by balancing the load over multi-
ple disjoint network paths between media sender and receiver. It also improves
the error resilience of the media streaming system by means of redundant paths.
Essential to such a multipath streaming system, at sender, is the packet distrib-
utor that dispatches media packets to the paths. It is necessary for the sender
to distribute workload in a reasonable manner so that the multipath system can
achieve its full potential.

How to distribute packets to achieve maximum benefit? Numerous studies [3],
[4], [5], have made contributions on this research field. The fundamental concept
is to allocate traffic in terms of available bandwidth. While all these works do
not consider the fluctuation of network status enough. Unlike these approaches,
which rely on UDP for streaming, some researchers focus on exploiting TCP
for multipath real-time streaming, imposing TCP’s state-awareness ability [6],
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Fig. 1. Multipath streaming framework

[7]. For real-time specific, based on UDP, we try to implement a dynamic traffic
allocation mechanism to “sense” the transmission characteristics of each path,
and distribute packets fairly over the paths to achieve the designed goal.

In the framework of multipath network as shown in Fig. 1, our work addressed
to the problem of streaming packet distribution, which takes into account real-
time streaming characteristics. We are aiming at distributing packets fairly in
order to achieve efficient utilization of bandwidth resources. Two key challenges
are what is the distribution policy and how to execute this policy exactly. By
means of analyzing media specific scenario, this paper gives corresponding solu-
tions of these challenges.

In this paper, we make the following three contributions. (i) We analyze end-
to-end multipath real-time streaming system in depth, and provide a model of
bandwidth overload probability. (ii) Based on the model, we prove that allo-
cating traffic in proportion to paths’ available bandwidths respectively helps to
reduce the overall overload probability. (iii) Following the traffic allocation pol-
icy, a weighted size-aware packet distribution algorithm for multipath real-time
streaming is proposed, which is fine grained for its perceiving the smallest data
unit (i.e. packet) over packet switching networks.

The rest of the paper is organized as follows. The multipath real-time stream-
ing model is analyzed in Section II. Section III provides our optimal media-driven
traffic allocation scheme and proves it. In section IV, we propose weighted size-
aware packet distribution algorithm imposing upon traffic allocation policy. Sim-
ulation results are presented in Section V. Section VI concludes the paper.

2 Multipath Real-Time Streaming Analysis

2.1 Multipath Real-Time Streaming

We consider an end-to-end transmission framework where the media streaming
application uses M(M ≥ 2) disjoint paths. Paths are considered to be disjoint if
they do not share performance bottlenecks. The set of available loop-free paths
between a media sender and a receiver is defined as P = {P1, P2, . . . , PM}.

For end-to-end perspective, we do look into the network status from an end-to-
end point of view, rather than focus the hop-by-hop process during transmission.
The network available bandwidth bi(t) (i.e., spare bandwidth), that is the band-
width left unused by idle and non-greedy connections, is hence given by the
following expression:
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bi(t) = Ci −
∑

k∈K

ηk
i , ∀Pi ∈ P (1)

where the first summation represents the total bandwidth of path Pi, while the
latter summation of ηk

i represents the bandwidth allocated to other applications
K, known as background traffic. Background traffic is always unsteady, and this
instability lead to bi(t)’s up and down.

Real-time video streaming is usually captured frame by frame by a video
capture device every other fixed time, and the raw video frames are instantly
encoded into compressed frames using some video encoder (e.g. H.264/AVC or
MPEG-4). These compressed frames are commonly of different sizes in terms
of video sequence characteristics and video encoder’s configuration. Every en-
coded frame is then fragmented into network packets under the general rule
stating that 1) each network packet contains data relative to at most one video
frame, 2) several packets may contains data belong to the same frame. Let
Π = {p1, p2, . . . , pN} be the chronologically ordered sequence of N network
packets, after fragmentation of the encoded frames. Any network packet pn is
characterized by its size sn in bytes, frame number fn, and its timestamps tn.
Timestamp is important for video player to play video packet at the right time.
For the packets derived from the same frame, their frame numbers fn, and times-
tamps tn are uniform, which can be written as

fn = fn+1 = . . . = fn+k ⇐⇒ tn = tn+1 = . . . = tn+k (2)

A packet distributor is set to permit data packets to be dispersed on multiple
outgoing paths under a distribution scheme. Steaming application sends data at
instantaneous rate of R(t), which is split into many “fractional” rate ri(t), i.e.
R(t) =

∑M
i=1 ri(t) . ri(t) is the sending rate allocated to Pi at time instant t.

We denote by Φ = (φ1, φ2, . . . , φN ) the distribution policy adopted by the
streaming sender, and the φn represents the path chosen for packet pn. In the
multipath network scenario presented above, the sender can decide to send packet
pn through any path. Therefore, if pn is distributed to path Pm, the packet pn’s
imposed action φn = m.

2.2 Packet Loss and Packet Late Arrival

In our streaming model, in order to decrease the video quality distortion, the
streaming strategy aims at avoiding allocated bandwidth overload that results
in packet losses and late arrivals. Firstly, we consider that the transmission links
are lossless, and that packet loss only happens when sending a packet with
the sending rate higher than the available bandwidth. Assuming a packet pn

allocated on Pi, i.e. φn = i, we have

pn is lost, if ri(tsn) > bi(tsn) (3)

where tsn is packet pn’s send time.
At the same time, even packet pn is not lost, i.e. ri(tsn) < bi(tsn), it still suffers

from the danger of late arrival, which will be dropped too. Note that, time related
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metric such as packet late arrival and transmission delay is highly important
for real-time real-time streaming, which distinguishes real-time streaming traffic
from other traffic such as large file transmission.

Based on the previous work [8], we model the bottleneck link of each path as
a work conserving queuing system with a service rate bi, i = 1, 2, . . .. We assume
that the source flow is regulated by a σ, ρ leaky bucket (or a token bucket, which
is implemented in most commercial routers). Let the real-time traffic’s sending
rate at t be r(t), which is regulated by a σ, ρ leaky bucket, i.e., r(t) conforms
to a deterministic envelope process [9]. Due to this traffic shaping function, the
source instantaneous rate on every path is shaped as:

r(t) = ρ + σ(t) (4)

where ρ is the long-term average rate of the process (the rate factor), and σ(t)
is the burst during a small period of time, which is related to video sequence’s
characteristics.

Consider a work conserving queue with capacity b(t), i.e. the available band-
width. If the queue is stable, the queuing delay is upper bounded by the maxi-
mum busy period of the system [10]

d =
σ

∫ t

0 b(u)du − ρ

by means of (4), the the instantaneous fractional delay at t can be computed

d(t) =
σ(t)

b(t) − r(t) − σ(t)

Given a decoding deadline’s upper bound, and a packet pn allocated on Pi,
i.e. φn = i, for σ(t) is fixed in terms of video sequence, we have

pn is late, if bi(tsn) − ri(tsn) < ε (5)

where ε is a positive bound to indicate late packets and tsn is pn’s send time.

2.3 Bandwidth Overload Probability

Packet loss or late arrival (i.e. unsuccessfully decoded packet) happens in terms
of (3) and (5), which is due to traffic allocated overload. It is clear that lost
packets is a subset of late packets, that is b(t)− r(t) < ε limitation tighter than
r(t) > b(t) limitation. So we define the overload situation if b(t)−r(t) < ε occurs.

Assuming at time η, the network available bandwidth is measured as b(η), pos-
sibly with feedback of the receiver or other bandwidth detection approaches [11],
[12]. However, network available bandwidth usually experiences change abruptly,
given instantaneous detected bandwidth b(η), during the period between two
consecutive bandwidth detections, the actual available bandwidth is

b(t) = b(η) − X, t ∈ [η, η + τ),
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where X is the available bandwidth variance (i.e., traffic load variance) from
b(η), also known as background traffic burst, and τ is the bandwidth detection
interval. Therefore, the probability of overload can be written as

Pr
{

[b(η) − X ] − r(t) < ε
}

= Pr
{

X > b(η) − r(t) − ε
}
.

The burst length X (negative when light load) is commonly considered according
to Pareto distribution [13]. Hence, according to Pareto property, we can carry
on this consequence

Pr
{

X > b(η) − r(t) − ε
}

=
[
b(η) − r(t) − ε

Xm

](−α)

,

where the burst X converges to Xm in the limit of a large value of the exponent α,
and α is a positive parameter (note that, the smaller α is, the greater probability
overload occurs). In other words, Xm is the expected value of b(η) − r(t) − ε,
i.e. E

[
b(η)− r(t)− ε

]
. For b(η), its expected value keeps the same until the next

available bandwidth detection, and ε is determined by the streaming application,
while for r(t), its expected rate can be computed as the mean rate during time
scale t ∈ [η, η + τ), which is

E
[
r(t)

]
=

∫ η+τ

η r(t)dt

τ

To sum up, given the instantaneous detected available bandwidth b(η) at
time η and packet late bound ε, during the period of t ∈ [η, η + τ), the overload
probability is

Pr
{

b(t) − r(t) > ε
}

=

{
b(η) − r(t) − ε

b(η) − E
[
r(t)

] − ε

}(−α)

(6)

The analysis of multipath streaming as well as bandwidth overload probability,
provides an in-depth study of multipath network behavior’s character, and help
us propose the optimal traffic allocation in the next section.

3 Traffic Allocation: Path Weight Determination

We generalize the previous observations, and derive theorems that guide the de-
sign of an optimal traffic allocation strategy. Since sending rate of every path de-
cides the traffic load on that path, traffic allocation problem can be transformed
to the problem of allocating rate among multiple paths. This section shows that,
in the optimal traffic allocation, sending rate of every path is assigned in propor-
tion to the path’s available bandwidth, which minimize the overall bandwidth
overload probability. We start from a multipath streaming scenario assuming
available bandwidth of paths can be precisely detected periodically.
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Theorem 1 (Rate allocation). Given media application’s instantaneous send-
ing rate R(t) =

∑M
i=1 ri(t), and the detected available bandwidth bi(η) over Pi

at time η, the optimal rate allocation R(t)∗ = [r1(t), . . . , rM (t)]∗ during time
interval t ∈ [η, η + τ), that minimizes the overall bandwidth overload probability
based on (6):

R(t)∗ =
[
r1(t), . . . , rM (t)

]∗
= arg min

R(t)

M∑

i=1

Pr
{

bi(t) − ri(t) > ε
}

(7)

is set in proportion to paths’ available bandwidths

R(t)∗ =
[
R(t) · b1(t)∑M

i=1 bi(t)
, . . . , R(t) · bM (t)

∑M
i=1 bi(t)

]
(8)

Proof. Deriving the minimum function given in (7),

M∑

i=1

{
bi(η) − ri(t) − ε

bi(η) − E
[
ri(t)

] − ε

}(−α)

its minimum value is obtained when all the items are equal

b1(η) − r1(t) − ε

b1(η) − E
[
r1(t)

] − ε
= . . . =

bM (η) − rM (t) − ε

bM (η) − E
[
rM (t)

] − ε

Only focusing on the first two paths, we have the cumulative equation during
time period of (η,η + τ ],

∫ η+τ

η

{
b1(η) · E[

r2(t)
] − b2(η) · r1(t) + r1(t) · E

[
r2(t)

]}
dt

=
∫ η+τ

η

{
b2(η) · E[

r1(t)
] − b1(η) · r2(t) + r2(t) · E

[
r1(t)

]}
dt

Since ∫ η+τ

η

ri(t)dt =
∫ η+τ

η

E
[
ri(t)

]
dt,

we finally obtain ∫ η+τ

η r1(t)dt
∫ η+τ

η r2(t)dt
=

b1(η)
b2(η)

.

Considering instantaneous rate allocation, we let

r1(t)
b1(η)

=
r2(t)
b2(η)

to get the minimum value. In a similar way, we have

r1(t)
b1(η)

=
r2(t)
b2(η)

= . . . =
rM (t)
bM (η)

,

where the path’s rate is set in proportion to the available bandwidth.
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Considering the constraint R(t) =
∑M

i=1 ri(t), to get the optimal rate allo-
cation R(t)∗ = [r1(t), . . . , rM (t)]∗, we should set path Pj ’s rate according to
Pj ’s fraction of total available bandwidth, which minimizes the overall overload
probability.

rj(t)∗ = R(t) · bj(t)∑M
i=1 bi(t)

(9)

The traffic allocation method provides a reasonable way of distributing pack-
ets in order to reduce packet loss and late arrival probability. In our packet
distribution scheme, path weight vector (ω1, ω2, . . . , ωM ) is introduced, which
indicates respective distribution capabilities of paths. By means of all paths’ in-
stant available bandwidth acquired by periodic detection, path Pm’s weight can
be determined

ωm =
bm(t)

∑M
i=1 bi(t)

, and
M∑

i=1

ωi = 1, (10)

by which we execute packet distribution. A path with larger weight, is more
likely to attract media traffic. Actually, bm(t) = 0 is possible, which means no
available resource can we consume on path Pm, then the path’s weight ωm = 0
allows us to transmit no packet through path Pm, i.e. path Pm is abandoned.
Extremely when only one path have available bandwidth, multipath transmission
transforms to unipath transmission, which is reasonable in practical environment
[17]. In the next section, we describe our complete packet distribution algorithm
applying the path weight in detail.

4 Weighted Size-Aware Packet Distribution Algorithm

Suppose real-time streaming application generates a sequence of frames every
other capture time interval, and they are encoded by some encoder (e.g. MPEG-
4 or H.264/AVC). In practical, if an encoded frame’s size is larger than network
MTU, it is fragmented into several smaller network packets, each with size sn in
bytes. Then, in multipath streaming, these network packets Π = p1, p2, . . . , pN

are distributed to a set of M paths P = P1, P2, . . . , PM . Except this packet
distributing thread, another work for available bandwidth detection thread is
running. This detection and path weight computation are carried out every other
interval τ . The path weight vector (ω1, ω2, . . . , ωM ) is acquired in terms of (10).
Actually, path weight indicates that path’s expected traffic load proportion and
it is updated periodically.

Focus back to the main sending thread, given periodic renewed path weight
vector, packets should be exactly distributed according to path weight (i.e.,
the expected traffic load). Despite the rate allocation approach is an idealized
scheme, but the smallest possible data unit in streaming is a packet, differenti-
ated by size. Thus, a more explicit packet distribution scheme aware of packet size
is proposed, whose philosophy is to minimize the deviation of actual traffic dis-
tribution from the given path weight vector, i.e., from the expected distribution.
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Let Tm(n) and T
′
m(n), respectively, be the expected traffic load in bytes (de-

termined by ωm), and the actual traffic load in bytes to be sent on path Pm,
just after the packet pn’s distributing decision has been made. For an idealized
packet distributor, we have

Tm(n) = ωm ·
n∑

j=1

sj

where sj is the size of packet pj and j = 1, 2, . . . , N .
The main idea of packet distribution is to simulate optimal rate allocation as

closely as possible. However, the assignment of a complete packet to a path may
cause a transient load imbalance with respect to the targeted traffic allocation,
that is some paths may be fed more traffic than expected temporarily while other
paths may have less, after the distribution for a certain packet. Those paths fed
with more traffic than expected have the tendency of not having the next packet
assigned to them. Therefore, the current level of load imbalance as well as the
size of the next successive packet is required for the traffic distributor to make
the next distribution decision.

To quantify the above selection criterion, a metric is introduced to measure
the traffic underload on a path. The residual traffic load of every path, just
before distributing the packet pn, Rm(n), is defined as the amount of traffic load
in bytes that should be fed on path Pm in order to achieve the expected traffic
load. In other words,

Rm(n) = Tm(n) − T
′
m(n − 1),

M∑

i=1

Ri(n) = sn.

We use Rm(n) to measure the streaming traffic underload on Pm, just before
distributing pn. If Rm(n) > 0, path Pm has been injected with less traffic than
expected and, hence, pn can be sent on this path. On the other hand, if Rm(n) <
0, there is too much streaming traffic being assigned on it and, hence, packet pn

should not be transmitted on this path. Briefly, Rm(n) provides an indicator to
the packet distributor for deciding which path pn should be transmitted on.

Algorithm 1 presents the sketch of the main distributting process, where, for
clarity, we bring up again φn = m, if packet pn is sent on path Pm. After running
this algorithm, we can determine the optimal distribution policy Φ∗.

Concerning the distributing packet procedure’s time and space complexities,
it takes O(N) time for processing each packet as it searches for a path Pm such
that Rm(n) is maximized. Also, it needs O(N) counters to store its working vari-
ables. As the number of paths is generally small and fixed, we consider that the
computational and storage costs are minimal. For the path weight computation,
due to its simplicity and executed not very soon, its complexities are neglectable.
At the same time, we argue that the packet distribution is fair and explicit. For
any sequences of packets to be dispersed, the variance between the actual traffic
load and the expected traffic load allocated to each path is always bounded by
a finite constant.
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Algorithm 1. Weighted Size-Aware Packet distribution
Require: pn, sn, M, Pm, 1 ≤ m ≤M
Ensure: Optimal packet distribution Φ∗ = [φ1, φ2, . . . , φn]∗

1: Initialize the variables
2: while frame capture time comes do
3: capture frame
4: while bandwidth detection time comes do
5: invoke Update Pathweight()
6: end while
7: encode frame
8: split frame into a packet sequence Ap with n

′
packets

9: for all packets pn in Ap do
10: invoke Distribute Packet(pn)
11: end for
12: end while

13: procedure Distribute Packet(pn)
14: S ← sn

15: for all each m, m ∈ 1, 2, . . . , M do
16: Rm(n)← Rm(n− 1) + ωm · S
17: end for
18: choose a path Pm

′ such that Rm
′ (n) is maximized

19: φn ← m
′

20: Rm
′ (n)← Rm

′ (n− 1)− S
21: end procedure

22: procedure Update Pathweight
23: for all each m, m ∈ 1, 2, . . . , M do
24: detect Pm’s available bandwidth bm

25: update ωm = bm(t)/
∑M

i=1 bi(t)
26: end for
27: end procedure

In summary, our packet distribution algorithm guarantees the variance be-
tween the actual traffic and the expected traffic under a limit bound. It is de-
ployed at the media sender side, usually working for just one media flow, thus
its complexity is acceptable for practical streaming applications.

5 Simulation Results

5.1 Simulation Setup and Relate Algorithms

We use ns-2 [16] to simulate multipath network scenarios. Two disjoint paths
are selected between video sender (source) and video receiver (sink), with band-
widths of 1Mbps and 500Kbps respectively, and with the same end-to-end trans-
mission delay of 100ms. A background traffic flow is generated according to the
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On/Off Pareto distribution on the first path (namely path1) and on the second
path (namely path2). The available bandwidth for our streaming application
is considered to be the background traffic’s rate subtracts from the total link
bandwidth, which is detected every other 1 second.

Four packet distribution algorithms are studied, namely, weighted size-aware
(WSA), weighted round robin (WRR), additive increase and multiplicative de-
crease (AIMD), and greedy (Greedy) [4], while the WSA approach is described in
Section IV. WRR distributes packets to each path in a weighted cyclical fashion,
where the weight is determined in terms of the total bandwidth of each path.
AIMD focuses on a particular path, and utilizes this path in a probe manner.
A initial threshold working as traffic load indicator is set at first, and media
applications allocate traffic load lighter than the threshold. When the allocated
traffic load does not exceed the available bandwidth, this threshold increases
additively, otherwise, it decreased multiplicatively. The following packets after
threshold hitting are distributed to the next path, where another instance of
AIMD is running. Greedy method is based on [4], it will not chose another path
for transmission unless all other available paths with higher available bandwidth
have been chosen. Moreover, the chosen paths should be used at their maximum
available bandwidth. Certainly, this available bandwidth is detected periodically
by video streaming applications. Excluding WRR, all the other three algorithms
are working by means of detected available bandwidth. Except the difference be-
tween traffic allocation schemes, an extraordinary of WSA from other schemes
is its fine-grained property resulted from packet size awareness.

5.2 Comparison of Performance

We evaluate these algorithms introducing standard CIF sequences foremancif un-
der different background traffic load levels, which are set as presented in Table 1.
Fig. 2a compares the number of lost packets achieved by the four packet distribu-
tion schemes. Greedy as well as WSA performs better even under high background
traffic load level. On the other hand, in order to test the late arrivals under differ-
ent background traffic load levels, packet’s maximum endurable transmission de-
lay is set to 500ms, all the packets arrive later than this deadline are late arrivals.
Fig. 2b gives the comparison of late arrivals over four algorithms. As expected,

Table 1. Background traffic load setup

Path Param L1 L2 L3 L4 L5

Path1

burst time (ms) 200 200 250 250 250

idle time (ms) 50 50 30 30 30

mean rate (Kbps) 750 800 850 900 950

Path2

burst time (ms) 100 100 200 200 200

idle time (ms) 50 50 30 30 30

mean rate (Kbps) 200 250 350 400 420
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Fig. 2. Comparison of performance from four packet distribution algorithms under
different load levels. (a) Lost packets. (b) Late packets. (c) PSNR.
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Fig. 3. Sample streaming rate on two paths with weigh ratio 3 to 2. (a) Round robin
distributing packets. (b) Weighted round robin distributing packets. (c) Weighted size-
aware (WSA) distributing packets.

Greedy generates a much larger number of late arrivals than other schemes, and
AIMD also produces amount of late arrivals. Interestingly, WRR seems to have
late arrivals avoidance, but we take notice that it has lost numerous packets, that
have already deteriorated video quality.

As an approach of comprehensively considering packet loss and late arrival, we
evaluate received video’s quality measured by PSNR metric, as depicted in Fig.
2c. It demonstrates that, WSA always has the highest PSNR in all background
traffic load levels. Another observation is that, Greedy’s performance degrades
faster than other schemes with the increasing of background traffic load.

5.3 Packet Size Aware

We now elucidate that WSA distributes streaming traffic load fairly by means
of packet size awareness, which is subsequent upon path weight determination
(i.e., rate allocation). Since encoded packets are of different sizes, even though
every path’s rate has been determined, distributing packets without considering
packet size may lead to actual traffic load deviation from expected.

Fig. 3 plots a set of sample streaming rate vectors to demonstrate this by
contrasting simple round robin and weighted round robin distribution with our
weighted size aware distribution (i.e., WSA). StarWarsIV is used to generate
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streaming traffic in this test. As shown is Fig. 3, each sample streaming rate
vector consists of two sample rates, each corresponding to a path, and measured
every other second. We observe that the distribution of sample rate vectors for
streaming traffic with expected ratio of 3:2 between path1 and path2. It is clear
that, when WSA is used, the sample streaming rate vectors are concentrated
on a region of a shin diagonal stripe, where the slope of that stripe is equal to
the expected ratio between path1 and path2. There is a much thicker stripe for
using weighted round robin packet distribution, and even a worse sample rate
vectors when simple round robin is employed. Anyway, WSA distributes packets
to paths in a fine-grained manner according to expected traffic allocation.

5.4 Effect of Path Number

In the above simulation, we have focused on two paths transmission scenario to
test weighted size-aware packet distribution algorithm. The effect of path number
used for real-time streaming based on our WSA scheme is also evaluated. To
survey this effect accurately, three long-term video trace files (i.e., StarWarsIV,
SouthPark, and OfficeCam) is used as video source. Each path’s bandwidth is
set to 1Mbps, and background traffic of mean bitrate 800Kbps with On/Off
exponential distribution is running on every path. All the three sequences are
streamed using 1 to 5 paths.

The results are presented in Fig. 4, three columns of each path number repre-
sent the situations when introducing different source files. With the increase of
path number, multipath’s benefit is gained significantly. Interestingly, by increas-
ing only one path improves the performance more than double times, and the
effect of multipath streaming is quite tremendous, which implies our excellent
packet distribution scheme. Additionally, it shows that, transmission latency is
minimized greatly, which contributes to late arrivals avoidance. The simulation
results prove that, by using weighted size-aware packet distribution for mul-
tipath real-time streaming, we make efficient utilization of network resources
taking into account real-time streaming characteristics.
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In summary, WSA packet distribution scheme performs better for multipath
real-time streaming, it distributes packets through multiple paths to avoid band-
width overload of a single path. The similar method aiming at balancing traffic
load between different paths is WRR, which generates no late arrived packet as
well as WSA. On the other hand, path with higher available bandwidth is pre-
ferred to other paths with lower available bandwidth in Greedy, and this strategy
bears less packet losses than other strategies. However, packets distributor with
Greedy algorithm brings a great number of late packets, which will be dropped
by real-time streaming applications.

6 Conclusions

In this paper, we provide an in-depth analysis of multipath real-time streaming
system considering media characteristics. These analyses point that by split-
ting traffic in proportion to the path’s available bandwidth, streaming appli-
cations experience minimal bandwidth overload probability, which results in
packet losses and packet late arrivals. And based on the distribution policy,
a novel weighted size-aware packet distribution algorithm (i.e., WSA) for mul-
tipath real-time streaming is described, which ensures actual load distribution
with a small deviation from expected. Our simulation results demonstrate the
effectiveness of WSA in reducing overall packet loss rate and packet late arrivals
as well as in improving video quality. Due to its satisfied effect and low com-
plexity, the weighted size-aware packet distribution algorithm provides a very
practical solution to efficient real-time streaming over multipath networks.
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