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1 Introduction

The aim of this article is to discuss some of the notions and applications of
random walks on finite graphs, especially as they apply to random graphs. In
this section we give some basic definitions, in Section 2 we review applications
of random walks in computer science, and in Section 3 we focus on walks in
random graphs.

Given a graph G = (V, E), let dg(v) denote the degree of vertex v for allv € V.
The random walk W, = (W, (t),t = 0,1,...) is defined as follows: W, (0) = v
and given x = W, (t), W, (t + 1) is a randomly chosen neighbour of z.

When one thinks of a random walk, one often thinks of Polya’s Classical result
for a walk on the d-dimensional lattice Z%, d > 1. In this graph two vertices
x = (z1,22,...,24) and y = (y1, Y2, ..., yq) are adjacent iff there is an index i
such that (i) z; = y; for j # ¢ and (ii) |x; — yi| = 1. Polya [33] showed that if
d < 2 then a walk starting at the origin returns to the origin with probability 1
and that if d > 3 then it returns with probability p(d) < 1. See also Doyle and
Snell [22].

A random walk on a graph G defines a Markov chain on the vertices V. If G
is a finite, connected and non-bipartite graph, then this chain has a stationary
distribution 7 given by m, = dg(v)/(2|E|). Thus if 28 (w) = PrW,(t) = w),
then lim;_, o qut)(w) = my, independent of the starting vertex v.

In this paper we only consider finite graphs, and we will focus on two aspects
of a random walk: The Mizing Time and the Cover Time.

1.1 Mixing Time

For € > 0 let
T¢(e) = max min {t S IPYO — 7|y < 6}7

where

1
(t) _ - (t) _
1P = lizy = 5 32 1Pw) = m

is the Total Variation distance between qut) and .
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We say that a random walk on G is rapidly mizing if Ta(1/4) is poly(In|V]),
where In = log, is the natural logarithm. The choice of 1/4 is somewhat arbitrary,
any constant strictly less than 1/2 will suffice. Rapidly mixing Markov chains are
extremely useful and we will have more to say on them in Sections 2.1.1 —2.1.3.

1.2 Cover Time

For v € V let C, be the expected time taken for a simple random walk W
on (G starting at v, to visit every vertex of G. The vertex cover time Cg of G
is defined as C¢ = max,ecy C,. The (vertex) cover time of connected graphs
has been extensively studied. It is a classic result of Aleliunas, Karp, Lipton,
Lovéasz and Rackoff [4] that Ce < 2m(n — 1). It was shown by Feige [24], [25],
that for any connected graph G, the cover time satisfies (1 —o(1))nlnn < Cg <
(1+0(1)) ,»n®. As an example of a graph achieving the lower bound, the complete
graph K, has cover time determined by the Coupon Collector problem. The
lollipop graph cousisting of a path of length n/3 joined to a clique of size 2n/3
gives the asymptotic upper bound for the cover time. We will have more to say
on the cover time in Sections 2.2 and 3.

2 Applications in Computer Science

2.1 Rapid Mixing

2.1.1 Sampling and Counting

Let A denote the maximum degree of a graph G = (V, E). Suppose now that we
wish to find a uniform random proper colouring of G using k > A + 1 colours.
By proper we mean that adjacent vertices get different colours. We can easily
generate one such colouring via a greedy algorithm, but it will certainly not
be a random colouring. The distribution of random colourings of G is complex.
The only known approach to this sampling problem is via random walk. Let
{2 denote the set of all proper k colourings of G. This will most likely be of
exponential size in n = |V|. Now consider an auxilliary multi-graph I' = (£2, F).
Two distinct colourings 01,09 : V' — [k] are adjacent if they only differ at one
vertex. In addition we add self-loops to make every vertex have the same degree.
A random walk on I is equivalent to the following Markov chain Xy, X1,..., on
2: Given X, we generate X, as follows:

1. Choose z uniformly at random from V', and ¢ uniformly at random from
{1,...,k}.

2. For all w # z, set Xi11(2) = Xi(2).

3. If no neighbors of z have color ¢ (i.e., ¢ € X;(N(2))), then set X;y1(2) = ¢,
otherwise set X;11(2) = X¢(2).

The version above is called Metropolis Dynamics.

Jerrum [29] showed that if & > 2A then this chain/walk is rapidly mixing
i.e. it gets close to the uniform distribution in time poly(n). From here it is
straightforward to devise an algorithm that gives a good approximation to |{2]
in polynomial time, see [29)].
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Counting colourings is only a single example of a flourishing research area
involving the use of Markov chains to sample from complex distributions and
to estimate the size of large combinatorially defined sets. This area of research
constitutes an important meeting place for researchers in Statistical Physics and
Theoretical Computer Science. For further reading, see [26] or [30].

2.1.2 Expanders

In this section we will for convenience asssume that G is a d-regular graph i.e.
every vertex has the same degree d. The adjacency matrix A, where A (v, w) =1
iff v,w are adjacent. A has largest eigenvalue d and suppose now that A is its
second largest eigenvalue. In this case it is known that

Inen

Tale) < Ty

]. 1)
We will say that a graph G is an a-expander if for all S C V with |S| < n/2, we
have e(S : S) > a|S| where e(S : S) is the number of edges from S to S = V'\ S.
In which case one can show that A < 1 — 2‘)‘;2. So if d = O(1) and a = £2(1)
then a random walk on G mixes in O(lnn) time. (See Alon [5] and Jerrum and
Sinclair [31]. This property of expanders can be used to reduce the number of
random bits needed by a randomized algorithm.

We explain the use of the following theorem of Ajtai, Komlds and Szemerédi [1]:

Theorem 1. Let G = (V, E) be a d-regular graph on n. Let C be a set of cn
vertices of G. Then for every ¢, the number of walks of length ¢ in G that avoid
C does not exceed (1 — c)n((1 — c)d + c\)*.

This means that a random walk of length ¢, with a randomly chosen start ver-
tex, has probability at most (1 — ¢)(1 — ¢(1 — \/d))* < e (=M DE of ayoiding
C completely. In this context, consider the Miller-Rabin algorithm for testing
whether an integer n is prime. Without going into details, it is known that if
n is composite then at least 1/2 of the integers between 1 and n can be used
to verify this. So if n is composite and we choose ¢ random integers between 1
and n then the probability we fail to show it is composite is at most 27¢. If we
choose our random integers in the normal way, then this requires £Ins n random
bits. On the other hand, suppose that we have a d-regular graph on [n] with
A < ed say, and we do a random walk of length ¢ from a randomly chosen start,
then this requires Ing n 4 ¢1ny d random bits. A significant saving if d = O(1).
Applying Theorem [Tl we see that the probability we fail to show it is composite
is at most (“2“6)6.

There are many uses of expanders. See Hoory, Linial and Wigderson [28] for
a survey.

2.1.3 Edge Disjoint Paths

In this section we discuss the use of random walks to find edge disjoint paths in
an expander graph G. We are given a graph G = (V, E) with n vertices, and a
set of k pairs of vertices in V', we are interested in finding for each pair (a;, b;),
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a path connecting a; to b;, such that the set of x paths so found is edge-disjoint.
In general this is an NP-hard problem, but some strong results have been proven
in the context of d-regular expanders. In a series of papers, culminating in Frieze
[27] it was shown that if G is a sufficiently strong expander and if € > 0 is
a sufficently small constant then this problem can be solved if kK < en/Inn.
First the edge set of G is partitioned to create several edge disjoint expander
graphs G, Gs, ... G1g. Various phases of the algorithm take place on various G;.
a network flow algorithm is used to connect the a; to randomly chosen k-set of
vertices by edge disjoint paths. The other endpoint of the path with one endpoint
a; is labelled a}. In a similar manner b; is connected to a randomly chosen b..
Finally, a path a},...,2;,...,b} is constructed. Here x; is chosen according to
the steady state of a random walk on one of the G;’s and then both ] and ¥
are connected to x; via a random walk.

2.1.4 Randomized Dual Simplex Algorithm
In this section we discuss the use of random walks to solve the linear program

LP(b) : minimise cy subject to Ay = b, y > 0. where A is a totally unimod-
ular matrix i.e. all sub-determinants of A are 0,+1.

The algorithm described in Dyer and Frieze [23] is somewhat complicated, but
it can be viewed as a dual simplex algorithm for the above problem, in which the
choice of next pivot is found via a random walk through a geomtrically defined
graph. The reader is refered to the paper for details.

2.2 Cover-Time

2.2.1 Log-Space Algorithm for s —t Connecitivity

One of the earliest computer science applications of random walk is in [4]. The
problem under discussion was whether it is possible to check whether two vertices
s and t are in the same component of a bounded degree graph GG. The time con-
straint is polynomial, but the space constraint is logarithmic i.e. only O(In n) work-
ing storage is allowed. This rules out algorithms like breadth-first and depth-first
search. The solution was to consider a random walk from s and run it for O(mn)
time. This only requires order Inn storage and one of the main results of the pa-
per was that the cover time C¢ of a connected graph satisfies Cq < 2m(n — 1).
Suppose then that we repeat the following ¢ times and still do not reach ¢. Take a
random walk of length 4mn from s. If s, ¢ are in the same component then this walk
will go through ¢ with probability at least 1 — 2"2(72;1) > % So if s,t are indeed in
the same component then this algorithm succeeds with probability > 1 — 27, It
is only recently that Reingold [34] has found a deterministic algorithm that uses
LOGSPACE.

2.2.2 Universal Traversal Sequences

Suppose that G is a d-regular graph G and that for each vertex v € V' we order
the neighbours of v as z(v,i), ¢ = 1,2,...,d. We call this an ordered d-regular
graph. Given a start vertex v and a sequence o = (i1,ia,...,4¢) € [d]’, £ = |o]
we can define a walk P(v,0) = (v = yo,¥1,.-.,Y¢) by yj+1 = 2(y;,%;) ie. yj11
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is the 4;th neighbour of y;. P(v,0) traverses G if it visits each vertex of G. If
we choose ¢ at random from [d]* and v arbitrarily then the walk P(v,0) is a
random walk. Let Z, denote the time taken by the random walk W, to visit all
vertices of G. We see then that if |o] = 4m(n — 1) then

Pr(o does not traverse G) = Pr(Z, > 4m(n — 1)) < Pr(Z, > 2E(Z,)) < 1.
Similarly, if |o| = 4km(n — 1) then

Pr(o does not traverse G) < ..
Now there are at most n**! ways of choosing an ordered d-regular graph and
a start vertex. So, with |o| = 4km(n — 1),

dn+1
2k
2
If £ > (dn + 1)Ingn then the RHS of (@) is less than one. Thus there exists a
sequence o of length O(dmnlInn) such that for every ordered G and every start
vertex v, P(v,0) traverses G. Put another way, using this universal traversal
sequence we can be sure of ariving at any other vertex, if we follow o. This being
regardless of start vertex v and graph G. So, short (polynomial length) universal
traversal sequences exist, but they are very hard to construct explicitly.

n
Pr(Jordered d-regular graph G and start vertex v such that o does not traverse G) <

2.2.3 Random Spanning Trees

Aldous [2] and Broder [10] independently proved the following beautiful result
concerning spanning trees of a fixed graph G. Initialise T' = () and start a random
walk W at an arbitrary vertex and when the walk first visits a vertex w add the
edge (v,w) to T. Here (v,w) is the edge just traversed by W. The algorithm
stops after W has visited all vertices. The algorithm generates a spanning tree
T of G. The aforementioned papers prove that T is equally likely to be any
spanning tree of G. A rather remarkable result.

3 Random Graphs

Various topics arise in the context of random walks on random graphs. Among
them are the following: Mixing time of the random walk, cover time of a random
graph, properties of multiple particle walks, random walks on graph processes,
constructing random networks using random walks.

3.1 Mixing Time

There is not much to say here except that random graphs tend to be excellent
expanders. In some sense they provide the simplest method of generating an
expander graph. For example a random walk on an r-regular graph, r > 3, has
mixing time O(logn) whp. In contrast it has proven very difficult to produce ez-
plicit expanders. It has been done, but the methods can be deep and complicated.

3.2 Cover Time of Random Graphs

In this section we study the cover time of various classes of random graphs with
fixed vertex set V = [n] = {1,2,...,n}. The spaces of labeled random graphs we
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consider here are: Erdos-Renyi graphs G, p,, random digraphs D, ,, random -
regular graphs G,., preferential attachment graphs G,,(n) and random geometric
graphs G = G(d,r,n). A fuller definition of these graph spaces is given below.

It is probably a good time to mention a graph of particular interest in the
context of this meeting i.e. Carbon Nano-Tube networks, see for example Bush
and Li [T2]. These graphs are formed from the intersection points of ”randomly”
placed line segments and one is interested in their effective resistance. This pa-
rameter is related to commute times, which are related to cover time. We do not
have any results yet on a model of such graphs, but it forms a promising line of
research.

A few words on notation. Results on random graphs are always asymptotic in
n, the size of the vertex set. The notation A,, ~ B,, means that lim,_,oc A,/B, =
1, and whp (with high probability) means with probability tending to 1 as
n — 00.

Erdos-Renyi graphs G, , are defined as follows. The edge {7, j} between any
pair of vertices ¢ and j occurs with probability p, independently of all other edges.
Let Cg denote the vertex cover time. It was shown by Jonasson [32] that whp

- Cg=(14o(1))nlnn if P — oco.
— If ¢ > 1is constant and np = ¢lnn then Cg > (14+a)nInn for some constant
a = afc).

Thus Jonasson has shown that when the expected average degree (n— 1)p grows
faster than Inn, a random graph has the same cover time whp as the complete
graph K,,, whose cover time is determined by the Coupon Collector problem.
Whereas, when np = 2(Inn) this is not the case. This result was refined for
sparse graphs as follows:

— If p=dlnn/n and d > 1 then whp Cg, , ~ dIn (dL) nlnn, [16].

— Let d > 1 and let = denote the solution in (0,1) of z = 1 — e~ 9. Let X, be
the giant component of G, », p = d/n. Then whp Cx, ~ jgﬂgﬁf%mm n)?,
17

Considering random r-regular graphs (i.e. the set of all simple r-regular graphs
with the uniform measure), we have the following result [14]:

If G, denotes a random r-regular graph on vertex set [n] with » > 3 then
whp Cg,, . ~ ::énlnn.

The proof of this result uses a lemma, which we call the first visit time lemma,
which under not very restrictive conditions (see e.g. [17]) states that the proba-
bility f(v;T),...,t) that vertex v is not visited by the walk during steps T, ..., ¢ is
given by

FO5 T, ey t) = (L4 0(1)(1 = po)',

T

where T is a mixing time of the walk. Here p, ~ R where 7, is the stationary
distribution of vertex v, and R, is the expected number of returns to v during
the mixing time T', of a random walk starting at v. Thus R, is dependent only
on the local geometry of the graph around v. This result is true also for weighted
random walks, and general ergodic Markov processes.
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The preferential attachment graph G,,,(n) is a random graph formed by adding
a new vertex at each time step, with m edges which point to vertices selected at
random with probability proportional to their degree. Thus at time n there are
n vertices and mn edges. This process yields a graph which has been proposed
as a simple model of the world wide web [§]. In [I5] it is shown that if m > 2
then whp Cg, n) ~ jinlnln n.

The random digraphs D, , are generated in the same manner as G, , ex-
cept that now, each directed edge (i,j) occurs independently with probabil-
ity p. The first visit time lemma applies to these graphs provided they are
strongly connected (etc) and we find that: If p = dlnn/n and d > 1 then

d
-1

The main problem for walks on directed graphs is to determine the stationary
distribution .

Finally we consider geometric random graphs. Let I denote the unit interval
[0,1] and let I(d) = [0,1] denote the unit torus in d dimensions. We define a
random geometric graph G = G(d, r,n) as follows: Sample n points V' indepen-
dently and uniformly at random from I(d) wrapped toroidally. For each point x
draw a ball (disk) D(z,r) of radius r about x. The vertex set V(G) =V and the
edge set E(G) = {{v,w}: w#v, w € D(v,r)}. The graph serves as a model for
ad-hoc networks, where transmitters have limited range.

Avin and Ercal [0] considered the case d = 2. They proved that if G =
G(2,7,n) and r? > (81nn/n) then whpCg = O(nInn). For d > 3 dimensions
we can give precise results. Let G(d,r,n), d > 3 be a random geometric graph.
Let 7 = (cInn)/(Yyn)'/¢ and where ¢ > 1 is a constant. Then whp

whp Cp, , ~dIn (d nlnn.

Ca ~cln (Cf1>nlnn. (3)

Here ¥y = (7%/2)/I'(d/2 + 1) is the volume of the unit ball D(0,1) in d dimen-
sions.

3.3 Multiple Particle Walks

Suppose there are k > 1 particles, each making a simple random walk on a
graph G. Essentially there are two possibilities. Either the particles are Oblivious
or Interactive. Oblivious particles act independently of each other, and do not
interact on meeting. They may however interact with vertices, possibly in a
way determined by previous visits of other particles. Interactive particles, can
interact directly in some way on meeting. We assume that interaction only occurs
when meeting at a vertex, and that the random walks made by the particles are
otherwise independent. Various models and questions arise, e.g.

— Multiple walks. For k particles walking independently, we establish the
cover time Cg (k) of G.

— Talkative particles. For k particles walking independently, which commu-
nicate on meeting at a vertex, we study the expected time to broadcast a
message.
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— Predator-Prey. For k predator and ¢ prey particles walking independently,
we study the expected time to extinction of the prey particles, when preda-
tors eat prey particles on meeting at a vertex.

— Coalescing particles. For k particles walking independently, which coa-
lesce on meeting at a vertex, we study the expected time to coalesce to a
single particle.

— Annihilating particles. For k& = 2/ particles walking independently, which
destroy each other (pairwise) on meeting at a vertex, we study the expected
time to extinction.

The motivation for these models comes from many sources. Using random walks
to test graph connectivity is an established algorithm, and it is appealing to speed
up this by parallel searching [11]], [7]. Similarly, properties of communication,
such as broadcasting and gossiping, between particles moving in a network, is a
natural question. In this context, the predator-prey model represents interaction
between server and client particles, where each client needs to attach to a server.

Coalescing and annihilating particle systems are part of the classical theory of
interacting particles (see e.g. [3]). A system of coalescing particles where initially
one particle is located at each vertex, corresponds to another classical problem,
the voter model, which is defined as follows: Initially each vertex has a distinct
opinion, and at each step each vertex changes its opinion to that of a random
neighbour. It is known that the expected time for a unique opinion to emerge,
is the same as the expected time for all the particles to coalesce. By establishing
the expected coalescence time, we obtain the expected time for voting to be
completed.

The cover time of a random walk on a random r-regular graph was studied in
[14], where it was shown with high probability (whp), that for » > 3 the cover
time is asymptotic to 6,nlnn, where 0, = (r — 1)/(r — 2).

In [20] we prove the following (whp) results, arising from the study of multiple
random walks on a random regular graph G. For k independent walks on G, the
cover time C¢(k) is asymptotic to Cg/k, where C¢ is the cover time of a single
walk. For most starting positions, the expected number of steps before any of
the walks meet is 6,n/ (g) If the walks can communicate when meeting at a
vertex, we show that, for most starting positions, the expected time for k walks
to broadcast a single piece of information to each other is asymptotic to 2 1,2"“ 0,.n,
as k,n — oo.

We also establish properties of walks where there are two types of particles,
predator and prey, or where particles interact when they meet at a vertex by
coalescing, or by annihilating each other. For example, the expected coalescence
time of k particles tends to 26,n as k — oo; the expected extinction time of k
explosive particles (k even) tends to (21n2)6,.n as k — oo. Suppose k predator
and ¢ prey particles make random walks, starting in general position (not too
%e?[r each other). Let Dy ¢ be the extinction time of the prey. Then E(Dy ) ~

rddg n.

The case of n coalescing particles, where one particle is initially located at

each vertex, corresponds to a voter model defined as follows: Initially each vertex
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has a distinct opinion, and at each step each vertex changes its opinion to that
of a random neighbour. The expected time for a unique opinion to emerge is the
expected time for all the particles to coalesce, which is asymptotic to 260,n.

Combining results from the predator-prey and multiple random walk models
allows us to compare expected detection time in the following scenarios: both
the predator and the prey move randomly, the prey moves randomly and the
predators stay fixed, the predators move randomly and the prey stays fixed. In
all cases, with k predators and ¢ prey the expected detection time is 0, Hyn/k,
where Hy is the -th harmonic number. A application of this is with the predators
as government agents and the prey as criminals.

3.4 Random Walks on Random Graph Processes

If we consider a random graph process (G(t), t = 0,1,...) in which the graph
evolves at each step by the addition of vertices and/or edges then the random
walk is searching a growing graph, so we cannot hope to visit all vertices of the
graph.

For example, consider a simple model of search, on e.g. the www, in which
a particle (which we call a spider) makes a random walk on the nodes of an
undirected graph process. It is presumed that the spider examines the data
content of the nodes for some specific topic. As the spider is walking the graph
is growing, and the spider makes a random transition to whatever neighbours
are available at the time. For simplicity, we assume that the growth rate of the
process and the transition rate of the random walk are similar, so that the spider
has at least a chance of crawling a constant proportion of the process. Although
the edges of the www graph are directed, the idea of evaluating models of search
on an undirected process has many attractions, not least its simplicity.

We study the success of the spider’s search on comparable graph processes of
two distinct types: a random graph process and a web graph process [13]. In the
simple process we consider, each new vertex directs m edges towards existing
vertices, either choosing vertices randomly (giving a random graph process) or
copying according to vertex degree (giving a web graph process). Once a vertex
has been added the direction of the edges is ignored.

We consider the following models for the graph process G(t). Let m > 1 be a
fixed integer. Let [¢t] = {1, ...,¢} and let G(1) C G(2) C --- C G(¢). Initially G(1)
consists of a single vertex 1 plus m loops. For ¢ > 2, G(t+1) is obtained from G(t)
by adding the vertex t and m randomly chosen edges {t+1,v;},i =1,2,...,m,
where

Model 1: Vertices vy, va, . .., vy, are chosen independently and uniformly with
replacement from [t].
Model 2: Vertices v1,ve, ..., vy, are chosen proportional to their degree after

step t. Thus if d(v, 7) denotes the degree of vertex v in G(7) then for v € [¢] and
i=1,2,...,m,
d(v,t)

Pr(v; =v) = ot
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While vertex t is being added, the spider S is sitting at some vertex X;_; of
G(t—1). After the addition of vertex ¢, and before the beginning of step t+1, the
spider now makes a random walk of length ¢, where ¢ is a fixed positive integer
independent of ¢.

Let n¢,m (t) be the expected proportion of vertices which have not been visited
by the spider at step t, when ¢ is large. If we allow m — oo we can get precise
asymptotic values. Let 7y = limy,—.00 1¢,m, then

(a) For Model 1,

2 2 > 2
772:\/66(“_2) /(4@/( w e y/zdy, m =057+, andng ~ 2/ as £ — oo.
042)/v/2¢

(b) For Model 2
e = €€2£2/ y3e™Y dy, m =059 -, and ne ~2/¢ as { — oco.
¢

So for large m,t and ¢ = 1 it is slightly harder for the spider to crawl on a
webgraph whose edges are generated by a copying process (Model 2) than on a
uniform choice random graph (Model 1).

3.5 Constructing Random Networks Using Random Walks

Bourassa and Holt [9] propose a decentralised protocol for P2P networks based
on random walks. If a vertex in the network needs an address of a random ver-
tex, then it initiates a random walk and gets the address of the vertex reached
at some specified step of the walk. The protocol constructs a 4-regular random
graph. Their protocol, however, cannot reconnect the network if it becomes dis-
connected.

In [21] we describe a randomized algorithm for assigning neighbours to vertices
joining a P2P network. The aim of the algorithm is to maintain connectivity,
low diameter and constant vertex degree. On joining each vertex donates a con-
stant number c of tokens to the network. These tokens contain the address of the
donor vertex. Tokens make independent random walks in the network. A token
can be used by any vertex it is visiting, to establish a connection to the donor
vertex. This allows vertices which initially join in an arbitrary manner (e.g to a
friend/super-node) to be re-allocated to a random set of neighbours although the
overall vertex membership of the network is unknown. The new vertex joins ar-
bitrarily, collects m tokens, attaches to the vertices whose addresses they contain
and detaches from its original contacts.

If ¢ is the size of the network, then the diameter of the network is O(Int) for
all ¢, with high probability. The network is extremely robust under adversarial
deletion of vertices and edges and actively reconnects itself when broken. As an
example of the robustness of this model, suppose an adversary deletes edges from
the network leaving components of size at least t'/219 § > 0 small. With high
probability the network rapidly reconnects itself by replacing lost edges using
tokens from the token pool.
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