
Hidden Markov Models Implementation for

Tangible Interfaces

Piero Zappi1, Elisabetta Farella1, and Luca Benini1

DEIS University of Bologna, Bologna, Italy
{piero.zappi,elisabetta.farella,luca.benini}@unibo.it

Abstract. Smart objects equipped with inertial sensors can recognize
gestures and act as tangible interfaces to interact with smart environ-
ments. Hidden Markov Models (HMM) are a powerful tool for gesture
recognition. Gesture recognition with HMM is performed using the for-
ward algorithm. In this paper we evaluate the fixed point implementation
of the forward algorithm for HMM to assess if this implementation can
be effective on resource constraint devices such as the Smart Micrel Cube
(SMCube). The SMCube is a tangible interfacet that embeds an 8-bit mi-
crocontroller running at 7.372 MHz. The complexity-performance trade
off has been explored, and a discussion on the critical steps of the algo-
rithm implementation is presented.

Keywords: Smart Object, Hidden Markov Models, Tangible interfaces,
Fixed point.

1 Introduction

The development of smart objects is an active field of research. With the ob-
jective of enhancing the interaction with smart environments, smart objects can
be used as tangible interfaces and play a fundamental role in improving human
experience within interactive spaces for entertainment and education [1]. The
SMCube is a tangible interface developed for the TANGerINE framework, a
tangible tabletop environment where users manipulate smart objects in order
to perform actions on the contents of a digital media table [2]. Previous work
showed how a simple ad-hoc technique and a standard tree classification algo-
rithm can be implemented on the SMCube to include basic gesture recognition
and improve interaction modalities [3].

Hidden Markov Models (HMMs) allow to handle temporal dynamics and clas-
sify more complex gestures than the ones already recognized. Typically, classi-
fication with HMMs is performed using a recursive algorithm called forward
algorithm. Although this process is a lightweight task, several issues must be
considered in order to implement it on a low-power, low-cost microcontroller
such as the one embedded on the SMCube.

In this paper we evaluate the fixed point implementation of the forward algo-
rithm. Discussion of ad-hoc solution to solve numerical problems while keeping
low overall computational complexity is presented. Considerations about the

A. Nijholt, D. Reidsma, and H. Hondorp (Eds.): INTETAIN 2009, LNICST 9, pp. 258–263, 2009.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

HMM Implementation for Tangible Interfaces 259

complexity of the algorithm, both in terms of computational and memory cost,
and its performance are discussed through the paper.

2 Hardware Overview

The SMCube is a smart object equipped with sensors (a digital tri-axes ac-
celerometer from STM, LIS3LV02DQ, and 6 photo transistors) and actuators
(infrared LEDs) (see figure 1). It embeds an ATMega 168 low-power, low-cost
microcontroller to sample and process data from its sensors, and a Bluetooth
2.0 transceiver from BlueGiga (WT12) to wirelessly communicate with a PC.
The ATMega 168 features a RISC architecture that can operate up to 24MHz
and offers 16 KB of Flash memory, 1 KB of RAM and 512 Bytes of EEPROM.
The microcontroller includes a multiplier and several peripherals (ADC, timers,
SPI and UART serial interfaces etc.). The firmware has been implemented in
C using the Atmel AVR Studio 4 IDE that provides all the APIs necessary to
exploit the peripherals and perform operations with 8, 16, and 32 bit variables.

Fig. 1. The Tangerine SMCube. The cube edge is 6.5 cm long.

3 Hidden Markov Models

A HMM is a probabilistic model used to describe sequences of observations
O = {o1, o2, ..., oT } and their corresponding hidden state Q = {q1, q2, ..., qT }.

A discrete HMM is characterized by a set of N states (si), M possible ob-
servable (measurable) values (vk), a N ×N matrix state transition A = {aij} =
P (qt+1 = sj |qt = si), a N × M observation matrix B = {bi(k)} = P (ot =
vk|qt = si), and a N ×1 starting probability vector Π = {πi} = P (q1 = si). The
compact notation for an HMM is λ = (A, B, Π).

Two hypotheses are given: (1) the state at time t depends only on the state
a t− 1, P (qt|qt−1); (2) each observation is independent given its state, P (ot|qt).

There are three problems associated with HMM: (1) the classification problem,
(2) the decoding problem, (3) the training problem [4].

Given a model λ and a sequence of observations O, the classification problem
consists in finding the probability that λ generated O and is solved using the

260 P. Zappi, E. Farella, and L. Benini

forward algorithm. When we use HMMs for gesture classification, we train one
model, λi for each class of gestures, then we apply the forward algorithm with
all the models and find the most probable one, Gout = argmaxi[P (O|λi)].

3.1 The Forward Algorithm

The forward algorithm is a recursive algorithm that relies on a set of support
variables αt(i) = P (o1, o2, ..., ot, qt = i|λ) and is made up of three steps.

1. Initialization: α1(i) = πi(O1)bi(O1), 1 ≤ i ≤ N

2. Induction: αt+1(j) = [
N∑

i=1

αt(i)aij]bj(Ot+1), 1 ≤ j ≤ N and 1 ≤ t ≤ T − 1

3. Termination: P (O|λ) =
N∑

i=1

αT (i)

3.2 Normalization

According to the definitions in the previous section we can see that the αt(j)

are sum of a large number of terms in the form (
t−1∏

s=1

aqs,qs+1

t∏

s=1

bqs(Os)). Since

both the aij and the bi(k) are smaller than 1 as t become large αt(j) tends to
zero exponentially and soon it exceedes the precision of any machine.

In order to avoid underflow, the αt(j) are normalized at every step using the
scaling factor ct = 1

N∑

i=1

αt(i)

. The scaled α̂t(j) are used in place of the αt(j).

This normalization procedure is not suitable for low-power microcontrollers
since it requires to perform N divisions each time a new sample is processed.

Thus we propose an alternative approach:

1. check if all αt(j) are smaller than 1
2 , otherwise scaling is not needed;

2. calculate the number of shift to the left (l) needed to render the highest
αt(j) greater than 1

2 ;
3. shift all αt(j) to the left of l bits.

This procedure requires only shifts and can be efficiently implemented on a
microcontroller.

3.3 Likelihood

To compute the final sequence probability we can not use the scaled α̂t(j).
However we can notice that:

N∑

i=1

α̂T (i) =
T∏

t=1

2lt ·
N∑

i=1

αT (i) =
T∏

t=1

2lt · P (O|λ) = r −→ P (O|λ) =
r

T∏

t=1

2lt

(1)

HMM Implementation for Tangible Interfaces 261

Since P (O|λ) can be very small, we compute log P (O|λ) = log(r)−
T∑

t=1

log 2lt .

If we decide to use log2 we already have the value of
T∑

t=1

log 2lt by keeping

track of how many shifts we performed for scaling. Furthermore, we do not need
to compute log(r) since logarithm is a monotonically increasing function. Thus,
to compare 2 models, we simply check for the one that required less shifts for
scaling, in case of tie the one with higher r is the most probable model.

4 Evaluation

To evaluate this implementation we used a dataset made up of 10 complex ges-
tures collected on the car assembly scenario [6]. These gestures can be compared
to the ones that may be used within role-playing games. The dataset has been
extended since its first use and now it includes 70 repetition for each gesture.
We used 4 fold cross validation technique to extend the validation set up to all
70 samples.

To recognize these gestures we used a set of discrete HMMs with 4 states
(N = 4). Accelerometer’ streams have been quantized to 3 symbols (M = 3).

To assess the complexity of the forward algorithm we assumed the values
presented in tables 1a and 1b, where N is the number of HMM states and C is
the number of gestures we want to recognize (here C = 10). The memory cost is
given by data size

8 ·C · (N2 +N ·M +2 ·N). Where M is the number of symbols
in the accelerometer stream.

4.1 Classification Accuracy

To evaluate the performance loss due to the use of fixed point data representa-
tion, we classified the dataset using a floating point representation of the data
and the traditional normalization algorithm (optimal performance), and using a
fixed point representation and the shift scaling algorithm.

Table 1. Computational complexity

(a) Computational complexity

Operation Cost

Shift 1

Variables comparison 1

Sum 8 bits 1

Sum 16 bits 2

Sum 32 bits 4

Multiplication 8 bits 2

Multiplication 16 bits 4

Multiplication 32 bits 6

(b) Algorithm complexity

Algorithm Cost

αt+1(i) Calculation (N + 1) mul. + N sum.

Normalization 2 · N + 1 + 2 · data size

Single step (8-bit) C · [N · (3 · N + 2) + 2 · N + 17]

Single step (16-bit) C · [N · (6 · N + 4) + 2 · N + 33]

Single step (32-bit) C · [N · (10 · N + 6) + 2 · N + 65]

262 P. Zappi, E. Farella, and L. Benini

Performances are evaluated using the following indexes (see table 2):

– Correct Classification Ratio: CCR =
number of correctly classified instances

total number of instances
;

is a global indication of the performance of the classifier.

– Precision: PRi = number of instances correctly classified for class i
number of instances classified as class i

;

is an indication of the exactness of the classifier.

– Recall : RCi =
number of instances correctly classified for class i

total number of instances from class i
;

is an indication of the performances of the classifier over a specific class

5 Discussion

Table 2 and 3 present PR, RC, CCR, computational and memory cost for our
implementations when using the given dataset. The implementations that use
16 and 32 bits fixed point data representation achieve similar or even equal
CCR than the floating point solution. On the other hand the 8 bits fixed point
implementation worsen the CCR by 14.15 %. However, the 32 bit solution can not
be implemented on the ATmega168 since it requires more RAM than available,
therefore the 16 bits solution is the optimal choice for the SMCube.

Table 2. Classification performances

Class PR 8b PR 16b PR 32b PR fl RC 8b RC 16b RC 32b RC fl

Gesture 1 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.99

Gesture 2 0.50 0.66 0.66 0.66 0.01 0.64 0.64 0.64

Gesture 3 0.38 0.54 0.54 0.54 0.41 0.56 0.56 0.56

Gesture 4 0.54 0.60 0.61 0.61 0.64 0.67 0.69 0.69

Gesture 5 0.29 0.67 0.69 0.69 0.36 0.50 0.50 0.50

Gesture 6 0.36 0.53 0.53 0.53 0.43 0.36 0.36 0.36

Gesture 7 0.53 0.65 0.65 0.65 0.59 0.86 0.86 0.86

Gesture 8 0.47 0.56 0.56 0.56 0.52 0.63 0.63 0.63

Gesture 9 0.77 0.87 0.87 0.87 0.81 0.89 0.89 0.89

Gesture 10 0.93 0.96 0.96 0.96 0.90 0.99 0.99 0.99

CCR 56.71% 70.71% 70.86% 70.86%

Table 3. Performance and cost comparison

Variables Size (bits) CCR (%) Memory cost (bytes) Computational cost

8 56.71 360 810

16 70.71 720 1370

32 70.86 1440 2090

Floating point 70.86

HMM Implementation for Tangible Interfaces 263

6 Conclusion and Future Works

In this paper we presented our evaluation of a fixed point implementation of
the forward algorithm for HMM. Furthermore, we presented our solutions to the
peculiar numerical problems of this classification algorithm. The 16-bit imple-
mentation is the best solution that can be implemented on our target micro-
controller (ATMega168). This solution shows performance only slightly worse
than the optimal ones of the floating point implementation (70.71% CCR, 16 bit
fixed point; 70.68% floating point) and makes this implementation suitable for
smart objects equipped with low-power, low-cost microcontrollers such as the
SMCube.

HMM is a common approach in gesture recognition, thus the possibility to im-
plement this algorithm on a smart object greatly enhances potential for using it
as an effective HCI device. In future works we plan to augment human computer
interaction within a tabletop environment allowing the interaction through a set
of complex natural gestures.

References

1. Ishii, H.: The tangible user interface and its evolution. J. Comm. ACM 51(6), 32–36
(2008)

2. Baraldi, S., Del Bimbo, A., Landucci, L., Torpei, N., Cafini, O., Farella, E., Pieracci,
A., Benini, L.: Introducing tangerine: a tangible interactive natural environment. In:
Proc. of ACM International Conference on Multimedia (MM), pp. 831–834. ACM
Press, Augsburg (2007)

3. Cafini, O., Farella, E., Benini, L., Baraldi, S., Torpei, N., Landucci, L., Del Bimbo,
A.: Tangerine SMCube: a smart device for human computer interaction. In: Proc.
of IEEE European Conference on Smart Sensing and Context (2008)

4. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

5. Mitra, S., Acharya, T.: Gesture Recognition: A Survey. IEEE Transactions on Sys-
tems, Man and Cybernetics - Part C 37(3), 311–324 (2007)

6. Zappi, P., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Tröster, G.: Activity
Recognition From On-Body Sensors by Classifier Fusion: Sensor Scalability and
Robustness. In: Proc. 3rd Int. Conf. on Intelligent Sensors, Sensor Networks, and
Information Processing (2007)

	Hidden Markov Models Implementation for Tangible Interfaces
	Introduction
	Hardware Overview
	Hidden Markov Models
	The Forward Algorithm
	Normalization
	Likelihood

	Evaluation
	Classification Accuracy

	Discussion
	Conclusion and Future Works

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

