
A. Nijholt, D. Reidsma, and H. Hondorp (Eds.): INTETAIN 2009, LNICST 9, pp. 119–130, 2009.
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

Automatic and Interactive Key Posture Design by
Combing the PIK with Parametric Posture Splicing

Shilei Li, Bing Wu, Jiahong Liang, and Jiongming Su

College of Mechatronic Engineering and Automation, National University of Defense
Technology, PhD candidate, Changsha, 410073, P.R. China

leeshileili@gmail.com

Abstract. Key posture design is commonly needed in computer animation. This
paper presents an automatic and interactive whole body posture designing
technique by combining the PIK (prioritized inverse kinematics) with the
proposed parametric human posture splicing technique. The key feature of PIK
is that the user can design a posture by adding high level constraints with
different priorities. However, the PIK is essentially a numerical IK algorithm
which relies on the iterative optimization starting from a good enough initial
posture to get the final result. To speed up the running efficiency and ensure the
lifelikeness of the final posture, the parametric posture splicing technique is
proposed to generate the initial guess of the PIK. According to the set of the
high level constraints, the whole body is divided into some partial parts, whose
postures are then generated by the parametric posture synthesis from a single
posture database. Then an initial posture guess with some main characteristics
of the finally acceptable posture can be generated approximately by splicing
these partial body postures together. Starting from this initial guess and with all
constraints considered at different priority levels, the PIK can be initialized with
a bias defined by this particularly initial guess and iterated step by step to get a
final posture. The total process of the whole body posture generation is
automatic and interactive. The experimental results show that this combination
method can not only improve the computation efficiency of the PIK but also
can simultaneously ensure the naturalness of the final posture.

Keywords: character animation, posture designing, prioritized inverse kinematics,
parametric posture splicing.

1 Introduction

In the computer animation field, key posture design is a fundamental requirement of
animators. Today, commercial animation software products, e.g. 3ds Max, Maya, all
provide friendly interactive interface for character posture designing. However, key
posture design is still a hand-driven technique which requires experience and long-
timely humdrum labor.

When the animator designs a particular posture, she always has a rough outline of
the desired posture in mind, which usually can be described by a set of high level

120 Shilei Li et al.

constraints. The PIK [1,2] is an efficiently iterative algorithm which can enforce an
arbitrary number of strict priorities to arbitrate the fulfillment of conflicting constraints
and can run within an interactive environment. Given high level constraints, the whole
body posture of complex characters can be generated automatically. However, the PIK
is essentially a generalized Jacobian-pseudo-inverse based IK algorithm. The final
posture is generated by iterative optimization starting from an initial guess of the
posture configuration. Because of the redundancy of the human joints, different initial
guesses can generate different final postures. The better the initial guess is, the less
computation load and the more lifelikeness of the final result would be realized. Here,
the goodness of the initial guess should be measured by the similarity between the
initial guess and the final desired posture. In extreme cases, if we can give the final
posture directly, there would be no need for the further PIK computation. Although we
can never get the exactly final posture directly with only a set of high level constraints,
we should set the initial guess close to the final result as much as possible. In this paper
the motion capture database is used to generate the initial posture. Nevertheless, the
diversity of the possible human postures makes it impossible to establish a posture
database that includes all required postures in the future. To reduce the number of
sample motions, the parametric splicing technique is purposed to synthesize the initial
whole body posture by dividing the body into some partial parts. By combining the
PIK with the parametric posture splicing technique, an automatic and interactive key
posture designing framework is presented in this paper.

The remainder of this paper is organized as follows. Section Related works and
Contribution reviews related literatures and outlines our contribution. Next, Section
Overview gives an overview of our posture designing framework. In following two
Sections, we detail our method for combing the parametric posture splicing with the
PIK algorithm. Our results are shown and discussed in Section Experimental Results
and Discussion. Finally, in Section Conclusions and Future Work, we conclude this
paper and discuss some possible directions for the future work.

2 Related Works and Contribution

Key posture design is widely needed in computer animation. The motion quality of
the traditionally hand-driven keyframing technique is basically determined by key
postures. Nowadays, it is common to leverage on motion capture databases to
generate virtual character animations as motion capture technique provides the most
lifelike results by replaying the real human motions. However, motion capture data
often need some adaptions to reuse in different environments. The adaption process
often introduces artifacts and key posture design is still widely needed so as to correct
and adjust any undesirable postures. Recently, to relieve the animator from the burden
of enforcing physical plausibility, physical interpolation [3,4] is proposed to generate
highly detailed and physically realistic motions. However, realistic key postures are
still needed as the foundation of the final results.

While designing key postures can be done by directly given parameter values of
different joints, it becomes rapidly tedious and time consuming as soon as the total
number of animated object’s DoFs (degrees of freedom) increases. For character

 Automatic and Interactive Key Posture Design 121

animation, this is particularly noticeable as typical virtual characters may contain up
to fifty DoFs even without considering the fingers. For this reason, specific
algorithms have been developed to ease key posture design. IK (Inverse kinematics) is
a process for determining the configuration of a character’s parameters based on
specifications of resulting features of the pose, such as end-effector positions. It can
calculate the mid joints angles automatically, providing a goal-directed method in the
human posture generation. The control of complex articulated figures using IK often
requires that we can simultaneously apply multiple constraints, which may lead to
conflicts between tasks because some are not achievable at the same time, whilst they
can be separately. In references [1,2], a priority based numerical IK solver(PIK) is
presented. The priority strategy ensures that the most important ones are satisfied first
and the less import ones are satisfied as much as possible without disturbing the vital
constraints. In references [5,6,7], the PIK is used for motion editing. In reference [7],
to realize one particular key frame editing, the PIK is combined with the low
dimension motion model constructed from a motion database using PCA. This
approach provides faster and better quality results with less tuning from the user side
compared with references [5,6], which use the PIK to realize motion editing based on
the per-frame PIK paradigm. In this paper, the PIK algorithm is adopted to realize the
process of conflicting constrains in key posture design. We also combine the PIK with
a motion database but here the motion database are used to provide posture samples
rather the motion model of one particular motion type like [7].

Our work belongs to the example-based IK methods. Style-based IK [8] is a robust
and powerful technique for character posing using a statistical model learned from small
datasets. However, it does not guarantee that poses still looks natural when desired
poses are far away from the training data. Just like the parametric motion synthesis
techniques [9,10,11] which generate new motions exactly corresponding to user-
specified parameters, we propose the parametric posture splicing so that the
combination of partial postures can be used as the initial guess of one particular set of
high level constraints. To reduce the motion samples required for the parametric motion
synthesis technique, Ha et al. [12] combined the upper and lower body splicing with the
parametric motion synthesis. Here, we also use the splicing to reduce the required
posture samples. But unlike these papers which generate motion sequences, we only
generate a single posture without the need of the complex preprocess operation to
determine the time, space and constraint correspondences between a set of motion
primitives. Splicing is a technique to produce a new motion by cutting some part of one
motion and attaching it to another. By combining different partial motions, the original
motion database can be enriched without capturing new motions. Heck et al.[13]
proposed a detailed method to splice the upper body of a motion with the lower body of
another. Majkowska et al. [14] proposed a technique that splices hand gestures with
body motions. Ikemoto et al. [15] introduced a way of enriching a motion database by
changing the limb associated with a motion, and suggest rules for synthesizing motions
that look natural. Recently Jang et al. [16] suggested an analogous combination
technique which selects and combines coherent partial motions. In these papers, splicing
is made just to ensure the naturalness of the final results without considering the exact
feature of the finally combined results beforehand. In this paper, splicing is also used

122 Shilei Li et al.

but we focus on the generation a posture entailing some main characteristics of user
constraints so that it can be used as the initial guess of the PIK.

Compared with other example-based IK algorithm, the main contribution of our
work is the high efficiency and quality of the final results by sequential apply the
parametric splicing and PIK. Through the parametric splicing, a natural whole body
posture can be generated without complex computation and used later as the initial
starting point of the PIK algorithm. By combining the parametric splicing with the
PIK, a more robust and efficient IK framework is presented.

3 Overview

The key feature of our posture designing framework is that the parametric posture
splicing is combined with the PIK to realize automatic and interactive posture
generation. Basically, our approach is divided into two main steps:

1. Parametric posture splicing: Posture databases are used to generate the initial
guess of the PIK. To reduce the required posture samples, the splicing technique is
used. Here, the main problem we need to solve is that how we can ensure the
combined whole body posture can be used as an initial guess of the final desired
posture. According to the certain set of high level constraints, we divide the whole
body into some partial joint groups and generate these partial postures using the
weighted interpolation of corresponding parts of different whole body postures. Then
the posture of the whole body is spliced and used as the initial guess of the PIK.

2. Further posture refining using PIK: The feature of the PIK is its priority strategy.
Using the PIK, the complex task with an arbitrary number of priority levels and
parametric inputs can be processed. Using the parametric posture splicing results as the
initial configuration, the PIK solves for the final results by considering all of user
specified constraints with different priorities. As the initial guess generated through the
partial interpolation of a posture database, the quality of the final results and the
calculation efficiency can be improved compared to situations where only a random or
a fixed initial posture configuration is used.

4 Parametric Posture Splicing

Our basic idea is to subdivide the body of a character into several parts, such as the
lower and upper body. New postures can then by generated from the combination of
partial postures. However, human is a complex life system which moves in a highly
coordinated way and combining partial postures in an arbitrary way can not produce
the harmony of real human posture. Furthermore, to synthesize a posture that can be
used as an initial guess for a particular situation, we must ensure the combined
posture have a certain similarity with the desired posture. In summary, we have two
questions to solve. First, what division should we use to ensure the lifelikeness of the
spliced posture? Second, how to use the same posture database to approximately
generate different partial postures we want? In this section, we propose the parametric
posture splicing to solve these two questions.

 Automatic and Interactive Key Posture Design 123

4.1 Posture Database Setup

To do the parametric posture splicing operation, first a posture database needs to be
established as a preprocessing step. We use the motion capture data to setup the
posture samples. A particular character posture is generally represented as a state
vector P , described by the global position and orientation of the root node and a set of
joint angles:

0 0 1[, ,]nP p q q q= (1)

Where 0p and 0q represent the 3D global position and orientation of the root joint

and iq is the local transformation of the thi joint expressed in its local coordinate

system. It should be noted that a posture is unchanged if we translate it along the floor
plane or rotate it about the vertical axis. Most papers adopt the similarity matrix
proposed by Kovar et al.[17] to compare different postures. The optimized 2D
transformation is used to get the optimal sum of squared distances between
corresponding point clouds and the readers may refer to this paper for the details.
However, when the posture database is used for the initial posture generation, the
virtual character geometry may be different from the actual performer of the motion
data. Consequently, when comparing the similarity between two postures, they are
joint angles rather than some position values that determine the similarity level. For
example, if an adult man and a child have the same joint angles of all of their joints,
we think their postures are same in spite of their great differences in positional
constraints. Although it is not always true that joint angles rather than position values
determine the feature of a pose, for example, if we have a particular positional
requirement of a posture (e.g. touch the nose, scratch the back of the head etc), it
should be noted that here our purpose is to establish a posture database which can be
used to generate the initial guess of the PIK algorithm to ensure the naturalness of the
final posture result. The positional constraints of the particular posture will be further
processed by the PIK component.

Before the similarity is computed, one of the two poses should be translated and
rotated in the horizontal plane to remove differences in absolute position and facing
direction. After removing differences in absolute positions and facing directions from
the state of the pose, we calculate the similarity of the two postures simply using the
following equation:

'

0

[]
n

i i i
i

s ws q q
=

= × −∑ (2)

Where s is the score for the posture similarity and the weighting vector iws is used

because the angle variation of a joint located at the beginning of the human body
kinematics chain has a greater influence on the generated posture than the same angle
variation of a joint located at the end of the chain.

To generate the different posture samples, first different types of motion with a
complete cycle, such as walking, running, kicking, reaching, sitting, etc. are collected.
Then the posture database was established from these motions by adding a new pose

124 Shilei Li et al.

only if the similarity score between that pose and all the poses currently in the
database is greater than a threshold. Consequently, we finally get a database
containing a set of unique postures, each stored as the joint angles.

4.2 Parametric Partial Posture Generation

Given a certain set of high level constraints, to reduce the number of required posture
samples, we first need to divide the whole body into a certain number of partial parts
and then generate these partial postures individually using the same posture database.
Here unlike traditional methods [13,15,16] which simply divide the whole body into
the same division, e.g. the upper and lower body parts, all the time, we divide the
body part according to different situations. When a certain set of high level
constraints is given, we first determine the underlying joint recruiting level of each
constraint. For example, when a desired position of the hand is defined, we need to
know if only the upper limb, the spine and the upper limb or even the lower body is
needed to finish the task. This can be done automatically according to the relative
positional constraints. For example, one constraint may require the character’s hand in
a certain position relative to its body. Then according to the particular geometrical
length of its body model, we can approximately determine the joint recruiting level of
this constraint. According to the character geometrical model and joint coupling
relations, we establish a set of simple rulers of the recruiting level of different
constraints. For example, for the reaching task, only the total stretching length is used
to determine whether only the upper limb or the upper limb and other body parts is
used for the posture generation. The users can also directly set the recruiting level of
different constraints. For two different constraints, if they have common joints for the
participation of their realization, they are put into the same partial body part. Here, by
dividing the whole body into joint parts differently according to the exact set of
constraints, we can ensure the coordination of the whole body posture as much as
possible when splicing them together.

After the whole body is divided according to the constraints, we need to generate
partial posture of these partial joint groups. For each sample in the database, we do
the forward kinematics calculation to get the corresponding constraints value. Using

these values, for each joint group iJP (1 i p≤ ≤ , p is the number of the partial body

parts by dividing the whole body), we do the following calculation:

1 2
11 1 1

1 2
22 2 2

1 2

11 1 1

i

i

i

ii i i

np

np

i
np

ncnc nc nc

cc c c

cc c c

w

cc c c

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

 (3)

Here, inc is the number of constraints which belong to the same joint group iJP

and inp is the number of the used sample postures. The used partial posture samples

 Automatic and Interactive Key Posture Design 125

are searched in the database through the k nearest neighbors according to the
distance between the required constraints value and actually constraints value of each

posture samples. The number of posture samples should satisfy 1i inp nc≥ + .
incc is

the representation of the value of required constraints and i

i

np
ncc is the representation of

the actual constraints value of each sample postures. The equation is solved by using a
singularity-robust inverse [18] to compute the weight for each sample postures. After

the weight vector iw is got, the joint angles in the partial joint group iJP can be

calculated as:

1

() ()
inp

i i j
j

q k w j q
=

=∑ (4)

Where ()iw j is the thj element of iw , k is the total number of the joints in the

joint group iJP and jq denotes the angle of the corresponding joint k of the thj

sample posture. In other words, the partial posture is generated by the weighted
combined of similar postures in the joint space.

The calculation process above is repeated for each joint group iJP (1 i p≤ ≤) so

that the posture of every partial body parts is parametrically synthesized.

4.3 Whole Body Posture Splicing

After the joint angles of all body parts are calculated, we can combine them together
directly to generate the whole body posture. Unlike the complex motion splicing
operator [13,14], here we need no further processing of the temporal or spatial
correlation between the postures of different body parts. Because we divide the whole
body into partial body parts according to the exact constraints and the interpolation of
joint angles rather than the joint positions are used for the partial posture generation,
the whole body posture looks natural at most of the times. Nevertheless, combining
partial postures together directly can never always ensure the lifelikeness of the whole
body posture. However, through the parametric posture splicing technique proposed
above, we realize the most important requirement that the initial guess should have a
certain global similarity with the desired posture. It should be noted that here the
spliced body posture is only used as an initial guess of the final posture and it will be
refined by the PIK later. Furthermore, the animators can interactively change the
whole body posture at this stage.

5 Automatic and Interactive Posture Generation

After the initial guess of the whole body posture is generated, we can refine the initial
guess to get the desired whole body posture with the PIK. In this section, we first give
an overview of the PIK algorithm and then we use the PIK to get the final posture
with all constraints satisfied as much as possible.

126 Shilei Li et al.

5.1 Overview of the Prioritized Inverse Kinematics Algorithm

The PIK algorithm presented by Paolo Baerlocher et al.[1,2] is an extension to the
Jacobian pseudo-inverse based numerical inverse kinematics method. The main
originality is that they presented a recursive algorithm to speed up the traditional null
space projectors computation and generalized the previous priority based approach to
an arbitrary number of tasks with multiple levels of priority. Here, we give the final

formulation directly. Considering t tasks pT ordered from the highest priority

(1p =) to the lowest (p t=), the algorithm can be summarized as follows:

1 1() ()p

p p p p p pq q J x J qλ+
− −Δ = Δ + Δ − Δ (5)

1
1 1 1()q J xλ+Δ = Δ (6)

Where
1()A

p
p p N J

J J P
−

= ,
1() ()

() ()A A
p p

A A
p p P PN J N J

P I J J P J J
−

+ += − = − and

0()AN J
P I= .

1

2A
p

p

J

J
J

J

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 is the so-called augmented Jacobian because obviously the

whole null space of these tasks (for tasks with the priority from 1 to p):

1 2 1 2 1(, ,) () () () () ()A
p p p pN J J J N J N J N J N J N J−= ∩ ∩ ∩ = (7)

In the formulation above, J + is the pseudo-inverse defined by 1()T TJ J JJ+ −=

and 2 1()i T T
i i i i iJ J J J Iλ λ+ −= + is the so-called damped least squares inverse using

the damping factor iλ to deal with singularities.

In addition, linear equality or inequality constraints, e.g. relative position
constraints and joint limits, can also be processed in the framework of the PIK
algorithm. Readers may refer to references [1,2] for further details.

5.2 Using the PIK Algorithm for Further Refining of the Spliced Posture

Using the PIK, we firstly need to prioritize all of the constraints. After the priority
levels of different constraints are set, we can use the PIK algorithm directly. Here,
besides using the spliced whole body as the initial guess, we further add an
optimization item at the lowest priority level to make the final result resemble the
initial guess as much as possible. We define a cost function as follows just like those
used in motion editing [5,6]:

 Automatic and Interactive Key Posture Design 127

1
g() () ()

2
T

s w sq p p K p p= − − (8)

Where wK is a weighting definite diagonal matrix setting relative importance of

different joints and sp is the initial posture. With this cost function, we can solve the

finally desired joint increments by setting this optimization term as the lowest task
using the same null space projection principle. At the PIK stage, the joints near the
root node are often adjusted more than the joints at the end of the chain to exactly
satisfy some positional constraints. Consequently, here we set very large values on the
joints at the end of the chain and zero of the spine joints which near the root node. By
setting the weighting matrix this way, we can ensure the final posture resemble the
initially spliced posture as much as possible. During the priority loop, after the lowest

priority constraint tT (p t=) is processed, we can get the finally desired joints

increments qΔ by adding tqΔ with the following optimization term:

()A
t

t N J
q q P gαΔ = Δ − ∇ (9)

Where α is a positive constant and
g

g
q

∂∇ =
∂

. Here, we choose the negative

gradient of the cost function gα− ∇ to ensure the final qΔ ensemble the certain joint

angles as close as possible. By adding this optimization item as the lowest task, we
can ensure the lifelikeness of the final result by solving the redundancy with the
certain joint angles of the initial guess.

6 Experimental Results and Discussion

This section presents some postures generated for a driving posture design task. The
articulated character has 40 degrees of freedom (7 per upper limb, 7 per leg, 3 for
back and waist respectively and 6 for the root joint). All postures are generated based
on the same posture database. Tests were run on a single-core 3.5 GHz Intel Pentium
4 processor with 2GB memory under Windows XP operating system.

In this example, we use our framework to design a particular diving posture. We
define five positional constraints: one for the hip, two for the hand and two for the
foot. The hip constraint is given the highest priority level. The two hand constraints
are given the second priority level and the two feet constraints are lastly considered.
According to the recruiting level of each constraint, the whole body is divided into the
upper and lower part. Two different geometrical character models are used. The
initially spliced whole body posture of the character one is shown on the left of the
figure 1 and the corresponding final whole body posture refined by the PIK is shown
on the middle left. The initially spliced whole body posture of character two is shown
on the middle right of the figure 1 and the corresponding final whole posture refined
by the PIK is shown on the right. It can be seen that the initial guesses of the whole
body posture for the two different characters are almost the same because the

128 Shilei Li et al.

parametric posture splicing technique use the same posture database to generate them.
These small differences come not only from the difference between geometrical
models but also from the nonlinear relationship between the joint angles and the end-
effectors’ positions. The final whole body postures of the two characters have bigger
differences because the PIK are used to generate the posture with positional
constraints are satisfied as much as possible.

Fig. 1. The results of whole body posture: form left to right (a) initial guess of the character one
(b) final result of the character one (c) initial guess of the character two (d) final result of the
character two

From this experimental result, it can be seen that the final whole body postures are
natural by using the initial guesses generated from the posture database. We also
generate the whole body posture from the standing posture. For this experiment, the
whole body posture generated by only using the PIK also looks natural. However, the
computation time is approximately three times longer than our methods. For more
complex tasks, we think the benefits of our method would be greater.

Currently, the main limitation of our method is that we search through all poses in
the database according to the constraints and consequently the database needs to be
small to use our technique in real-time situations. However, our method is more robust
and intuitive than those using a statistical model learned for motion samples [8].

7 Conclusions and Future Work

In this paper, we have developed a whole body posture design framework that relies
on the PIK, the parametric posture splicing technique and a library of example
postures. At the preprocessing stage, we setup a posture library based on the motion
capture data. To process the difference in the human’s geometrical models, joint
angles rather that joint positions are used. During the posture designing stage, after
giving a set of high level constraints, we first divide the whole body into several body
parts. Then a simple and efficient partial posture synthesis method is proposed to
generate the partial body postures. The advantage of our method is that the posture
samples need not be a perfect match for the constraints and the new whole body
posture with the main characteristics of the constraints can be generated efficiently.
Finally, the PIK is used to generate the final whole body posture. In essence, by
combing the PIK with the parametric posture splicing, we divide the traditional PIK

 Automatic and Interactive Key Posture Design 129

into two steps. The first step is to generate the initial guess using a posture database.
The second step is to refine the initial guess using the PIK. Consequently, the whole
body posture generation framework is automatic and interactive. Furthermore, the
burden of the posture design is greatly reduced and simultaneously the quality of the
final posture is improved.

In the future, firstly we want to integrate our framework into the commercial
animation software products so as to provide a friendly interface to the users.
Secondly we do not yet have a way of measuring how much the spliced posture is
appropriate to the certain constraints or how many posture samples are sufficient to
produce natural looking posture. We need do more research on how the whole body
can be coordinately combined and search for more reliable methods for deriving good
initial postures from observed motion samples.

Acknowledgments. The data used in this paper was obtained in part from
mocap.cs.cmu.edu. This database was created with funding from NSF EIA-0196217.

References

1. Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary
number of strict priority levels. The Visual Computer 20(6), 402–417 (2004)

2. Baerlocher, P.: Inverse kinematics Techniques for the Interactive Posture Control of
Articulated Figures. PhD thesis, Ecoles Polytechniques fédérale de Lausanne, Swiss
Federal Institute of Technology (2001)

3. Fattal, R., Lischinski, D.: Pose controlled physically Based Motion. Computer Graphics
Forum 25(4), 777–787 (2006)

4. Allen, B., Chu, D., Shapiro, A., Faloutsos, P.: On the Beat! Timing and Tension for
Dynamic Characters. In: Proceeding of Eurographics/ ACM SIGGRAPH Symposium on
Computer Animation, pp. 239–247 (2007)

5. Boulic, R., Le Callennec, B., Herren, M., Bay, H.: Motion Editing with Prioritized
Constraints. In: Proceedings of 1st International Workshop on Interactive Rich Media
Content Production - Architectures, Technologies, Applications, Tools (2003)

6. Le Callennec, B., Boulic, R.: Interactive motion deformation with prioritized constraints.
Graphical Models 68(2), 175–193 (2006)

7. Carvalho, S.R., Boulic, R., Thalmann, D.: Interactive low-dimensional human motion
synthesis by combining motion models and PIK. Computer Animation and Virtual
World 18(4-5), 493–503 (2007)

8. Grochow, K., Martin, S.L., Hertzmann, A., Popovic, Z.: Style-based inverse kinematics.
ACM Transactions on Graphics 23(3), 522–531 (2004)

9. Rose, C., Cohen, M.F., Bodenheimer, B.: Verbs and adverbs: multidimensional motion
interpolation. IEEE Computer Graphics and Applications 18(5), 32–40 (1998)

10. Kovar, L., Gleicher, M.: Flexible automatic motion blending with registration curves. In:
SCA 2003: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pp. 214–224 (2003)

11. Kovar, L., Gleicher, M.: Automated Extraction and Parameterization of Motions in Large
Data Sets. ACM Transactions on Graphics 23(3), 559–568 (2004)

12. Ha, D., Han, J.: Motion synthesis with decoupled parameterization. The Visual Computer 24(7),
587–594 (2008)

130 Shilei Li et al.

13. Heck, R., Kovar, L., Gleicher, M.: Splicing upper-body actions with locomotion. Comput.
Graph. Forum. 25(3), 459–466 (2006)

14. Majkowska, A., Zordan, V.B., Faloutsos, P.: Automatic splicing for hand and body
animations. In: SCA 2006: Proceedings of the 2006 ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, pp. 309–316 (2006)

15. Ikemoto, L., Forsyth, D.A.: Enriching a motion collection by transplanting limbs. In: SCA
2004: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, pp. 99–108 (2004)

16. Jang, W.S., Lee, W.K., Lee, I.K., Lee, J.: Enriching a motion database by analogous
combination of partial human motions. The Visual Computer 24(4), 271–280 (2008)

17. Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. ACM Transactions on Graphics 21(3),
473–482 (2002)

18. Nakamura, Y., Hanafusa, H.: Inverse Kinematics Solutions with Singularity Robustness
for Robot Manipulator Control. J. Dynamic Sys., Meas., and Control, 108, 163–171 (1986)

	Automatic and Interactive Key Posture Design by Combing the PIK with Parametric Posture Splicing
	Introduction
	Related Works and Contribution
	Overview
	Parametric Posture Splicing
	Posture Database Setup
	Parametric Partial Posture Generation
	Whole Body Posture Splicing

	Automatic and Interactive Posture Generation
	Overview of the Prioritized Inverse Kinematics Algorithm
	Using the PIK Algorithm for Further Refining of the Spliced Posture

	Experimental Results and Discussion
	Conclusions and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

