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Abstract. The last few years have seen the applications of Photo Response 
Non-Uniformity noise (PRNU) - a unique stochastic fingerprint of image 
sensors, to various types of digital forensic investigations such as source device 
identification and integrity verification. In this work we proposed a new way of 
extracting PRNU noise pattern, called Decomposed PRNU (DPRNU), by 
exploiting the difference between the physical and artificial color components 
of the photos taken by digital cameras that use a Color Filter Array for 
interpolating artificial components from physical ones. Experimental results 
presented in this work have shown the superiority of the proposed DPRNU to 
the commonly used version. We also proposed a new performance metrics, 
Corrected Positive Rate (CPR) to evaluate the performance of the common 
PRNU and the proposed DPRNU. 
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1   Introduction 

Among many areas of non-intrusive forensic analysis, extracting and examining the 
Photo Response Non-Uniformity noise pattern (PRNU), which is a unique fingerprint 
of image sensors, is one of the most effective methods for digital forensic analysis. As 
a signature of digital cameras, a PRNU noise pattern is applicable to digital forensic 
areas such as source device identification [1, 2] and integrity verification [3]. The 
basic idea of using the PRNU noise pattern for identifying source devices is as 
follows. Firstly, the PRNU noise patterns of imaging devices, e.g., digital cameras, 
are extracted from a number of low-contrast images and then the average of them are 
calculated to serve as the reference fingerprints of the devices. Secondly, the PRNU 
of the image under investigation is extracted and compared against the reference 
fingerprint of each device available to the investigator in hope that it would match one 
of the reference fingerprints, thus identifying the source device that has taken the 
target image [1, 2]. For integrity verification, a window is slid across the image, and 
the PRNU noise from the area covered by the window is compared to the 
corresponding PRNU block of a reference fingerprint. An authentic block covered by  
 

the window is expected to have higher correlation with the reference PRNU block 
while a forged block should have lower correlation [3].  
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Fig. 1. The processing inside the digital camera, and the typical Bayer CFA. a) The process of 
capturing a digital. b) Bayer CFA, a typical Color Filer Array. 
 

According to these descriptions, we know that the effectiveness of the 
aforementioned methods is based on the quality of the PRNU noise. The method for 
extraction the PRNU noise extraction proposed in [1 – 3] 

   ( ) ( )jiIjiIjiPRNU ,',),( −=                                        (1) 

where ( )jiI ,  is the intensity of pixel ( )ji,  and ( )jiI ,′  is the intensity of pixel ( )ji,  in 

the denoised (low-pass filtered) version of ( )jiI , . In [1 - 3], the entire filtered noise 

pattern is treated as the PRNU noise pattern. The PRNU maybe caused either by 
optical lenses non-uniformity, optical filtering, or by the digital post-processing 
algorithms. Moreover, details from the scene as well as the noise introduced at the 
acquisition and storage phases may contribute to the left hand side of Eq. (1).  

Another factor worth investigating is the use Color Filter Array (CFA) in most 
digital cameras. During the image acquisition process of a typical digital camera as 
illustrated in Fig. 1(a), not every color component of each pixel is physically 
captured. Instead, for each pixel, only one color component is acquired, depending on 
a 2 × 2 coordinate pattern – the CFA, as illustrated in Fig. 1(b), pre-defined by the 
manufacturer. Later an Interpolation Matrix (IM) is utilized to interpolate the missing 
color components by involving the neighboring pixels according to the CFA [4, 6, 7].  
Throughout the rest of this work, we will use the term physical component for the 
color channel/component of each pixel with the same color as that of the 
corresponding element of the CFA and artificial component for the other two color 
channels/components. Because the artificial colors obtained through the interpolation 
operation is not directly acquired from the scene by physical hardware, we expect that the 
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PRNU noise pattern extracted from the physical components, which are free from 
interpolation noise, should be more reliable than that from the artificial channels, which 
carry interpolation noise. Based on this assumption we propose an improved Decomposed 
PRNU extraction method, which first decomposes each color channel into 4 sub-images 
and then extracts the PRNU noise from each sub-image. The PRNU noise patterns of the 
sub-images are then assembled to get the complete Decomposed PRNU (DPRNU).  

 

Fig. 2. The framework of the Decomposed PRNU extraction 
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2   Proposed Decomposed PRNU (DPRNU) 

As illustrated in Fig. 2, to extract the DPRNU, we first separate the three color 
channels Ic, c ∈{R, G, B} of a color image I. Since a CFA consists of repeating 
patterns of 2 × 2 pixels as shown in Fig. 1(b) and we know that, for each pixel at the 
same coordinates of I, only one of the three color components is physical and the 
other two are artificial, so the second step is, for each channel Ic, we perform 2:1 
down-sampling across both horizontal and vertical dimensions to get four sub-

images, ciI , i ∈  {1, 2, 3, 4}. A PRNU noise pattern, ciP , is then extracted from each 

sub-images ciI . Finally the PRNU noise pattern cP of each channel is formed by 

combining the four sub-PRNU noise patterns ciP , i ∈  {1, 2, 3, 4}. The advantage of 

the proposed method is that when the PRNU noise patterns of images taken by 
different cameras with different CFA, the dissimilarity would be enhanced when 
physical components are compared against artificial components, thus improving 
performance.  

3   Experiments  

Fig 3(a) shows a photo of 640 × 480 pixels captured by Olympus C730 and Fig 3(b) is 
a forged image with the can removed. Fig 3(c) is another forged image with an added 
can. We use the Haar wavelet and the Wiener filter [5] to perform low-pass filtering 
in the wavelet domain when extracting PRNU. Both the traditional PRNU [1 – 3] and 
the proposed DPRNU of the images are extracted and compared block by block as a 
window of 128 × 128 pixels is slid across the images in a 10-pixel-wide step. We use 
the commonly adopted True Positive (TP), True Negative (TN), False. 

Positive (FP) and False Negative (FN) defined in Eq. (2) – (5) as metrics to 
evaluate the performance of the two types of PRNU noise patterns.  

( )
InstancesPositiveofNumberTotal

PositiveTrueofNumber
TPRatePositiveTrue

    

   
   =  

(2) 

( )
InstancesNegativeofNumberTotal

NegativeTrueofNumber
TNRateNegativeTrue

    

   
  =  

(3) 

( )
InstancesPositiveofNumberTotal

PositiveFalseofNumber
FPRatePositiveFalse

    

   
   =  

(4) 

( )
InstancesNegativeofNumberTotal

NegativeFalseofNumber
FNRateNegativeFalse

    

   
   =  

(5) 

We use correlation between PRNU noise patterns as the similarity metrics. After the 
correlations between all pairs of PRNU blocks have been calculated, we deem a block 
with a PRNU correlation lower than α times of the standard deviation (STD) as 
forged. We can see from Eq. (2) – (5) that because the denominators are always fixed 
because they are “ground truth”, when the value of α is changed, the numerators may 
change significantly, making these four metrics less reliable. Therefore, we propose 
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another metrics called Corrected Positive Rate (CPR), to measure the fraction of True 
Positives of the total number of the detected Positive instances.  

( )
stancesositive InDetected PofNumber

PositiveTrue
RatePositiveCorrected

  

 
CPR   =  

(6) 

When α is greater, less forged blocks will be detected because the threshold for a 
block to be deemed as forged is lower. That is to say that the detected positives are 
more likely to be true positives and the number of false reports would become lower. 
So from Eq. (6) we can see that the value of CPR at greater value of α would be more 
reliable. We use three different values of α, 1, 1.5 and 2, in our experiments. Table 1 
shows the results associated with different values of α. The reader is reminded that 
according to Eq. (2) – (6), high values of TP, TN and CPR and low values of FP and 
FN suggest greater performance. We tabulate the performance metrics when the 
forged images of Fig. 3(b) and 3(c) are tested in Table 1 and 2, respectively. We can 
see from these two tables that, although for most cases, the proposed DPRNU 
outperforms the common PRNU in terms of the first 4 metrics (TP, TN, FP and FN), 
these four metrics do not always reveal the performance difference at different values 
of α because many differences are marginal. This situation conforms to our concern 
about the reliability of these four metrics. On the other hand, when α equals 2, the  
 

   

                     (a)                                         (b)                                         (c) 

Fig. 3. Experimental images of forge detection (image size is 640 × 480). a) The original 
image, b) The image forged by the removing attacking, c) The image forged by the copy-pasted 
attacking. 

Table 1. Experimental results when the forged image of Fig. 3(b) is tested 

α 
Noise 
pattern 

TP TN FP FN CPR 

PRNU 0.0077 0.9467 0.0533 0.9923 0.0459 2 
DPRNU 0.0908 0.9476 0.0524 0.9092 0.3717 
PRNU 0.1701 0.8541 0.1459 0.8299 0.2848 1.5 

DPRNU 0.1944 0.8939 0.1061 0.8056 0.3848 
PRNU 0.3529 0.7699 0.2301 0.6471 0.3437 1 

DPRNU 0.3657 0.7590 0.2410 0.6343 0.3413 
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Table 2. Experimental results when the forged image of Fig. 3(c) is tested 

α Noise 
Pattern 

TP TN FP FN CPR 

PRNU 0.0907 0.9433 0.0567 0.9093 0.2211 2 
DPRNU 0.1274 0.9716 0.0284 0.8726 0.4436 
PRNU 0.2592 0.8750 0.1250 0.7408 0.2691 1.5 

DPRNU 0.2743 0.8574 0.1426 0.7257 0.2545 
PRNU 0.5313 0.7831 0.2169 0.4687 0.3030 1 

DPRNU 0.4730 0.7007 0.2993 0.5270 0.2190 
 
 
proposed metrics CPR (Eq. (6)) clearly indicates the superiority of our proposed 
DPRNU. However, when α is at lower levels (1 and 1.5), even CPR cannot always 
provide clear evidence about which types of PRNU is a better candidates. This 
conforms to our earlier statement that the value of CPR at greater value of α is more 
capable of providing reliable evaluation.  

4   Conclusion 

In this work we have briefly reviewed the use of PRNU noise pattern in source 
camera identification and integrity verification and the role of CFA in the image 
acquisition process of digital cameras. We then proposed a new way of extracting 
PRNU noise pattern, called Decomposed PRNU (DPRNU) by exploiting the 
difference between physical and artificial components. We also proposed a new 
performance metrics, Corrected Positive Rate (CPR) to evaluate the performance of 
the common PRNU and the proposed DPRNU. The experimental results presented in 
this work have shown the superiority of the proposed DPRNU. 
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