
M. Sorell (Ed.): e-Forensics 2009, LNICST 8, pp. 122 – 129, 2009.
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

A Provable Security Scheme of ID-Based Threshold
Decryption

Wang Xue-Guang and Chai Zhen-Chuan

School of Information Science and Technology, East China University of
Political Science and Law, 555 Long Yuan Road shanghai 201620, China

Samsung electronics R&D center
wangxueguang@ecupl.edu.cn

Abstract. This paper presents an ID-based threshold decryption scheme and
proves that it is selective chosen ciphertext secure without random oracles
based on solving decisional BDHIqt −),,(ε problem assumption.

Keywords: provable security, ID based cryptography, Threshold decryption.

1 Introduction

In general public key certification system, user’s public key and ID information are
bound by certificates. The fact that authenticity of certificates need be verified before
using public key results in increasing the amount of computation. For simplifying
certificate management and decreasing additional calculating costs, Shamir [1]
proposed identity based(ID-based) public key cryptography in 1984, which let users
select their unambiguous information(such as E-mail, telephone number, etc.) as
public key, then a trusted Private Key Generator(PKG) generates private key and
distributes them to users through secret channel.

But, ID-based encryption (IBE) scheme was proposed using bilinear pairing by
Boneh and Franklin [2] until 2001, which could be proved to be secure against
adaptive chosen ciphertext attack by random oracle model [3-5]. However, this proof
is controversial under assumption of random oracle model, because so-called random
oracle does not exist in reality after all, i.e., those schemes will be unsafe after they
are put in practice.

The fist IBE scheme without random oracles was proposed by Boneh and Boyen
[6] in 2004, which was proved to be secure against selective-ID chosen plaintext
attack without random oracle model. We need consider three levels for security of
public key system in practice: chosen plaintext security, non-adaptive chosen
ciphertext security and adaptive chosen ciphertext security. The last has highest
security and is also main research direction at present.

This paper suggests an ID-based threshold decryption scheme based on works of
Boneh and Boyen, which can be proved to be secure without random oracles. It was
validated that it has ID-based adaptive chosen ciphertext security.

 A Provable Security Scheme of ID-Based Threshold Decryption 123

2 Model of ID-Based Threshold Decryption Scheme

There are several roles in the ID-based threshold decryption scheme. A trusted PKG
takes charge of generating user private key and threshold private key, also running in
the beginning phrase of system, including selecting public parameters, such as
bilinear pairing and its corresponding group, etc. A cluster of n decryption servers is
denoted by Γi(i=1,…,n), which has a public ID, generates private keys, executes
encryption and decryption, verifies algorithms, and so on.

This scheme includes six algorithms as follow.

① Start: this algorithm run by PKG outputs master key - mkey, and system’s
public parameter - cp. cp includes the group selected by PKG, bilinear pairing and so
on. cp is public but mkey is secretly saved by PKG.

② KeyGen(mkey, ID, t, n): given PKG’s mkey, user’s ID, number of all

decryption - n and threshold t, this algorithm returns n key slices
iIDd , i = 1,2, …, n,

which corresponds to public key ID.
③ KeyVer: this algorithm returns n public verification message vi , i = 1,2, …, n,

which can be used by decryption server Γi for verifying private key slices
iIDd , then

PKG secretly sends
iIDd to Γi but each message vi will be public.

④ Encrypt(cp, ID, M): given ID and plaintext M, this algorithm returns ciphertext
denoted by c.

⑤ Decrypt(cp, ,
iIDd c): given ciphertext c and key slice

iIDd , this algorithm

returns corresponding decryption slice, denoted by δi, or returns error information that
indicates c is invalid ciphertext. At the same time, it verifies decryption slices.

⑥ Combin(cp, {δi}i∈φ , c): given t decryption slices {δi} i∈φ, this algorithm
combines many decryption slices into plaintext M, φ ⊂{1, ..., n} and | φ | = t.

3 IND-CCA Security

Given a public key cipher scheme),,(DJKE = , K as secret key generation

algorithm, J as encryption algorithm, D as decryption algorithm, consider the
procedure as follow. Here, take Q as a assaulter, S as a challenger.

Step 1. Assaulter Q sends ciphertext c to S. S obtains plaintext M by decrypting c
and sends M to Q. In this phase, Q can freely select satisfying ciphertext and go to
next step.

Step 2. Assaulter Q selects two equal-length messages M0 and M1, sends them to
challenger S.

Step 3. Challenger S randomly selects a bit-value }1,0{∈β then calculates *c

and sends it to Q. Here,

124 W. Xue-Guang and C. Zhen-Chuan

⎪⎩

⎪
⎨
⎧

=

=
=

1)(

0)(

1

0*

β
β

ME

ME
c

pk

pk
, where pk denotes user’s public key.

Step 4. After receiving *c , Q can continue to request decryption services like

described in Step 1, but can not question for *c .
Step 5. Q needs make a guess }1,0{'∈β about β .

If probability advance that assaulter Q successfully attacks decryption algorithm is

[] []))((0Pr))((0Pr
1

*

0

* MEcQMEcQAdv
pkpkQ

=←−=←= and QAdv is a

negligible value about ε , then E is secure for indistinguishable adaptive chosen
ciphertext attack, i.e., IND-CCA security.

4 Building ID-Based Threshold Decryption Scheme

The security of the scheme is built on hard problem of bilinear Diffie-Hellman
inversion [6].

Given multiplicative group G and G1 of the same prime order p, p is a large prime
number. And g is the generator of G. The mapping e: G×G→G1 is a computable

bilinear pairing. Let plaintexts be all in G1 and IDs as public keys in *
pZ .

The process of building six algorithms of the scheme is as follow.

① Start: Select x, y, z∈R
*
pZ and compute X = gx, Y = gy, and Z = gz . Public

parameter cp and master key mkey of PKG are respectively:
 z) y, (x,mkey Z)Y, X, (g,cp == ，

② KeyGen(mkey, ID, t, n): To generate n secret key slices for the public key ID,
the PKG:

a) randomly selects a polynomial over *
pZ : ∑

−

=
+=

1

1

t

i
i

iauzF(u) , ai∈
*
pZ

b) selects random number ri∈R
*
pZ , computes)/()(yrxIDiF

i
igK ++= and

outputs secret key slice),(iiID Krd
i

= .

③ KeyVer: Generate verification message vi,
)(),(iF

i ggev = , i = 1, … , n.

④ Encrypt(cp, ID, M): To encrypt plaintext M∈G1 using public key ID∈ *
pZ ,

select random number s∈ *
pZ and calculate ciphertext using the expression

)),(,,(MZgeYXgC sssIDs ⋅= ⋅

Note that the value of pairing e(g, Z) can be pre-computed and stored for following
computation in order to save time.

 A Provable Security Scheme of ID-Based Threshold Decryption 125

⑤ Decrypt(cp,
iIDd , c): For computing decryption slice δi of ciphertext C = (A,

B, C), decryption server Γi , using its key slice),(iiID Krd
i

= , gets that

),(i
r

i KABe i=δ because of
)()/()()(),(),(),(isFyrxIDiFyrxIDs

i
r

i ggeggeKABe iii === ++++δ .

⑥ Combin(cp, {δi}i∈φ, c): In order to recovery original plaintext M, a proxy server
collects t decryption slices δi∈G1 and calculates M as follow

∏ ∈
=

φ
δ

i

L
i MC i

0

/ .

Here, φ ⊂ {1,...,n}, |φ| = t, and ∏ ≠∈ −
−=

ijj

x
i ji

jx
L

,φ
.

The validity of this computation can be obtained by employing Lagrange interpolation:

MggeCggeCggeCggeCC zssFiFLs

i i

LisFL
i

i i
ii ===∑== ⋅

∈ ∈
∈∏ ∏),(/),(/),(/),(//)0()()(

0
00

φ

φ φ
δ

After running algorithm KeyGen, PKG secretly distributes key slices
iIDd to decryp-

tion server Γi , then open all verification message vi. Γi can check the authenticity of

),(iiID Krd
i

= by verifying the following equation after receiving
iIDd ,

∏ ∈
=

φi

L
i Zgev i),(

0

 and ii
rID vKXYge i =),(.

5 Security Proof of ID-Based Threshold Decryption Scheme
without Random Oracles

Use reduction to absurdity to prove the security of ID-based threshold decryption
scheme. First, assume that threshold decryption scheme is not secure and there is an
assaulter who can attack the scheme by probability advanceε under defined attack
model. And assume decisional BDHIqt −),,(ε problem is hard. Then, construct an

algorithm to solve the decisional BDHIqt −),,(ε problem. Its result is contrary to the

assumption of hard problem. So the threshold decryption scheme is secure.

5.1 Decisional BDHIq − Problem

Decisional BDHIq − problem [6]:

Given)1(+q -tuple 1*)()()(),,,,(
2 +∈⋅⋅⋅ qxxx Ggggg

q

 and *
1GT ∈ , decide whether

equation xggeT /1),(= is correct or not.

126 W. Xue-Guang and C. Zhen-Chuan

The advance of algorithm A solves decisional BDHIq − problem is defined as:

[] []0,,,,(Pr0)),(,,,,(Pr)()(/1)(=⋅⋅⋅−=⋅⋅⋅= TgggAggegggAAAdv
qq xxxxx ,

where the probability is computed through randomly selecting x on *
pZ , T on *

1
G ,

and algorithm A.
If any algorithm can not solve computational/decisional BDHIq − problem in time

t with a probability advance which is ε at least, then a computational/decisional
BDHIq − problem is said to be hard.

5.2 Construct Algorithm S

The purpose of S is to solve an instance of decisional BDHI problem, i.e., given an

input *
1

1)(),,,,,(
2

GGTgggg qq

×∈⋅⋅⋅ +ααα (S doesn’t know α), decides whether

T is equal to α/1),(gge , if yes, output 1, otherwise 0.

Considering Q as assaulter, S as challenger, before interacting with Q, S needs

prepare for a generator *Gh ∈ , and corresponding q-1 pairs of two-tuple

),()/(1 iw
i hw +α (S doesn’t know α). These parameters are as follow:

① Randomly select *
11 ,, pq Zww ∈⋅⋅⋅ − ,

let ∏∏ −

=

−

=
=+= 1

0

1

1
)()()(

q

i

i
i

q

i i cwf θθθ such that 00 ≠c ;

② Compute)(1

0
)(αα fq

i

c ggh i
i∏ −

=
== and)(

1
1)(ααα fq

i

c ggu i
i∏ =

== − . It is

easy to know that αhu = and 1≠h , because h = 1 means that there is a α=jw

and S can solve decisional BDHI problem directly;

③ Let ∑ −

=
=+= 2

0
)/()()(

q

i

i
iii dwff θθθθ

and ∏ −

=
+ == 2

0

)()/(1)(
q

i

dfw i
i

ii ggh ααα .

S computes:

0
)(2

0 TTT c
h ⋅= ,

where ∏ ∏ ∏−

=

−

=

−

=
++= 2

0

1

1

2

0

)()()(
0

110),(),(
q

k

q

i

q

j

cccc ji
ji

k
k

ggeggeT ααα .

Here, if α/1),(ggeT = , then αααα /1/1)()(),(),(hheggeT ff
h == .

Otherwise, hT only is a random value in }{\ 01 TG , because T randomly distributes

on *
1G .

 A Provable Security Scheme of ID-Based Threshold Decryption 127

5.3 Security Verification

The interaction process between Q and S is as follow:

Select attack ID: Q selects an attack object **
pZID ∈ .

Initialization: S executes the following steps.

① Selects random number *, pZba ∈ such that *IDab = ;

② Selects random number *
pZz ∈ , computes)(baaba hhuX +−−− == α ,

αhuY == and zhZ = ;
③ Publishes),,,(ZYXhcp = .

During above computation, the master key mkey is implicitly defined as
),),((),,(zbazyxmkey αα +−== . Though S doesn’t know x and y, it knows

*IDabayx −=−=+ .

Phrase 1: Q successfully compromises t-1 out of n decryption servers. Without
loss of generality, suppose compromised servers are

11
,, −⋅⋅⋅

t
ΓΓ .

Phrase 2: Q starts a series of private key queries and decryption queries.

① Private key query about *IDID ≠ : In order to provide n valid key slices and
n verification messages, S operates according to the following for Q’s query:

a) Randomly selects a polynomial over *
pZ :

 ∑
−

=

+=
1

1

)(
t

i
i

i fuzuF , *
pi Zf ∈ ;

b) Fetches n unused two-tuples),()/(1 iw
i hw +α , without loss of generality, suppose

these tuples’ subscripts denote by ni ,,1 ⋅⋅⋅= . Let)/(1 iw
i hh += α .

c) Computes
i

i w

abID
ar

−+= , returned secret key slices and verification

messages are as follow:

),()/()(ariF
iiID

i

i
hrd −= and)(),(iF

i ggv = , ni ,,1 ⋅⋅⋅= .

It is easy to know,
yrxIDiFwariFariF

i
iiii hhh ++−−− == /)())(/()()/()(α

.
iIDd is valid

secret key slice because iw is randomly selected by S. So also is
i

i w

abID
ar

−+=

from view of Q.

② Private key query about *ID : In order to provide t-1 valid key slices and n
verification messages, S operates according to the following for Q’s query:

128 W. Xue-Guang and C. Zhen-Chuan

a) Randomly selects *
pi Zr ∈ and GKi ∈ , 1,,1 −⋅⋅⋅= ti ;

b) Computes
⎪⎩

⎪
⎨
⎧

⋅⋅⋅=

−⋅⋅⋅=⋅
=

∏ −

=

1

1
,,1),(

1,,1),,(

0

*

t

k

L
k

zL

i
rID

i
nivgge

tiKYXge
v

i
k

i

i

, where

∏ −

≠= −
−= 1

,0

t

kjj

x
k jk

jx
L ;

c) Returned t-1 secret key slices and n verification messages are as follow:

1,,1),(−⋅⋅⋅== tiKrd
iiIDi

 and niv
i

,,1 ⋅⋅⋅= .

In fact, S implicitly selects a polynomial)(uF , such that
*

(,)irID
ie g X Y K⋅ =

e g g F i(,) ()

 and zF =)0(for 1,,1 −⋅⋅⋅= ti .

Challenge: Once assaulter Q thinks phrase 2 can be over, Q will output two equal bit-
length plaintexts (M1, M2). After received those plaintexts, S randomly selects a bit

}1,0{∈β and *
pZl ∈ , computes challenge ciphertext),,(βMThhc zl

h
lal ⋅= − and

then sends it to Q.

Here, if α/1),(hheTh = , then c is a valid ciphertext on βM . Because:

let α/ls = (l is randomly selected, so s also is random distribution on *
pZ), then

ssIDlIDxlabxlaal Xhhhhh ⋅==== ++−− **)/)(()/)(()/(αααα

sll YYh == α/

szszlzl
h ZhehhehheT),(),(),(/ === α

If hT only is a random number on }{\ 01 TG , then c is completely independent of

bit β from view of Q.
Phrase 3: According to its requirement, Q continues to send private key queries

like phrase 2, whose time qs is limited by ⎣ ⎦nqqs /< . The challenger still replies

Q’s queries like phrase 2.

Hypothesize: Q output its guess }1,0{'∈β for β . If ββ =' , then S returns 1, which

means α/1),(ggeT = . Otherwise S returns 0, which means α/1),(ggeT ≠ .

During above interaction process, if input T satisfies α/1),(ggeT = , then the

probability advance of Q satisfies [] εββ >−== 2/1'PrAdv , which results in the

advance that S solves hard problems satisfies () 1/Pr (, , , , (,)) 1
qx x xS g g g e g g⎡ ⎤⋅⋅⋅ =⎣ ⎦

2/1 . If α/1),(ggePT ≠= , then the probability advance of Q satisfies

 A Provable Security Scheme of ID-Based Threshold Decryption 129

[] ε+>=⋅⋅⋅ 2/11)),(,,,,(Pr /1)(xxx ggegggS
q

, because ciphertext is also random

number. In this situation, the advance that S solves hard problems only is a guess, i.e.,

[] 2/11),,,,(Pr)(==⋅⋅⋅ PgggS
qxx .

In summary, the probability advance that algorithm S solves decisional BDHIq −

problem is

[] [] εε =−+≥=⋅⋅⋅−=⋅⋅⋅= 2/1)2/1(1),,,,(Pr1)),(,,,,(Pr)(/1)(PgggSggegggSAdv
qq xxxxx

S

This is contrary to the assumption.
According to above proof and IND-CCA’s definition, the ID-based threshold

decryption scheme has IND-CCA security, that is, it is secure for indistinguishable
adaptive chosen ciphertext attack.

6 Conclusions

Through reviewing related researches, this paper proposes an ID-based threshold
decryption scheme built on Boneh and Boyen’s works. After defining IND-CCA and
solving decisional BDHIqt −),,(ε hard problem, we proved the scheme is secure for

selective-ID adaptive chosen ciphertext attack without random oracles.

Acknowledgements. This work is supported by Chinese Society and Science Foundation
under Grant No. 06BFX051.

References

1. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

2. Boneh, D., Franklin, M.: Identity based encryption from the Weil pairing. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

3. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Proceedings of the first ACM Conference on Computer and Communication
Security, ACM Conference, pp. 62–73 (1993)

4. Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random oracle model scheme for
a hybrid-encryption problem. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)

5. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The
noncommitting encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp.
111–126. Springer, Heidelberg (2002)

6. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption without
random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

	A Provable Security Scheme of ID-Based Threshold Decryption
	Introduction
	Model of ID-Based Threshold Decryption Scheme
	IND-CCA Security
	Building ID-Based Threshold Decryption Scheme
	Security Proof of ID-Based Threshold Decryption Scheme without Random Oracles
	Decisional $q − BDHI$ Problem
	Construct Algorithm S
	Security Verification

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

