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Abstract. This paper presents an ID-based threshold decryption scheme and 
proves that it is selective chosen ciphertext secure without random oracles 
based on solving decisional BDHIqt −),,( ε  problem assumption. 
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1   Introduction 

In general public key certification system, user’s public key and ID information are 
bound by certificates. The fact that authenticity of certificates need be verified before 
using public key results in increasing the amount of computation. For simplifying 
certificate management and decreasing additional calculating costs, Shamir [1] 
proposed identity based(ID-based) public key cryptography in 1984, which let users 
select their unambiguous information(such as E-mail, telephone number, etc.) as 
public key, then a trusted Private Key Generator(PKG) generates private key and 
distributes them to users through secret channel.  

But, ID-based encryption (IBE) scheme was proposed using bilinear pairing by 
Boneh and Franklin [2] until 2001, which could be proved to be secure against 
adaptive chosen ciphertext attack by random oracle model [3-5]. However, this proof 
is controversial under assumption of random oracle model, because so-called random 
oracle does not exist in reality after all, i.e., those schemes will be unsafe after they 
are put in practice.  

The fist IBE scheme without random oracles was proposed by Boneh and Boyen 
[6] in 2004, which was proved to be secure against selective-ID chosen plaintext 
attack without random oracle model. We need consider three levels for security of 
public key system in practice: chosen plaintext security, non-adaptive chosen 
ciphertext security and adaptive chosen ciphertext security. The last has highest 
security and is also main research direction at present. 

This paper suggests an ID-based threshold decryption scheme based on works of 
Boneh and Boyen, which can be proved to be secure without random oracles. It was 
validated that it has ID-based adaptive chosen ciphertext security. 
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2   Model of ID-Based Threshold Decryption Scheme 

There are several roles in the ID-based threshold decryption scheme. A trusted PKG 
takes charge of generating user private key and threshold private key, also running in 
the beginning phrase of system, including selecting public parameters, such as 
bilinear pairing and its corresponding group, etc. A cluster of n decryption servers is 
denoted by Γi(i=1,…,n), which has a public ID, generates private keys, executes 
encryption and decryption, verifies algorithms, and so on.  

This scheme includes six algorithms as follow. 

① Start: this algorithm run by PKG outputs master key - mkey, and system’s 
public parameter - cp. cp includes the group selected by PKG, bilinear pairing and so 
on. cp is public but mkey is secretly saved by PKG. 

② KeyGen(mkey, ID, t, n): given PKG’s mkey, user’s ID, number of all 

decryption - n and threshold t, this algorithm returns n key slices 
iIDd , i = 1,2, …, n, 

which corresponds to public key ID. 
③ KeyVer: this algorithm returns n public verification message vi , i = 1,2, …, n, 

which can be used by decryption server Γi for verifying private key slices 
iIDd , then 

PKG secretly sends 
iIDd to Γi but each message vi will be public. 

④ Encrypt(cp, ID, M): given ID and plaintext M, this algorithm returns ciphertext 
denoted by c.  

⑤ Decrypt(cp, ,
iIDd  c): given ciphertext c and key slice 

iIDd , this algorithm 

returns corresponding decryption slice, denoted by δi, or returns error information that 
indicates c is invalid ciphertext. At the same time, it verifies decryption slices. 

⑥ Combin(cp, {δi}i∈φ , c): given t decryption slices {δi} i∈φ, this algorithm 
combines many decryption slices into plaintext M, φ ⊂{1, ..., n} and | φ | = t. 

3   IND-CCA Security 

Given a public key cipher scheme ),,( DJKE = , K as secret key generation 

algorithm, J as encryption algorithm, D as decryption algorithm, consider the 
procedure as follow. Here, take Q as a assaulter, S as a challenger.  

Step 1. Assaulter Q sends ciphertext c to S. S obtains plaintext M by decrypting c 
and sends M to Q. In this phase, Q can freely select satisfying ciphertext and go to 
next step. 

Step 2. Assaulter Q selects two equal-length messages M0 and M1, sends them to 
challenger S. 

Step 3. Challenger S randomly selects a bit-value }1,0{∈β  then calculates *c  

and sends it to Q. Here,  
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Step 4. After receiving *c , Q can continue to request decryption services like 

described in Step 1, but can not question for *c . 
Step 5. Q needs make a guess }1,0{'∈β  about β . 

If probability advance that assaulter Q successfully attacks decryption algorithm is 
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1
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0

* MEcQMEcQAdv
pkpkQ

=←−=←=  and QAdv  is a 

negligible value about ε , then E is secure for indistinguishable adaptive chosen 
ciphertext attack, i.e., IND-CCA security. 

4   Building ID-Based Threshold Decryption Scheme 

The security of the scheme is built on hard problem of bilinear Diffie-Hellman 
inversion [6]. 

Given multiplicative group G and G1 of the same prime order p, p is a large prime 
number. And g is the generator of G. The mapping e: G×G→G1 is a computable 

bilinear pairing. Let plaintexts be all in G1 and IDs as public keys in *
pZ . 

The process of building six algorithms of the scheme is as follow. 

① Start: Select x, y, z∈R
*
pZ  and compute X = gx, Y = gy, and Z = gz . Public 

parameter cp and master key mkey of PKG are respectively: 
              z) y, (x,mkey      Z)Y, X, (g,cp == ，  

② KeyGen(mkey, ID, t, n): To generate n secret key slices for the public key ID, 
the PKG: 

a) randomly selects a polynomial over *
pZ : ∑

−
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b) selects random number ri∈R
*
pZ , computes )/()( yrxIDiF

i
igK ++= and 

outputs secret key slice ),( iiID Krd
i

= . 

③ KeyVer: Generate verification message vi, 
)(),( iF

i ggev = , i = 1, … , n. 

④ Encrypt(cp, ID, M): To encrypt plaintext M∈G1 using public key ID∈ *
pZ , 

select random number s∈ *
pZ  and calculate ciphertext using the expression 

)),(,,( MZgeYXgC sssIDs ⋅= ⋅  

Note that the value of pairing e(g, Z) can be pre-computed and stored for following 
computation in order to save time. 
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⑤ Decrypt(cp, 
iIDd , c): For computing decryption slice δi of ciphertext C = (A, 

B, C), decryption server Γi , using its key slice ),( iiID Krd
i

= , gets that 

),( i
r

i KABe i=δ  because of  
)()/()()( ),(),(),( isFyrxIDiFyrxIDs

i
r

i ggeggeKABe iii === ++++δ . 

⑥ Combin(cp, {δi}i∈φ, c): In order to recovery original plaintext M, a proxy server 
collects t decryption slices δi∈G1 and calculates M as follow 
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The validity of this computation can be obtained by employing Lagrange interpolation: 
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After running algorithm KeyGen, PKG secretly distributes key slices 
iIDd  to decryp-

tion server Γi , then open all verification message vi. Γi can check the authenticity of 

),( iiID Krd
i

=  by verifying the following equation after receiving 
iIDd , 
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5   Security Proof of ID-Based Threshold Decryption Scheme 
without Random Oracles 

Use reduction to absurdity to prove the security of ID-based threshold decryption 
scheme. First, assume that threshold decryption scheme is not secure and there is an 
assaulter who can attack the scheme by probability advanceε under defined attack 
model. And assume decisional BDHIqt −),,( ε  problem is hard. Then, construct an 

algorithm to solve the decisional BDHIqt −),,( ε  problem. Its result is contrary to the 

assumption of hard problem. So the threshold decryption scheme is secure. 

5.1   Decisional BDHIq −  Problem 

Decisional BDHIq −  problem [6]:  

Given )1( +q -tuple 1*)()( )(),,,,(
2 +∈⋅⋅⋅ qxxx Ggggg

q

 and *
1GT ∈ , decide whether 

equation xggeT /1),(=  is correct or not.  
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The advance of algorithm A solves decisional BDHIq −  problem is defined as: 

[ ] [ ]0,,,,(Pr0)),(,,,,(Pr)( )(/1)( =⋅⋅⋅−=⋅⋅⋅= TgggAggegggAAAdv
qq xxxxx ,  

where the probability is computed through randomly selecting x on *
pZ , T on *

1
G , 

and algorithm A. 
If any algorithm can not solve computational/decisional BDHIq − problem in time 

t with a probability advance which is ε at least, then a computational/decisional 
BDHIq − problem is said to be hard. 

5.2   Construct Algorithm S 

The purpose of S is to solve an instance of decisional BDHI problem, i.e., given an 

input *
1

1)(),,,,,(
2

GGTgggg qq

×∈⋅⋅⋅ +ααα (S doesn’t know α), decides whether 

T is equal to α/1),( gge , if yes, output 1, otherwise 0. 

Considering Q as assaulter, S as challenger, before interacting with Q, S needs 

prepare for a generator *Gh ∈ , and corresponding q-1 pairs of two-tuple 

),( )/(1 iw
i hw +α ( S doesn’t know α). These parameters are as follow: 

① Randomly select *
11 ,, pq Zww ∈⋅⋅⋅ − , 
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easy to know that αhu =  and 1≠h , because h = 1 means that there is a α=jw  

and S can solve decisional BDHI problem directly; 

③ Let ∑ −

=
=+= 2

0
)/()()(

q

i

i
iii dwff θθθθ  

and ∏ −

=
+ == 2

0

)()/(1 )(
q

i

dfw i
i

ii ggh ααα . 

S computes: 
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Here, if α/1),( ggeT = , then αααα /1/1)()( ),(),( hheggeT ff
h == . 

Otherwise, hT  only is a random value in }{\ 01 TG , because T randomly distributes 

on *
1G . 
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5.3   Security Verification 

The interaction process between Q and S is as follow: 

Select attack ID: Q selects an attack object **
pZID ∈ . 

Initialization: S executes the following steps. 

① Selects random number *, pZba ∈  such that *IDab = ; 

② Selects random number *
pZz ∈ , computes )( baaba hhuX +−−− == α , 

αhuY ==  and zhZ = ; 
③ Publishes ),,,( ZYXhcp = . 

During above computation, the master key mkey is implicitly defined as 
),),((),,( zbazyxmkey αα +−== . Though S doesn’t know x and y, it knows 

*IDabayx −=−=+ . 

Phrase 1: Q successfully compromises t-1 out of n decryption servers. Without 
loss of generality, suppose compromised servers are 

11
,, −⋅⋅⋅

t
ΓΓ . 

Phrase 2: Q starts a series of private key queries and decryption queries. 

① Private key query about *IDID ≠ : In order to provide n valid key slices and 
n verification messages, S operates according to the following for Q’s query: 

a) Randomly selects a polynomial over *
pZ : 

  ∑
−
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i
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i fuzuF , *
pi Zf ∈ ; 

b) Fetches n unused two-tuples ),( )/(1 iw
i hw +α , without loss of generality, suppose 

these tuples’ subscripts denote by ni ,,1 ⋅⋅⋅= . Let )/(1 iw
i hh += α . 

c) Computes 
i

i w

abID
ar

−+= , returned secret key slices and verification 

messages are as follow: 
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i

i
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It is easy to know, 
yrxIDiFwariFariF

i
iiii hhh ++−−− == /)())(/()()/()( α

. 
iIDd  is valid 

secret key slice because iw  is randomly selected by S. So also is 
i

i w

abID
ar

−+=  

from view of Q. 

② Private key query about *ID : In order to provide t-1 valid key slices and n 
verification messages, S operates according to the following for Q’s query: 
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a) Randomly selects *
pi Zr ∈  and GKi ∈ , 1,,1 −⋅⋅⋅= ti ; 

b) Computes 
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c) Returned t-1 secret key slices and n verification messages are as follow: 

1,,1),( −⋅⋅⋅== tiKrd
iiIDi

 and niv
i

,,1 ⋅⋅⋅= . 

In fact, S implicitly selects a polynomial )(uF , such that 
*

( , )irID
ie g X Y K⋅ =  

e g g F i( , ) ( )

 and zF =)0(  for 1,,1 −⋅⋅⋅= ti . 

Challenge: Once assaulter Q thinks phrase 2 can be over, Q will output two equal bit-
length plaintexts (M1, M2). After received those plaintexts, S randomly selects a bit 

}1,0{∈β  and *
pZl ∈ , computes challenge ciphertext ),,( βMThhc zl

h
lal ⋅= −  and 

then sends it to Q. 

Here, if α/1),( hheTh = , then c is a valid ciphertext on βM . Because: 

let α/ls = (l is randomly selected, so s also is random distribution on *
pZ ), then 

ssIDlIDxlabxlaal Xhhhhh ⋅==== ++−− ** )/)(()/)(()/( αααα  

sll YYh == α/  

szszlzl
h ZhehhehheT ),(),(),( / === α  

If hT  only is a random number on }{\ 01 TG , then c is completely independent of 

bit β from view of Q. 
Phrase 3: According to its requirement, Q continues to send private key queries 

like phrase 2, whose time qs  is limited by ⎣ ⎦nqqs /< . The challenger still replies 

Q’s queries like phrase 2. 

Hypothesize: Q output its guess }1,0{'∈β  for β . If ββ =' , then S returns 1, which 

means α/1),( ggeT = . Otherwise S returns 0, which means α/1),( ggeT ≠ . 

During above interaction process, if input T satisfies α/1),( ggeT = , then the 

probability advance of Q satisfies [ ] εββ >−== 2/1'PrAdv , which results in the 

advance that S solves hard problems satisfies ( ) 1/Pr ( , , , , ( , ) ) 1
qx x xS g g g e g g⎡ ⎤⋅⋅⋅ =⎣ ⎦  

2/1 .  If α/1),( ggePT ≠= , then the probability advance of Q satisfies 
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[ ] ε+>=⋅⋅⋅ 2/11)),(,,,,(Pr /1)( xxx ggegggS
q

, because ciphertext is also random 

number. In this situation, the advance that S solves hard problems only is a guess, i.e., 

[ ] 2/11),,,,(Pr )( ==⋅⋅⋅ PgggS
qxx . 

In summary, the probability advance that algorithm S solves decisional BDHIq −  

problem is  

[ ] [ ] εε =−+≥=⋅⋅⋅−=⋅⋅⋅= 2/1)2/1(1),,,,(Pr1)),(,,,,(Pr )(/1)( PgggSggegggSAdv
qq xxxxx

S

  

This is contrary to the assumption. 
According to above proof and IND-CCA’s definition, the ID-based threshold 

decryption scheme has IND-CCA security, that is, it is secure for indistinguishable 
adaptive chosen ciphertext attack. 

6   Conclusions 

Through reviewing related researches, this paper proposes an ID-based threshold 
decryption scheme built on Boneh and Boyen’s works. After defining IND-CCA and 
solving decisional BDHIqt −),,( ε  hard problem, we proved the scheme is secure for 

selective-ID adaptive chosen ciphertext attack without random oracles. 
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