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Abstract. Dynamic parallel applications such as CFD-OG impose a new prob-
lem for distributed processing because of their dynamic resource requirements 
at run-time. These applications are difficult to adapt in the current distributed 
processing model (such as the Grid) due to a lack of interface for them to di-
rectly communicate with the runtime system and the delay of resource alloca-
tion. In this paper, we propose a novel mechanism, the Application Agent (AA) 
embedded between an application and the underlying conventional Grid mid-
dleware to support the dynamic resource requests on the fly. We introduce AA's 
dynamic process management functionality and its resource buffer policies 
which efficiently store resources in advance to maintain the execution perform-
ance of the application. To this end, we introduce the implementation of AA.    

Keywords: resource management, dynamic parallel application, resource 
buffer. 

1   Introduction 

The Grid is commonly used to submit batch and workflow type jobs. However, many 
scientific applications, such as astrophysics, mineralogy and oceanography, have 
several distinctive characteristics that differ from batch and workflow type of applica-
tions. Some of them are so-called dynamic parallel applications allowing significant 
changes to be made to the structure of the datasets themselves when necessary. Con-
sequently they may require resources dynamically during the execution to meet their 
performance benchmarks. CFD-OG (Computational Fluid Dynamics-Object Graph) is 
one of the examples in that respect. Such applications are hardly applicable with the 
current distributed processing model, which needs the knowledge of application exe-
cution behavior and resource requirements prior to execution. 

Our strategy is to introduce an agent that enables a running Grid application to ne-
gotiate the computational resources assigned to it at run-time. The agent provides an 
interface for the application to call for resources on the fly while it communicates 
with the Grid middleware to allocate resources to satisfy these requests on-demand. 

In this paper we introduce the dynamic parallel applications demonstrated by CFD-
OG and the necessity of external resource management for them. We propose a novel 
mechanism, the Application Agent (AA) embedded between the applications and 
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conventional Grid middleware for resource management. We also propose two re-
source buffer policies to maintain the application performance cost effectively while 
the resource demands change constantly. 

2   Dynamic Parallel Applications 

Computational Fluid Dynamics (CFD) is one of the branches of fluid mechanics that 
uses numerical methods and algorithms to solve and analyze problems that involve 
fluid flows. One method to compute a continuous fluid is to discretize the spatial 
domain into small cells to form a volume mesh or grid, and then apply a suitable algo-
rithm such as Eulerian methodology [18] to solve the equations of motion. The ap-
proach assumes that the values of physical attributes are the same throughout a vol-
ume. If scientists need a higher resolution of the result they have to replace a volume 
element with a number of smaller ones. Since the physical conditions change very 
rapidly, high resolution is needed dynamically to represent the flux (amount per time 
unit per surface unit) of all the physical attributes with sufficient accuracy. Conse-
quently the whole volume grid is changing constantly, which may lead to dynamic 
resource requirements (Fig. 1). 

 

Fig. 1. A series of slides of the flow across a hump. The grid structure is constantly changing at 
run-time to adjust the reasonable resolution. The resource requirements in the last slide are 
around 120 times those in the first slide [12]. 

The usual method for introducing high resolution is to replace a volume element 
with a number of smaller ones. This is a difficult process in traditional CFD because it 
used a Cartesian of indexed volumes (Vijk). To introduce smaller volumes into such a 
structure would require further hierarchical indexing leading to complex treatment. 
An alternative approach which is introduced by Sørensen is the Object Graph (CFD-
OG) [12]. A CFD-OG application has two base objects: cells and walls. A cell repre-
sents the fluid element and holds the physical values for a volume. It is surrounded by 
a number of wall objects known to it by their addresses (pointers). A cell simply holds 
a number of wall pointers. The walls on the other hand only know two objects: the 
cells on either side of the wall. This is a simple structure that is completely unaware 
of the physical geometry and topology of the model. The advantage of the object 
graph is that it uses reference by addressing only. It is therefore possible to change the 
whole grid topology when smaller volume elements are introduced. This approach 
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also benefits the distributed processing since it is easy to substitute the local addresses 
(pointers) with global addresses (host, process, pointer) without changing the struc-
ture. That being the case, the objects can be distributed on the network computer 
nodes in any manner.  

With object graph, a distributed CFD-OG application can be very dynamic and 
autonomic. The application is composed of a number of processes executing synchro-
nously and normally one process is running on one nodes. In this context, each proc-
ess holds a number of computational objects (cells and walls) that can migrate from 
one process to another. As the application progresses, a built-in physical manager 
monitors the local conditions. If it detects the local resolution is too low, it will ask 
the built-in object manager to introduce smaller volumes. If it on the other hand the 
built-in physical manager detects superfluous resolutions, it asks to replace several 
smaller cells with fewer larger ones. This may create imbalances in the processing 
and the object manager may subsequently attempt to balance this by moving objects 
onto light load nodes.  

Such load balancing is limited. The application may have to demand additional re-
sources (processors) immediately to maintain the required performance such as a 
certain execution time progression. Likewise, the application may want to release 
redundant allocated resources when the low resolution is acceptable. The dynamic 
resource requirements on the fly is a huge challenge for current distributed environ-
ment. This is because there is no well defined interface for applications to communi-
cate with the Grid to add/release resources at run-time; and further more a significant 
delay is normally associated with the allocation of a resource in response to a request 
due both to resource competition between running jobs and the time conflict of con-
current requests, which will influence the smooth execution of the application. For the 
first problem, we define a mechanism which has several functions that applications 
can call to add and release resources during the execution in a way that is independent 
from resource managers. For the second problem, we propose the resource buffer 
management to hide the delay of resource allocation. 

3   Dynamic Resource Support 

As introduced, a dynamic parallel application is composed of a number of processes 
that holds a number of computational objects that can migrate from one process to 
another by the application itself. Therefore, as the application needs an additional 
resource, it requests to deploy a new process that it can move other objects into. The 
resource requirement is therefore interpreted as adding a new process with no objects 
initially. 

We define a mechanism called Application Agent (AA) that stays between applica-
tions and Grid middleware to support such dynamic addition/release of processes. 
Programmers must build applications based on the programming interface provided 
by AA. Each process’s binary file therefore has to be compiled with the AA library. 
That means each running process is associated with an AA which keeps information 
synchronized across the whole application. Programmers can perform three basic 
operations inherited from AA: add a process, stop a process, and exchange messages 
with a process. As soon as the application is running, AA will start and act as an agent 
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to communicate with the Grid environment on behalf of the application, i.e. to find a 
new node and deploy a new process, stop a process and return a node, and transport 
messages during the execution of the application. The process requests are served by 
a scheduler that is associated with AA. The scheduler can apply different scheduling 
policies (e.g. FCFS (First Come First Served), priority-based) according to the prefer-
ence of the application. We do not address the scheduling issue in this paper. 

3.1   Adding a Process 

AA allows the application programmer to start a named process at anytime during the 
execution. The process request is performed using AddProcess( Name of executable ) 
which returns an integer ID which subsequently used to address the process. The 
function AddProcess() is non-blocking. As soon as it is invoked, AA will check if its 
Resource Buffer (RB) holds an additional prepared process (an idle process that has 
been deployed on a new node previously). If so, it immediately returns the process ID 
to the application which can activate this process for migrating objects. This is called 
a ”successful request”. If not, it will contact the underlying Grid scheduler such as 
Condor [3], SGE [1] or GRAM [7] to request an allocation, simultaneity returning 
integer 0 to the application. This is called a ”failed request”. As in a non-dedicated 
Grid environment the amount of time it takes for a process to be allocated is not 
bound, it is the programmer’s responsibility to request a process again if previous 
request has failed. Once the new process is deployed, AA will store the ID of the proc-
ess into the RB and return it to the application as soon as the next request is performed.  

One problem with the dynamic addition of process is that current Grid schedulers 
do not support dynamic resource co-allocation and deployment. They treat each later 
added process as an independent single job and do not deploy them communicable 
with other processes of the parallel application. One approach (approach A) to this 
problem is that once the process is allocated by a scheduler, the AA that is associated 
with this new process must broadcast its address to other old processes so that they 
can communicate. This is archived by registering this process’s address into the RB 
which is synchronized throughout the application. The new process is assigned an 
unique global id for further use by the application during the registration. This ap-
proach can be implemented by general socket programming or based on distributed 
computing framework (e.g. CORBA [10], Jini [11]).  

An alternative approach (approach B) is to use probes for resource allocation while 
the actual process startup is accomplished by AA itself. A probe is a small piece of 
deployment code that does not perform any computation for the application. The 
probe always runs until AA kills it, in order to hold that node. Once the probe is allo-
cated by the scheduler, it configures the node for AA use and notifies its node address 
to the master AA which takes charge of process spawning. Then the master AA trans-
fers the process binary onto that node and starts the process. This approach can make 
full use of existing process management systems (e.g. PVM [6], LAM/MPI [2]) that 
will return a process identifier for the application to address the process.  

Once the new processed is deployed, the object manager of the application can then 
migrate the target objects into this process for load balancing. The migration proce-
dure is beyond the scope of this paper. 
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3.2   Stopping a Process 

Programmers may want to stop a process and release the node when application’s 
resource requirement is low. The application firstly autonomically vacates the process 
(computational objects migration), then invokes the function StopProcess( id ). This 
results in the process with the given ID to be removed from the application and the 
related computer node to be disassociated. However AA may still reserve this pre-
pared process for the possible future requests from the application. The decision is 
made according to AA’s buffer policies (we discuss them in next section). If AA does 
decide to release the node, it contacts the local scheduler to kill the vacated process 
and finally return the node to the pool. 

3.3   Communication 

Technically, AA could either have a new communication mechanism if using ap-
proach A for adding processes or have PVM/MPI as the lower communication service 
if using approach B. In the latter case, programmers can still use PVM/MPI routines 
for communication, and use AA’s routines for process management. 

4   Resource Buffer 

In non-dedicated Grid environments the amount of time it takes until a process is 
allocated is not bound. In order to satisfy the process addition request on-demand at 
run-time, we propose the Resource Buffer (RB) to hide the delay of process alloca-
tion. A RB stores a number of prepared processes that can be returned to the applica-
tion immediately when it requests AddProcess(). AA manages the RB by requesting 
the allocations of processes from schedulers in advance. 

AA manages the RB to satisfy the application demands based on the RB policies. 
In order to measure the RB performance, we propose two simple metrics: Request 
Satisfaction S and Resource Waste W. Since the process release requests do not bene-
fit from the policies, the Request Satisfaction is defined as the percentage of success-
ful added processes out of the total number of process addition requests. If S is ap-
proaching 1, it indicates that the dynamic application can run smoothly since all of 
dynamic resource requests are satisfied on-demand. The Resource Waste is defined as 
the accumulative total time when the prepared processes stay in the RB (W = 

∑ =
exeT

t tR
0

 where exeT = total execution time; tR = the number of idle processes in the 

RB at time t). If the RB policy is good enough, W should be approaching 0 while S 
should be approaching 1.  

In order to investigate the RB policies, we made a few assumptions regarding the 
dynamic parallel application: 

– 1. It is a parallel iterative application. 
– 2. Its dynamic behavior is not random. Similar to the CFD-OG, the application only  
       requests resources on some stage (e.g. during iteration 100 ~ 110) when physical  
      condition changes. 
– 3. It only requests to add processes but not to release processes. 
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4.1   Policies 

We consider two corresponding heuristic policies, the Periodic (P) policy and the 
Periodic Prediction (PP) policy to manage the RB.  

The P policy periodically reviews the RB to ensure that the RB is kept to a prede-
termined process amount RL at each predefined interval tp. For every time interval, 
the number of N process requested is:  

⎩
⎨
⎧

>−−
<=−+

=
RLRRRL

RLRRRL
N

:)(

:)(
  

where RL is the request (threshold) level and R is the current number of prepared 
processes in the RB at each periodic level. ”+” means requesting the allocation of a 
node and deploying a new process and ”-” means requesting the release of a process 
and returning the node to the pool. The value of RL is crucial for the P policy. RL can 
be determined by the maximum number of requests that the application could con-
secutively make. Generally, if the application requests processes frequently, RL will 
be higher. 

 

Fig. 2. AA periodically predicts the number of requests the application will make. E.g. when 
the application is running at iteration 5, AA predicts the period from iteration 25 to 30.�

If the time allocT that the Grid scheduler takes to allocate a process in the cluster is 

known and relatively stable, we can use the PP policy. The PP policy periodically (at 
interval tp) predicts the number of requests that the application will make after θ  

time (Figure 2). If AA predicts that after θ  the application will make n requests, AA 

will place n requests to the scheduler immediately. We let allocalloc TT ∀≈= maxθ . 
Then the application would be able to use the advanced placed process right after it 
has been allocated.  

PP uses the application’s historical execution behaviors for the prediction. Since 
the application execution behavior may vary due to its execution environment, PP 
predicts the probability of a request in an iteration range (e.g. iteration 25 ~ iteration 

30, Figure 2) rather than a single iteration. The probability rangeiip +~  in the future 

iteration i ~ i + range is calculated as ∑ +
+ = rangei

i irangeii timesrP /~ , where ri is the 

total number of requests at iteration i during the recorded executions, times is number 
of recorded historical executions, and range is the number of iteration the prediction 
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covers. The number of request rangeiin +~  the application is predicted to make in itera-

tion i ~ i + range can be calculated by ⎣ ⎦rangeiiP +~ .  
In order to avoid the redundancy of process in the RB, PP also has a request 

(threshold) level RL. As the current number of process R reaches beyond RL, AA 
initiates to release processes. The full Pseudo-code for PP policy in AA is shown in 
Figure 3. 

 

Fig. 3. Pseudo-code for PP policy 

4.2   Simulation and Results 

Based on the assumptions we made, we use Clown [17], a discrete-event simulator to 
simulate a simple iterative application that has a behavior similar to the real dynamic 
parallel application. Initially, this application has three processes, each of which has 
10 computational objects. To simulate the dynamic behavior, one of the processes 
generates 10 objects every 100 iterations. Due to the increase of objects, the applica-
tion will detect when the execution speed is getting slower and subsequently responds 
by requesting additional resources/processes by AddProcess() to balance the computa-
tion in ensuring smooth execution. If AA cannot satisfy the requests on some stage, 
the application runs slower with insufficient resources and it will request to add proc-
esses again in next iteration. In order to simulate the execution of the application, we 

simulate 500 homogeneous computer nodes where the average speed nodesp  is 11.2 

(it takes 11.2 simulation time to complete 1 objects, and takes 112 to complete 10 
objects) . The execution speed fluctuates in each run according to a Gaussian distribu-

tion with variance equals to 1.0. In the cluster, the time allocT it takes to allocate a 

node is Gaussian distributed with average 1000 and variance 100. The simulated exe-

cution speed exesp  (the time it takes to run 1 iteration) with S = 1 can be monitored  
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as ≈  120. The main purpose of the simulation is to evaluate the effectiveness of the 
proposed buffer policies under the simulated environment.  

For each policy, we run the application for 100 times. For each execution, the ap-
plication is run for 3000 iterations. Figure 4 shows the value S of both policies during 
the 100 executions. We can see the Request Satisfaction of the P policy is slightly 
higher than what the PP policy can provide. For the PP policy, S is very low in the 
beginning and increases to 90% around the 5th execution. This is because PP is based 
on historical information and there is not enough information for predicting the exe-
cution behavior in the beginning. During the 100 executions, both policies can pro-
vide reasonable S (S > 80%). The small fluctuations are caused by the unstable 

allocT and nodesp . 

 

  

Fig. 4. The Request Satisfaction S of both 
policies during 100 executions. PP: range = 5, 
RL = 1, tp = 5iterations. P: RL = 1, tp = 600. 

Fig. 5. The Resource Waste W of both poli-
cies during 100 executions. PP: range = 5,  
RL = 1, tp = 5iterations. P: RL = 1, tp = 600. 

Figure 5 shows the value W of both policies during the 100 executions. We can see 
that the PP policy is far more efficient than the P policy. The W of PP in the first few 
executions are relatively high since historical information is insufficient. W then 
drops rapidly through the learning process and maintains a low value with small fluc-
tuations in the rest of the executions. 

The results show that both proposed policies have their pros and cons. The P policy 
can provide slightly higher Request Satisfaction while leads to very high Resource 
Waste too. The PP policy is considered more advanced. It can perform simple predic-
tion and make requests at the right time. However the current PP policy is not suitable 

for the cluster where allocT is random and unpredictable. While the P policy is suitable 

for any environment. 

5   Implementation 

The current implementation of AA is developed based on PVM. The process man-
agement follows approach B. Requests are served according to FCFS policy. The test 
environment is a Condor pool which has 50 Linux machines. The cluster has NFS 
(Network File System) installed and each machine has PVM installed. 
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All the AA-enabled application’s binaries and related files must be put on a NFS 
mounted directory. The application is firstly started on the Condor submitting 
machine. The first process started is called master process and manages the whole 
application. The correlative AA is called master AA. When AA decides to add a 
process (receiving a request or according to the RB policies) for the application, it 
firstly asks the master AA to submit a probe program to Condor specifying the re-
source requirements (e.g. Arch == ”INTEL”) of the application in the submit file. 
Once the probe is allocated, it notifies the master AA by writing the node information 
into a XML file on the NFS. AA keeps reading this file. Once it finds that a new node 
is added, it immediately adds that node into its virtual machine by pvm addhosts(). 
Then it starts a process on that node by pvm spawn(), and stores the process id into its 
RB. Since all the binaries are on the NFS, AA does not need to transfer any files. AA 
in its current implementation does not support heterogeneous deployment. It does 
allow heterogeneous processing as long as a suitable executable is present on the 
target node. 

When AA releases a process, it first stops the process by pvm kill(), then excludes 
the node from its virtual machine by pvm delhosts(). It finally returns this node to the 
pool by killing the probe via condor rm(). 

AA’s message passing module is a C++ wrapper of PVM’s interface. 

6   Related Work 

Condor-PVM [3] provides a dynamic resource management for PVM applications 
executing in a Condor cluster. Whenever a PVM program asks for nodes, the request 
is re-mapped to Condor, which then finds a machine in the Condor pool via the usual 
mechanisms, and adds it to the PVM virtual machine. This system is intended to inte-
grate the resource management (RM) systems (Condor) with the parallel program-
ming environment (PVM) [14]. Although it supports runtime resource requests simi-
lar to what AA supports, it does not put any effort into the performance of the applica-
tion, e.g buffer management. Moreover, the request scheduling for the application is 
totally managed by Condor, which has no scalability to add other application-level 
scheduling policies. 

Gropp et al. [9] introduce an extension of MPI for MPI applications to communi-
cate the job scheduler to add and subtract processes during the computation. It pro-
posed a non-blocking call MPI IALLOCATE to reserve processors from the scheduler 
with returning a set of MPI requests. Then the actual process startup can be accom-
plished with the conventional MPI START or MPI STARTALL calls. This paper 
however does not provide detailed implementation information. 

DUROC [4] implements an interactive transaction strategy and mechanism for re-
source co-allocation in a multi-cluster environment. It accepts multiple requests, each 
written in a RSL expression and each specifying a subjob of an application. In order 
to tolerate resource failures and timeouts, some resources may be specified as ”inter-
active” and ”optional”. Successful completion of a DUROC co-allocation request 
results in the creation of a set of application processes that are able to communicate 
with one another. An important issue in the resource co-allocation is that the required 
resources have to be available at the same time otherwise the computation cannot 
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proceed. While in our model, a dynamic parallel application can continue computa-
tion with insufficient resources and request additional resources via AA during the 
computation to maintain its ideal performance. 

7   Conclusion and Future Direction   

The contribution of this paper is the proposal of an application agent AA that supports 
the dynamic resource requirements of dynamic parallel applications such as CFD-OG. 
An AA-enabled application is able to add new resource (deploy a new process) and 
release surplus (release a process) at run-time. To maintain the smooth execution of 
the application, the Resource Buffer service is proposed that is embedded in AA to 
relieve the cost for waiting resources. Two heuristic policies are introduced to exam-
ine how the RB concept can be managed more effectively and efficiently. 

The current version of AA is implemented with approach B (detailed in section 3) 
and tested in a Condor cluster. As we mentioned, this approach is restricted by exist-
ing systems. For example, PVM is bounded to join resources that are located in the 
same network domain and so AA cannot perform wide-area computing based on 
PVM. Some extensions (e.g. PMVM [13]) enable PVM to create multi-domain virtual 
machines. The future work will involve implementing and testing AA in a multi-
domain environment. We aim to investigate whether the virtual machine architecture 
would apply in this setting or it is more appropriate to apply approach A that distrib-
uted loosely links processes across the network. The security problem arising from 
multi-domain environment will be also addressed. 

The RB policies also need more precise investigation. Two polices will be further 
tested by two real world dynamic parallel applications CFD-OG and RUNOUT [16]. 
The policies will be further extended to intelligently react to the change of resource 
environment to ensure that the smooth execution of application is not affected. 
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