
P. Primet et al. (Eds.): GridNets 2008, LNICST 2, pp. 215 – 222, 2009. 
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009 

Experimental Demonstration of a Self-organized 
Architecture for Emerging Grid Computing Applications 

on OBS Testbed 

Lei Liu, Xiaobin Hong, Jian Wu, and Jintong Lin 

P.O. Box 55#, Key Laboratory of Optical Communication and Lightwave Technologies,  
Ministry of Education, Beijing University of Posts and Telecommunications, Beijing, China 

liulei.bupt@gmail.com,{xbhong,jianwu,ljt}@bupt.edu.cn 

Abstract. As Grid computing continues to gain popularity in the industry and 
research community, it also attracts more attention from the customer level. The 
large number of users and high frequency of job requests in the consumer 
market make it challenging. Clearly, all the current Client/Server(C/S)-based 
architecture will become unfeasible for supporting large-scale Grid applications 
due to its poor scalability and poor fault-tolerance. In this paper, based on our 
previous works [1, 2], a novel self-organized architecture to realize a highly 
scalable and flexible platform for Grids is proposed. Experimental results show 
that this architecture is suitable and efficient for consumer-oriented Grids. 

Keywords: optical Grid, self-organization, optical burst switching (OBS). 

1   Introduction 

Optical networking for Grid computing is an attractive proposition offering huge 
amount of affordable bandwidth and global reach of resources. Optical burst 
switching (OBS) [3], which combines the best of optical circuit switching (OCS) and 
optical packet switching (OPS), is widely regarded as a promising technology for 
supporting future Grid computing applications [4]. 

In recent years, the Grid over OBS architectures have been extensively studied [5-7]. 
The latest research proposed to use Session Initiation Protocol (SIP) to construct optical 
Grid architecture [8]. But to the best of the authors’ knowledge, these architectures are 
all conventional C/S model, in which the roles are well separated. All the grid resources 
publish their available resource information to the corresponding server (or SIP proxy). 
The job request is firstly sent to a server (or SIP proxy) for resource discovery, and if 
none satisfied resource is found, the request will then transferred to other server (or SIP 
proxy) for further handling. 

The Grid will open to the consumer market in the future, which is a challenge by 
the potentially large number of resources and users (perhaps millions), high frequency 
of job requests and considerable heterogeneity in resource types. Under this 
background, C/S-based optical Grid architecture will become unfeasible due to its 
poor scalability and poor fault-tolerance. In order to address this issue, a P2P-based 



216 L. Liu et al. 

architecture is proposed in [1]. Compared with the conventional C/S solution, the 
significant improvement of the P2P-based architecture is the resource discovery 
scheme is fully decentralized. Experimental results in [1] show the P2P-based 
architecture can improve the network scalability and it is a better choice for large-
scale Grid applications. However, the shortcoming of the P2P-based solution is only 
the non-network resource is considered for resource discovery. So in the work of [2], 
we propose a self-organized resource discovery and management (SRDM) scheme, in 
which both the network resource and non-network resource are taken into account for 
resource discovery. But the resource reservation is not efficient enough in [2] and 
additional time delay will be introduced. So in this paper, based on [1] and [2], a 
novel self-organized architecture for optical Grid is investigated. Experimental results 
show that this architecture is suitable and efficient for Grid applications. Moreover, it 
outperforms our previous works [1, 2] for supporting future large-scale consumer-
oriented Grid computing applications.  

The rest of this paper is organized as follows. Section 2 proposes the self-organized 
optical Grid architecture. Section 3 investigates the signaling process in this 
architecture. Section 4 is the performance evaluation and experimental demonstration 
of the proposed architecture. Section 5 concludes this paper.  

2   Self-organized Network Architecture 

Fig.1 shows the self-organized architecture for Grid over OBS. The architecture is 
separated into 2 layers: transport layer and protocol layer. 

 

Fig. 1. Self-organized architecture for Grid over OBS 

The transport layer is the actual Grid network. Fig.1 shows a typical Grid over 
OBS infrastructure [4], that is, the Grid users/resources are divided into several Grid 
virtual organizations which are connected through OBS network. Two interfaces, 
Grid User Network Interface (GUNI) and Grid Resource Network Interface (GRNI) 
are used to connect Grid and OBS network.  

The protocol layer is used for implementing the resource discovery scheme. It is 
composed of the virtual nodes mapping from the Grid users/resources in the transport 
layer. The consistent hash function assigns each node in the protocol layer an m-bit 



 Experimental Demonstration of a Self-organized Architecture 217 

identifier (node ID) using SHA-1[9] as a base hash function. A node’s identifier is 
chosen by hashing the node’s IP address. In the rest of this paper, the term “node” 
will refer to either the actual node in transport layer or the virtual node in protocol 
layer, as will be clearly distinguished from context.  

In the self-organized architecture, each node maintains three tables, including 
Finger Table (FT), Latency Information Table (LIT) and Blocking Information Table 
(BIT). FT is a routing table (Fig.2(a)), which includes both the identifier and the IP 
address of the relevant node. Note that the first finger of n is the immediate successor 
of n on the protocol layer; for convenience we often refer to the first finger as the 
successor. The generation process and algorithm for FT is introduced in [1] in detail.  

 

Fig. 2. An example of (a) FT, (b) LIT and (c) BIT of node 10 (N10) 

LIT and BIT are used for storing the end-to-end latency and blocking probability 
from the current user to different resources respectively. Such information is obtained 
by self-learning mechanism. Once a resource is discovered, the IP address of this 
resource will be saved in LIT and BIT. For each resource, user periodically sends 
“Hello” signaling to it to get the end-to-end latency and save it in LIT. Meanwhile, 
user records the job history (success or failure), calculates job blocking probability for 
each resource and saves it in BIT. BIT is cleared in every T minutes to eliminate the 
out-of-data information. Fig.2(b) and Fig.2(c) show examples of the LIT and BIT of 
node 10. 

3   Signaling Process 

Fig.3(a) shows the signaling process for Grid applications in the self-organized 
architecture, which can be divided into 3 steps: preparation, resources discovery and 
job execution. A novel P2P protocol based on Chord [10] is integrated in this process. 

3.1   Preparation  

This step is used to generate Resource Publication Message (RPM), which can be 
further illustrated as Fig.3(b). In computational Grids, Grid resources can be divided 
into two types: static resources, including operation system configuration, system 
version, service types that this resource can provide, etc. and dynamic resources,  
 



218 L. Liu et al. 

 

Fig. 3. (a) Signaling process (b) Resource Publication Message (RPM) generation (c) Protocol 
layer consisting of 11 virtual nodes storing 10 RPMs 

including idle CPU cycles, available disk space, free RAM, etc. The dynamic 
resource will be changed in the process of Grid job execution while the static resource 
will remain unchanged.  

Each resource in the Grid network is required to describe its available static 
resource and dynamic resource in the same description method and format which are 
needed to be negotiated by all the Grid users. This description format should be a 
structured naming or description, such as [11-12]. The RPM is composed of two 
parts. The top m bits are the key which is generated by hashing the static resource 
description using SHA-1, the rest bits are the dynamic resource description (DRD). 
The dynamic resource description is reversible and can be analyzed by every Grid 
user while the key is irreversible due to the SHA-1. The RPM of node n will be 
denoted by RPM (n, Key k, DRDn) in the remainder of this paper.  
  After the RPMs are generated, they will be published to nodes residing in the 
protocol layer, which is an identifier circle modulo 2m. As shown in Fig.3(c), RPM (n, 
Key k, DRDn) is assigned to the first node whose identifier is equal to or follows key 
k in the identifier space. This node is called the successor node of key k, denoted by 
successor(k). If identifiers are represented as a circle of numbers from 0 to 2m-1, then 
successor(k) is the first node clockwise from k. 

3.2   Resource Discovery, Reservation and Release 

The process of resource discovery, reservation and release is described in this section. 
Firstly, user can specify the job requirements and job characteristic (i.e. loss-
sensitivity or delay-sensitivity) through a web portal in which dynamic Web Service 
technology is implemented. After that, a job to be executed remotely will generate a 
Resource Discovery Message (RDM) according to its job requirements. The top m 
bits of RDM are also the key which is the hashing of the static resource requirements 
and the rest bits are the description of dynamic resource requirements (DRR) and the 
network information (NI). The input and output for generating NI can be described as 



 Experimental Demonstration of a Self-organized Architecture 219 

the following program. Based on the end-to-end latency/blocking information, the IP 
addresses of the resources (IP1,IP2,...,IPn), which are stored in LIT and BIT, are sorted 
into increasing order (IP’

1,IP
’
2,...,IP

’
n). After that, the reordering permutation 

(IP’
1,IP

’
2,...,IP

’
n) is saved in NI. These are several sorting algorithm, which is 

investigated in detail in [13]. Fig.4 (a) shows the generation process of RDM. The 
RDM with key k will be denoted by RDM (Key k, DRR, NI) in the rest of this paper. 

Program of the generation of network information (NI) in RDM 

program  
Input: (1)A sequence of IP addresses stored in LIT and 
BIT, IP1,IP2,...,IPn and (2)their corresponding end-to-
end latency L1,L2,...,Ln (Fig.2(b)) and (3)blocking 
probability value P1,P2,...,Pn (Fig.2(c))and (4)job 
characteristic specified by the user (i.e. loss-
sensitive, delay-sensitive) 

Output: A permutation (reordering) IP’

1,IP
’

2,...,IP
’

n of 
the input sequence such that L’

1≤L
’

2≤…≤L’

n (delay-
sensitive case)or P’

1≤P
’

2≤…≤P’

n(loss-sensitive case) 
end. 

The resource discovery process can be described as follows: an operation, 
find_successor, is firstly invokes at node n to find the key of RDM. If key falls 
between n and its successor, find_successor is finished and node n returns its 
successor. Otherwise, n searches its finger table for the node n’ whose ID most 
immediately precedes key, and then invokes find_successor at n’. The reason behind 
this choice of n’ is that the closer n’ is to key, the more it will know about the 
identifier circle in the region of key. When the key is found, the dynamic resource 
description will be compared to find out which node can meet the dynamic resource 
requirements of the job. After a list of candidate resources satisfying the specified 
requirement is obtained, i.e. list L, the (IP’

1,IP
’
2,...,IP

’
n) in NI will be compared to the 

IP addresses in L in order to choose a best resource (i.e. least latency or least 
blocking). First-fit mechanism is used here since the (IP’

1,IP
’
2,...,IP

’
n) in NI have been 

already sorted. If there is no relevant record in NI, an IP address is randomly selected 
from list L as resource discovery result. After a resource is chosen, non-network 
resource can be reserved by updating RPM. Together with OBS bandwidth 
reservation protocols (e.g. Just-Enough-Time (JET) [3]), the proposed self-organized 
architecture enables a more flexible end-to-end reservation (compared with [2]) of 
both network and non-network resources in a fully decentralized manner. Fig. 4(b) is  
 

 

Fig. 4. (a) Resource Discovery Message (RDM) generation (b) Path of a query for RDM 
(Key54, DRR, NI) starting at node 10 



220 L. Liu et al. 

an example that node 10 wants to find the successor of RDM(Key54, DRR, NI). The 
number (1~5) in Fig.4(b) shows the resource discovery procedures.   

3.3   Job Execution 

Once the resource discovery result is obtained, the user will send the actual job to 
Edge Router (ER) for transmission to the resource. ER aggregates the job into optical 
bursts which then are sent to the reserved resources by utilizing JET bandwidth 
reservation scheme. The edge router is able to send data from different users to 
different reserved resources across the network. After the job is successful executed, 
the job results will be returned to the user, at the same time, updating the RPM to 
release the reserved non-network resources.  

4   Experimental Setup, Results and Discussions 

The experimental setup is shown in Fig.5. Grid users and resources were connected 
through JET-OBS testbed [14]. Various latency and blocking from users to resource 1 
and 2 was introduced by injecting background traffic. The resource discovery 
signaling (e.g. Hello, PRS) were encapsulated into bursts for transmission for 
avoiding the O/E/O conversion and message processing delay. About 1000 jobs were 
randomly generated with random resource requirement, job characteristic and start 
time (Fig.7 (a)). OBS edge routers and core routers were connected with fibre links in 
which two DWDM data channels (1554.94nm, 1556.55nm) and one dedicated control 
channel (1.31μm) are included. Bit-rate for all channels is 1.25Gbps.  

The experimental results (Fig.6) show that the proposed self-organized architecture 
can be well applied to optical Grid with different job burst size (Fig.6 (a, b)) and 
different job request frequency (Fig.6 (b, d)). The burst together with eye diagram 
(Fig.6(d, e)) show that 19.43dB extinction ratio can be achieved. In our experiment, 
the shortest resource discovery time is 31.25ms (Fig.7 (b)) and the longest resource 
discovery time is 640.625ms (Fig.7 (c)). For all the Grid jobs, the average resource 
discovery time is nearly 200 milliseconds and the lookup successful rate is 100%.  

 

Fig. 5. Experimental setup 

The results in Fig.7(d) show that self-organized architecture outperforms P2P-
based architecture [1] in terms of job blocking and end-to-end latency since the 
resource discovery in the self-organized architecture is capable of consideration of 
both network and non-network resources. It can be seen that in the self-organized 
architecture, each user has its own intelligence to manage resource discovery requests  
 



 Experimental Demonstration of a Self-organized Architecture 221 

 

Fig. 6. Experimental results (a) a small job encapsulated in a burst to transmit (b) a large job 
encapsulated in a burst to transmit (c) job result sent back to the user (d) several job 
transmission when the job request frequency is high (e) eye-diagram of job bursts 

 

Fig. 7. Experimental results (a) Web interface (b) shortest resource discovery time (c) longest 
resource discovery time (d) comparison of self-organized architecture and [1] 

and make proper decision based on its own information about the whole Grid 
network. Clearly, by employing this distributed mechanism, it is not necessary to 
deploy powerful centralized servers for storing Grid resource information, which 
enables to construct a more scalable and fault-tolerant network for large-scale 
consumer Grid.  

5   Conclusions 

In this paper, a novel self-organized architecture for optical Grid is proposed and this 
solution is experimentally demonstrated on OBS testbed. By introducing self-
organization in optical Grid, the disadvantages of the C/S-based Grid architecture are 
solved and many benefits are introduced to optical Grid due to the inherent 
advantages of self-organization (e.g. flexibility, scalability, fault-tolerance, etc.). The 
network resource and non-network resource are all taken into account for resource 
discovery in this architecture, which will result in better performance than our 
previous works. The experimental results verify that this architecture is suitable and 
efficient for future large-scale consumer-oriented Grid computing applications.  
 



222 L. Liu et al. 

Acknowledgments. This work was supported by 863 Program (2007AA01Z248), 
MOST Program (No.2006DFA11040), PCSIRT (No.IRT0609) and 111 Project 
(B07005). 

References 

1. Liu, L., Hong, X.B., Wu, J., Lin, J.T.: Experimental Demonstration of P2P-based Optical 
Grid on LOBS Testbed. In: Optical Fiber Communication Conference (OFC), San Diego, 
USA (2008) 

2. Liu, L., Guo, H., et al.: Demonstration of a Self-organized Consumer Grid Architecture. 
In: European Conference on Optical Communications (ECOC), Brussels, Belgium 
(accepted, 2008) 

3. Qiao, C., Yoo, M.: Optical Burst Switching (OBS)－a New Paradigm for an Optical 
Internet. J. High Speed Netw. 8(1), 69–84 (1999) 

4. Nejabati, R. (eds.): Grid Optical Burst Switched Networks (GOBS). Technical report, 
Open Grid Forum (OGF), GFD.128 (2008)  

5. Zervas, G., Nejabati, R., Wang, Z., Simeonidou, D., Yu, S., O’Mahony, M.: A Fully 
Functional Application-aware Optical Burst Switched Network Test-bed. In: Optical Fiber 
Communication Conference (OFC). Anaheim, California, USA (2007) 

6. Vokkarane, V.M., Zhang, Q.: Reliable Optical Burst Switching for Next-generation Grid 
Networks. In: IEEE/CreateNet GridNets, Boston, USA, pp. 505–514 (2005) 

7. Farahmand, F., De Leenheer, M., Thysebaert, P., Volckaert, B., De Turck, F., Dhoedt, B., 
Demeestert, P., Jue, J.P.: A Multi-layered Approach to Optical Burst-switched Based 
Grids. In: International Conference on Broadband Networks (BroadNets), Boston, USA, 
vol. 2, pp. 1050–1057 (2005) 

8. Zervas, G., Nejabati, R., Simeonidou, D., Campi, A., Cerroni, W., Callegati, F.: SIP Based 
OBS Networks for Grid Computing. In: Tomkos, I., Neri, F., Solé Pareta, J., Masip Bruin, 
X., Sánchez Lopez, S. (eds.) ONDM 2007. LNCS, vol. 4534, pp. 117–126. Springer, 
Heidelberg (2007) 

9. FIPS 180-1, Secure Hash Standard. U.S. Department of Commerce/NIST, National 
Technical Information Service. Springfield, VA (1995) 

10. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A Scalable Peer-
to-peer Lookup Service for Internet Applications. In: ACM SIGCOMM, San Diego, USA, 
pp. 149–160 (2001) 

11. Globus Project, The Globus Resource Specification Language RSL v1.0,  
  http://www.globus.org/toolkit/docs/2.4/gram/rsl_spec1.html 

12. Smirnova, O.: Extended Resource Specification Language, reference manual,  
  http://www.nordugrid.org/documents/xrsl.pdf 

13. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithm, 2nd edn. The 
MIT Press, Cambridge (2001) 

14. Guo, H., Lan, Z., Wu, J., Gao, Z., Li, X., Lin, J., Ji, Y., Chen, J., Li, X.: A Testbed for 
Optical Burst Switching Network. In: Optical Fiber Communication Conf. (OFC). 
Anaheim, California, USA (2005) 


	Experimental Demonstration of a Self-organized Architecture for Emerging Grid Computing Applications on OBS Testbed
	Introduction
	Self-organized Network Architecture
	Signaling Process
	Preparation
	Resource Discovery, Reservation and Release
	Job Execution

	Experimental Setup, Results and Discussions
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Photoshop 4 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




