
P. Primet et al. (Eds.): GridNets 2008, LNICST 2, pp. 9–23, 2009.
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

UDTv4: Improvements in Performance and Usability

Yunhong Gu and Robert Grossman

National Center for Data Mining, University of Illinois at Chicago

Abstract. This paper presents UDT version 4 (UDTv4), the fourth generation
of the UDT high performance data transfer protocol. The focus of the paper is
on the new features introduced in version 4 during the past two years to
improve the performance and usability of the protocol.

UDTv4 introduces a new three-layer protocol architecture (connection-flow-
multiplexer) for enhanced congestion control and resource management. The
new design allows protocol parameters to be shared by parallel connections and
to be reused by future connections. This improves the congestion control and
reduces the connection setup time. Meanwhile, UDTv4 also provide better
usability by supporting a broader variety of network environments and use
scenarios.

1 Introduction

During the last decade there has been a marked boom in Internet applications, enabled
by the rapid growth of raw network bandwidth. Examples of new applications include
P2P file sharing, streaming multimedia, and grid/cloud computing. These applications
vary greatly in traffic and connection characteristics. However, most of them still use
TCP for data transfer. This is partly due to the fact that TCP is well established and
contributes to the stability of the Internet.

TCP was designed as a general-purpose protocol and was first introduced three
decades ago. It is not surprising that certain requirements from new applications
cannot be perfectly addressed by TCP. Network researchers have proposed many
changes to TCP to address those emerging problems and requirements (SACK, ECN,
etc.) [6]. The new techniques are carefully studied and deployed, albeit slowly. For
example, TCP's inefficiency problem in high bandwidth-delay product (BDP)
networks was observed almost a decade ago yet it is only recently that several new
high speed TCP variants were deployed: (CUBIC on Linux [13] and Compound TCP
on Windows Vista [17]). Furthermore, because new TCP algorithms have to be
compatible with the TCP standard, improvements to TCP are limited.

New transport protocols, DCCP [12] and SCTP [16], have also been proposed.
However, it may take years for these new protocols to be widely deployed and used
by applications (considering the example of IPv6). Moreover, both DCCP and SCTP
are designed for specific groups of applications. New applications and requirements
will continue to emerge and it is not a scalable solution to design a new transport
layer protocol every few years. It is necessary to have a flexible protocol that provides
basic functions and allows applications to define their own data processing. This is
what UDP was designed for.

10 Y. Gu and R. Grossman

In fact, UDP has been used in many applications (e.g., Skype) but it is usually
customized independently for each application. RTP [15] is a good example and it is a
great success in supporting multimedia applications. However, there are few general-
purpose UDP-based protocols that application developers can use directly or
customize easily.

UDT, or UDP-based data transfer protocol, is an application level general-purpose
transport protocol on top of UDP [8]. UDT address a large portion of the requirements
from the new applications by seamlessly integrating many modern protocol design
and implementation techniques at the application level.

The protocol was originally designed for transferring large scientific data over
high-speed wide area networks and it has been successful in many research projects.
For example, UDT has been used to distribute the 13TB SDSS astronomy data release
to global astronomers [9].

UDT has been an open source project since 2001 and the first production release
was made in 2004. While it was originally designed for big scientific data sets, the
UDT library has been used in many other situations, either with its stock form or in a
modified form. A great deal of user feedback has been received. The new version
(UDTv4) released in 2007 introduces significant changes and supports better
performance and usability.

• UDTv4 uses a three-layer architecture to enhance congestion control and reduce
connection setup time by sharing control parameters among parallel connections
and by using historical data.

• UDTv4 introduces new techniques in both protocol design and implementation
to support better scalability, hence it can be used in a larger variety of use
scenarios.

This paper describes these new features of UDTv4. Section 2 explains the protocol
design. Section 3 describes several key implementation techniques. Section 5 presents
the evaluation. Section 6 discusses the related work. Section 7 concludes the paper.
Throughout the rest of the paper, we use UDT to refer the most recent version,
UDTv4, unless otherwise explicitly stated.

2 Protocol Design

2.1 Protocol Overview

UDT is a connection-oriented, duplex, and unicast protocol. There are 3 logical layers
in design: UDT connection, UDT flow, and UDP multiplexer (Figure 1).

A UDT connection is set up between a pair of UDT sockets as a distinct data
transfer entity to applications. It can provide either reliable data streaming services or
partial reliable messaging services, but not both for the same socket.

A UDT flow is a logical data transfer channel between two UDP addresses (IP and
port) with a unique congestion control algorithm. That is, a UDT flow is composed of
five elements (source IP, source UDP port, destination IP, destination UDP port, and
congestion control algorithm). The UDT flow is transparent to applications.

 UDTv4: Improvements in Performance and Usability 11

S
ockets

S
ockets

UDT Connection

UDT Flow

UDP
Multiplexer

UDP
Multiplexer

S
ockets

To other
addresses

Fig. 1. UDT Connection, Flow, and UDP Multiplexer

One or more UDT connections are associated with one UDT flow, if the UDT
connections share the same five elements described above. Every connection must be
associated with one and only one flow. In other words, UDT connections sharing the
same five elements are multiplexed over a single UDT flow.

A UDT flow provides reliability control as it multiplexes individual packets from
UDT connections, while UDT connections provide data semantics (streaming or
messaging) management. Different types of UDT connections (streaming or
messaging) can be associated with the same UDT flow.

Congestion control is also applied to the UDT flow, rather than the connections.
Therefore, all connections in one flow share the same congestion control process.
Flow control, however, is applied to each connection.

Multiple UDT flows can share a single UDP socket/port and a UDP multiplexer is
used to send and dispatch packets for different UDT flows. The UDP multiplexer is
also transparent to applications.

2.2 UDP Multiplexing

Multiple UDT flows can bind to a single UDP port and each packet is differentiated
by the destination (UDT) socket ID carried in the packet header. The UDP
multiplexing method helps to traverse firewalls and alleviates the system limitation on
the port number space. The number of TCP ports is limited to 65536. In contrast,
UDT can support up to 232 connections at the same time.

UDP multiplexing also helps firewall traversing. By opening one UDP port, a host
can open virtually an unlimited number of UDT connections to the outside.

2.3 Flow Management

UDT multiplexes multiple connections into one single UDT flow, if the connections
share the same attributes of source IP, source UDP port, destination IP, destination
UDP port, and congestion control algorithm.

This single flow for multiple connections helps to reduce control traffic, but more
importantly, it uses a single congestion control for all connections sharing the same
end points. This removes the unfairness by using parallel flows and in most situations

12 Y. Gu and R. Grossman

data

control

Connection 2

Connection 1

Connection 2

Connection 1Buf

Buf

Buf

Buf

Buf

Congestion
Control

Flow
Control

Reliability
Control

Fig. 2. UDT Flow and Connection

it improves throughput because connections in a single flow coordinate with each
other rather than compete with each other.

As shown in Figure 2, the flow maintains all activities required for a regular data
transfer connection, whereas the UDT connection is only responsible for the
application interface (connection maintenance and data semantics).

At the sender side, the UDT flow reads packets from each associated connection in a
round robin manner, assigns each packet the flow sequence numbers and sends them out.

2.4 Connection Record Index/Cache

When a new connection is requested, UDT needs to look up whether there is already a
flow existing between the same peers. A connection record index (Figure 3) is used
for this purpose.

The index is sorted by the peer IP addresses. Each entry records the information
between the local host and the peer address, including but not limited to RTT, path
MTU, and estimated bandwidth. Each entry may contain multiple sub-entries by
different ports, followed by multiple flows differentiated by congestion control (CC).

The connection record index caches the IP information (RTT, MTU, estimated
bandwidth, etc.) even if the connection and flow is closed, in which case there is no
port associated with the IP entry. This information can be used when a new
connection is set up. Its RTT value can be initialized with a previously recorded
value; otherwise it would take several ACKs to get an accurate value for the RTT. If

IP Info. Port Flow/CC

IP Info.

Port

Flow/CC

Flow/CC

Fig. 3. Connection Record Index

 UDTv4: Improvements in Performance and Usability 13

path MTU discovery is used, the MTU information can also be initialized with a
historical value.

The index entry without an active flow will be removed when the maximum length
of the index has been reached, and the oldest entry will be removed first.

Although the cache may be removed very quickly on a busy server (e.g., a web
server), the client side may contain the same cache and pass the values to the server.
For example, a client that frequently visits a web server may keep the link information
between the client and the server, while the server may have already removed it.

2.5 Garbage Collection

When a UDT socket is closed (either by the application or because of a broken
connection), it is not removed immediately. Instead, it is tagged as having closed
status. A garbage collection thread will periodically scan the closed sockets and
remove the sockets when no API is accessing the socket.

Without garbage collection, UDT would have needed stronger synchronization
protection on its APIs, which increases implementation complexity and adds some
slight overhead for the additional synchronization mechanism.

In addition, because of the delayed removal, a new socket can reuse a closed socket
and the related UDP multiplexer when possible, thus it improves connection setup
efficiency.

Garbage collection also checks the buffer usage and decreases the size of the
system allocated buffer if necessary. If during the last 60 seconds, less that 50% of the
buffer is used, the buffer will be reduced to half (a minimum size limit, 32 packets, is
used so that the buffer size will not be decreased to a meaningless 1-byte).

3 Implementation

UDT is implemented as an open source project and is available for download from
SourceForge.net. The UDT library has been used in both research projects and
commercial products. So far 18,000 copies have been downloaded, excluding direct
checkout from the CVS and redistribution from other websites.

The UDT implementation is available on both POSIX and Windows systems and it
is thoroughly tested on Linux 2.4, 2.6, and Windows XP. The code is written in C++
with API wrappers for other languages available.

The latest stable version of the UDT library (version 4.2) consists of approximately
11,500 lines of C++ code, including about 4000 semicolons and about 20% of the
code is comments.

3.1 Software Architecture

Figure 4 shows the software architecture of the UDT implementation. A global UDT
API module dispatches requests from applications to a specific UDT socket. Data
transfer for the UDT socket is managed by a UDT flow, while the UDT flow
communicates via a UDP multiplexer. One UDP multiplexer can support multiple
UDT flows, and one UDT flow can support multiple UDT sockets. Finally, both the

14 Y. Gu and R. Grossman

UDT API

UDP Multiplexer

System UDP Socket API

Global Socket Management

Snd Queue Rcv Queue

UDT Flow Management

Flow Control

Congestion Control

B
uffer

M
anagem

ent
G

arbage
C

ollection

UDT Connection Management

Reliability Control

Fig. 4. UDT Software Architecture

UDT
Socket

UDT Flow

UDT
Socket

UDT Flow
UDP

Multiplexer
Rcv

Queue

UDP
Multiplexer

Snd
Queue

Snd
Buffer

Cong.
Ctrl.

Rcv
Buffer

Flow Ctrl.

Snd Loss
List

Rcv Loss
List

Rcv
Queue

Snd
Buffer

Fig. 5. Data Flow over a Single UDT Connection

buffer management module and the garbage collection module work at global space
to support the resource management.

Figure 5 shows the data flow in a single UDT connection. The UDT flow moves
data packets from the socket buffer to its own sending buffer and sends the data out
via the UDP multiplexer. The control information is exchanged on both directions of
the data flow. At the sender side, the UDP multiplexer receives the control informa-
tion (ACK, NAK, etc.) from the receiver and dispatches the control information to the

 UDTv4: Improvements in Performance and Usability 15

corresponding UDT flow or connection. Lost lists are used at both sides to record the
lost packets. Lost lists work at flow level and only record flow sequence numbers.
Flow control is applied to a UDT socket, while congestion control and reliability
control are applied to the UDT flow.

3.2 UDP Multiplexer and Queue Management

The UDP multiplexer maintains a sending queue and a receiving queue. The queue
manages a set of UDT flows to send or receive packets via the associated UDP port.

The sending queue contains a set of UDT flows that has data to send out. If rate
based control is used, the flows are scheduled according to the next packet sending
time; if pure window-based control is used, the flows are scheduled according to a
round robin scheme.

The sending queue checks the system time and when it is time to send out the first
packet, it removes the first flow on the queue and sends out its packet. If there are
more packets to be sent for the particular flow, the flow will be inserted into the queue
again according to the next packet sending time by rate/congestion/flow control.

The sending queue uses a heap structure to maintain the flows. With the heap
structure, each send or insert action takes at most log2(n) steps, where n is the total
number of flows in the queue. The heap structure guarantees that the sender can find
the flow instance with the smallest next scheduled packet sending time; however, it is
not necessary to have all the flows sorted by the next scheduled time.

The job of the receiving queue is much simpler. It checks the timing events
(retransmission timer, keep-alive, timer-based ACK, etc.) for each flow associated
with the UDP multiplexer. Every fixed time interval (0.1 second), flows are checked
in a round robin manner. However, if a packet arrived for a particular flow, the timers
will be checked for the flow and the flow is moved to the end of the queue for the
next round of check.

The receiving queue uses a double linked list to store the flows and each operation
takes O(1) time.

The receiving side of the UDP multiplexer also maintains a hash table for the
associated UDT connections, so that when a packet arrives, the multiplexer can
quickly look up the corresponding connection to process the packet. Note that the
flow processing handler can be looked up via the socket instance.

3.3 Connection and Flow Management

In the UDT implementation, a flow is a special connection that contains pointers to all
connections within the same flow, including itself.

The first connection of the flow is set up by the normal 3-way handshake process.
More connections are set up by a simplified 2-way handshake as it joins an existing
flow. The first connection automatically becomes the flow and manages all the
connections. If the current "flow" connection is closed or leaves (because of IP
address change), another connection will become the flow and related flow
information will be moved to the new flow from the old one.

The flow maintains a separate sending buffer in addition to the connections'
sending buffers. In an ideal world, the flow should read packets from each connection

16 Y. Gu and R. Grossman

in a round robin fashion. However, in this way the flow would either need to keep
track of the source of each packet or copy the packet into its own buffer, because each
ACK or NAK processing needs to locate the original packet.

In the current implementation, the socket sending buffer is organized as a link of
multiple 32-packet blocks. The UDT flow reads one 32-packet block from each
connection in round robin fashion, removes the block from the socket's sending
buffer, and links the block to its own (flow) sending buffer. Note that there may be
less than 32 packets in the block if there is not enough data to be sent for a particular
connection.

Flow control is enforced at the socket level. The UDT send call will be blocked if
either the sender buffer limit or the receiver buffer limit is full. This guarantees that
data in the flow sending buffer is not limited by flow control.

By using this strategy, the flow simply applies ACKs and NAKs to its own buffer
and avoids memory copies between flow and connections or a data structure to map
flow sequence number to connection sequence number. In the latter case, UDT would
also need to check every single packet being acknowledged, because they may belong
to different connections and may not be continuous.

At the receiver side, all connections have their own receiver buffer for application
data reading. However, only the flow maintains a loss list to recover packet losses.

Rendezvous connection setup. In addition to the regular client/server mode, UDT
provides a method for rendezvous connection method. Both peers can connect to each
other at (approximately) the same time, provided that they know the peer's address
beforehand (e.g., via a 3rd known server).

3.4 Performance Considerations

Multi-core processing. The UDT implementation uses multiple threads to explore
the multi-core ability of modern processors. Network bandwidth increases faster than
CPU speed, and a single core of today's processors is barely enough to saturate
10Gb/s.

One single UDT connection can use 2 cores (sending and receiving) per data traffic
direction on each side. Meanwhile, each UDP multiplexer has its own sending thread
and receiving thread. Therefore, users can start more UDT threads by binding UDT
sockets to different UDP ports, thus more UDP multiplexers will be started and each
multiplexer will start their own packet processing threads.

New select API. UDT provides a new version of the select API, in which the result
socket descriptor set is an independent output, rather than overwriting the input
directly. The BSD style select API is inefficient for large numbers of sockets, because
the input is modified and applications have to reinitialize the input each time. In
addition, UDT provides a way to iterate the result set; in contrast, for the BSD socket
API, applications have to test each socket against the result set.

New sendfile/recvfile API. UDT provides both sendfile and recvfile APIs to reduce
one memory copy by exchanging data between the UDT buffer and application file
directly. These two APIs also simplify application development in certain cases.

It is important to mention that file transfer can operate under both streaming mode
and messaging mode. However, messaging mode is more efficient in this case,

 UDTv4: Improvements in Performance and Usability 17

because recvfile does not require continuous data block receiving and therefore in
messaging mode data blocks can be read into files out of order without the "head of
line" blocking problem. This is especially useful when the packet loss rate is high.

Buffer auto-sizing. All UDT connections/flows share the same buffer space, which
increases when necessary. The UDT socket buffer size is only an upper limit and it
does not allocate the buffer until it has to.

UDT automatically increases the socket buffer size limit to 2*BDP, if the default
or user-specified buffer size is less than this value. However, if the default or user-
specified value is greater than this value, UDT will not decrease the buffer size. The
bandwidth value (B in BDP) is estimated by the maximum packet arriving rate at the
receiver side. The garbage collection thread may decrease the system buffers when it
detects that only less than half of the buffers are used.

4 Evaluation

This section evaluates UDT's scalability, performance, and usability. UDT provides
superior usability over TCP and although it is at the application level, its
implementation efficiency is comparable to the highly optimized Linux TCP
implementation in kernel space. More importantly, UDT effectively addresses many
application requirements and fills a blank left by transport layer protocols.

4.1 Performance Characteristics

This section summarizes the performance characteristics of UDT, in particular, its
scalability.

Packet header size. UDT consumes 24 bytes (16-byte UDT + 8-byte UDP) for data
packet headers. In contrast, TCP uses a 20-byte packet header, SCTP uses a 28-byte
packet header, and DCCP uses 12 bytes without reliability.

Control traffic per flow. UDT sends one ACK per 0.01 second when there is data
traffic. This can be overridden by a user-defined congestion control algorithm, if more
ACKs are necessary. However, the user-defined ACKs will be lightweight ACKs and
consumes less bandwidth and CPU [8]. ACK2 packet is generated occasionally, at a
decreased frequency (up to 1 ACK2 per second). In contrast, TCP implementations
usually send one ACK every one or two segments.

In addition, UDT may also send NAKs, message drop request, or keep-alive
packets when necessary, but these packets are much less frequent than ACK and
ACK2.

Limit on number of connections. The maximum number of flows and connections
supported by UDT is virtually only limited by system resources (232).

Multi-threading. UDT starts 2 threads per UDP port, in addition to the application
thread. Users can control the number of data processing threads by using a different
number of UDP ports.

Summary of data structures. At the UDP multiplexer level, UDT maintains the
sending queue and receiving queue. The sending queue costs O(log2n) time to insert

18 Y. Gu and R. Grossman

or remove a flow, where n is the total number of flows. The receiving queue checks
timers of each UDT flow every 0.1 second, but it is self clocked by the arrival of
packets. Each check costs O(1) time. Finally, the hash table used for the UDP
multiplexer to locate a socket costs O(1) look up time.

The UDT loss list is based on congestion events, and each scan time is proportional
to the number of congestion events, rather than the number of lost packets [8].

4.2 Implementation Efficiency

UDT's implementation performance has been extensively tuned. This sub-section lists
the CPU usage for one or more data flows between two local directly connected
identical Linux servers. The server runs Debian Linux (kernel 2.6.18) on dual AMD
Opteron Dual Core 3.0GHz processors, 4 GB memory, and 10GE MyriNet NIC. All
system parameters are left as default except that the MTU is set to 9000 bytes. No
TCP or UDP offload is enabled.

Figure 6 shows the CPU usage of a single TCP, UDP and UDT flow (with or
without memory copy avoidance). The total CPU capacity is 400%, because there are
4 cores. Because each flow has a different throughput (varies between 5.4Gb/s TCP
and 7.5Gb/s UDT with memory copy avoidance), the values listed in Figure 6 are
CPU usage per Gb/s throughput.

According to Figure 6, UDT with memory copy avoidance costs similar CPU as
UDP and less CPU time than TCP. UDT without memory copy avoidance costs
approximately double CPU time of that in the other three situations.

In the case of a single UDT flow without memory copy avoidance, at 7.4Gb/s, the
CPU usage of the UDT thread and the application thread at the sender side cost 99%
and 40%, respectively (per thread CPU time not shown in Figure 6); the UDT thread
and the application thread at the receiver thread cost 90% and 36%, respectively.

TCP UDP UDT UDT w/o mem
0

2

4

6

8

10

12

14

16

18

20

C
P

U
 u

sa
g

e
(p

er
ce

nt
a

ge
 p

er
 G

b/
s)

send
recv

Fig. 6. CPU Usage of Single Data Flow

 UDTv4: Improvements in Performance and Usability 19

Although memory copy avoidance happens in the application thread, when it is used,
it also reduces CPU usage on both the UDT sending and receiving threads because
more memory bandwidth is available for the UDT threads and cache hit ratio is also
higher.

Figure 7 shows the CPU usage (unit value is per Gb/s throughput, the same as in
Figure 6) of multiple parallel connections of TCP and UDT. UDT memory copy
avoidance is not enabled in these experiments because in the situation of multiple
connections, the receiver side memory copy avoidance does not work well (see
Section 3.6). The connection concurrency is 10, 100, and 500 respectively for each
group (TCP, UDT with all connections sharing a single flow, and UDT with each
connection having its own flow).

TCP UDT single flow UDT multi flow
0

5

10

15

20

25

30

C
P

U
 u

sa
ge

 (
p

e
rc

e
n

ta
ge

 p
e

r G
b

/s
)

send
recv

Fig. 7. CPU Usage of Concurrent Data Flows

According to Figure 7, CPU usage of UDT increases slowly as the number of
parallel connections increases. The design and implementation is scalable to connec-
tion concurrency, and it is comparable to the kernel space TCP implementation.

Furthermore, the second group (all connections share one flow) costs slightly less
CPU than the third group. In the case of multiple flows, the overhead of control
packets for UDT increases proportionally to the number of flows, because each flow
sends its own control packets.

4.3 Usability

UDT is designed to be a general purpose and versatile transport protocol. The stock
form of UDT can be used in regular data transfer. Additionally, the messaging UDT
socket can also be used in multimedia applications, RPC, file transfer, web services,
etc. Currently UDT has been used in many real world applications, including data
distribution and file transfer (especially scientific data), P2P applications (both data
transfer and system messaging), remote visualization, and so on.

20 Y. Gu and R. Grossman

While TCP is mostly used for regular file and data transfer, UDT has the advantage
of a richer set of data transfer semantics and congestion control algorithms. Proper
congestion control algorithms can be used in special environments such as wireless
networks.

UDT does not increase Internet congestion by allowing users to easily modify the
congestion control algorithm. It has always been trivial to obtain unfair bandwidth
share by using parallel TCP or constant bit rate UDP. In fact, UDT's connection/flow
design improves the Internet congestion control by removing the unfairness and
traffic oscillation caused by applications that start parallel data connections between
the same pair of hosts.

The configurable congestion control feature of UDT can actually help network
researchers to rapidly implement and experiment with control algorithms. To
demonstrate this ability, six new TCP control algorithms (Scalable, HighSpeed, BiC,
Westwood, Vegas, and FAST) are implemented in addition to the three predefined
algorithms in the UDT release. Lines of code for the implementation of these control
algorithms vary between 11 and 73 [8].

UDT can also be modified to implement other protocols at the application level.
An example is to implement forward error correction (FEC) on UDT for low
bandwidth high link error environments.

While UDT is not a completely modularized framework like CTP [4] due to
performance considerations, it still provides high configurability (congestion control,
user defined packets, user controllable ACK intervals, etc.).

It is also much easier to modify UDT than to modify a kernel space TCP
implementation. Moreover, there are fewer limitations on deployment and protocol
standardization.

Finally, UDT is also more supportive for firewall traversing (e.g., NAT punching)
with UDP multiplexing and rendezvous connection setup.

5 Related Work

While transport protocols have been an active research topic in computer networks for
decades, there are actually few general purpose transport protocols running at the
application level today. In this sense UDT fills a void left by the transport layer
protocols where they cannot perfectly support all applications.

However, without considering its application level advantage, UDT can be broadly
compared to several other transport protocols. (In fact, the UDT protocol could
actually be implemented on top of IP, but the application level implementation was
one of the major objectives in developing this protocol.)

UDT borrows the messaging and partial reliability semantics from SCTP.
However, SCTP are specially designed for VoIP and telephony, but UDT targets
general purpose data transfer. UDT unifies both messaging and streaming semantics
in one protocol.

UDT's connection/flow design can also be compared to the multi-streaming feature
in SCTP. SCTP creates an association (analogous to UDT flow) between two
addresses and multiple independent streams (analogous to UDT connection) can be
set up over the association. However, in SCTP, applications need to explicitly create

 UDTv4: Improvements in Performance and Usability 21

the association and the number of streams is fixed at the beginning, while UDT
implicitly joins the connections into the same UDT flow (applications only create
independent connections). Furthermore, SCTP applies flow control at the association
level. In contrast, UDT applies flow control at the connection level.

This layered design (connection/flow in UDT and stream/association in SCTP) can
also be found in Structured Stream Transport (SST) [7]. SST creates channels
(analogous to UDT flow) between a pair of hosts while starting multiple lightweight
streams (analogous to UDT connection) atop the same channels. However, the
rationales behind SST and UDT are fundamentally different.

In SST, the channel provides a secured (optional) virtual connection to support
multiple independent application streams and to reduce stream setup time. This design
particularly targets applications that require multiple data channels. In contrast, UDT
flow automatically aggregates multiple independent connections to reduce control
traffic and to provide better congestion control. Both protocols apply congestion
control on the lower layer (channel and flow), but SST channel provides unreliable
packet delivery only and the streams have to conduct reliability control independ-
ently. In contrast, UDT flow provides reliable packet delivery (unless a UDT connec-
tion requests a message drop). Beyond this 2-layer design, SST and UDT differ
significantly on details of reliability control (ACK, etc.), congestion control, data
transfer semantics, and API semantics.

UDT enforces congestion control on the flow level, which carries traffic from
multiple UDT connections. This leads to a similar objective as that of congestion
manager (CM) [2, 3]. UDT's flow/connection design makes it a natural way to share
congestion control among connections between the same address pairs. This design is
transparent to existing congestion control algorithms, because any congestion control
algorithm originally designed for a single connection can still work on the UDT flow
without any modification. In contrast, CM introduces its own congestion control that
is specially designed for a group of connections. Furthermore, CM enforces conges-
tion control at the system level and does not provide the flexibility for individual
connections to have different control algorithms.

UDT allows applications to choose a predefined congestion control algorithm for
each connection. A similar approach is taken in DCCP. However, UDT goes further
by allowing users to redefine the control event handlers and write their own
congestion control algorithm.

Some of the implementation techniques used in UDT are exchangeable with kernel
space TCP implementations. Here are several examples. UDT's buffer management is
similar to the Slab cache in Linux TCP [10]. UDT automatically changes socket
buffer size to maximize throughput. Windows Vista provides socket buffer auto-
sizing, while SOBAS [5] provides application level TCP buffer auto-tuning. UDT
uses a congestion event based loss list that significantly reduces the scan time on the
packet loss list. This problem occurred in the Linux SACK implementation (when a
SACK packet arrives, Linux used to scan the complete list of in-flight packets, which
could be very large for high BDP links) and was fixed later.

While there are so many similarities on the implementation issues, UDT's
application level implementation is largely different from TCP's kernel space
implementation. UDT cannot directly use kernel space thread, kernel timer, hardware

22 Y. Gu and R. Grossman

interrupt, processor binding, and so on. It is more challenging to realize a high
performance implementation at the applications level.

6 Conclusions

This paper has described the design and implementation of Version 4 of the UDT
protocol and demonstrated its scalability, performance, and usability in layered
protocol design (UDP multiplexer, UDT flow, and UDT connection), data transfer
semantics, configurability, and efficient application level implementation.

As the end-to-end principle [14] indicates, the kernel space should provide the
simplest possible protocol and the applications should handle application specific
operations. From this point of view, the transport layer does provide UDP, while UDT
can bridge the gap between transport layer and applications. This design rationale of
UDT does not conflict with the existence of other transport layer protocols, as they
provide direct support for large groups of applications with common requirements.

The UDT software is currently in production quality. At the application level, it is
much easier to deploy than new TCP variants or new kernel space protocols (e.g.,
XCP [11]). This also provides a platform for rapidly prototyping and evaluating new
ideas in transport protocols. Some of the UDT approaches can be implemented in
kernel space if they are proven to be effective in real world settings. Furthermore,
many UDT modifications are expected to be application or domain specific, thus they
do not need to be compatible with any existing protocols.

Without the limitations of deployment and compatibility, even more innovative
technologies on transport protocols will be encouraged and implemented than before,
which is another ambitious objective of the UDT project.

References

[1] Allman, M., Paxson, V., Stevens, W.: TCP congestion control. RFC 2581 (April 1999)
[2] Andersen, D.G., Bansal, D., Curtis, D., Seshan, S., Balakrishnan, H.: System Support for

Bandwidth Management and Content Adaptation in Internet Applications. In: 4th
USENIX OSDI Conf., San Diego, California (October 2000)

[3] Balakrishnan, H., Rahul, H., Seshan, S.: An Integrated Congestion Management
Architecture for Internet Hosts. In: Proc. ACM SIGCOMM, Cambridge, MA (September
1999)

[4] Bridges, P.G., Hiltunen, M.A., Schlichting, R.D., Wong, G.T.: A configurable and
extensible transport protocol. ACM/IEEE Transactions on Networking 15(6) (December
2007)

[5] Dovrolis, C., Prasad, R., Jain, M.: Socket Buffer Auto-Sizing for High-Performance Data
Transfers. Journal of Grid Computing 1(4) (2004)

[6] Duke, M., Braden, R., Eddy, W., Blanton, E.: A Roadmap for Transmission Control
Protocol (TCP). RFC 4614, IETF (September 2006)

[7] Ford, B.: Structured Streams: a New Transport Abstraction. In: ACM SIGCOMM 2007,
August 27-31, Kyoto, Japan (2007)

[8] Gu, Y., Grossman, R.L.: UDT: UDP-based Data Transfer for High-Speed Wide Area
Networks. Computer Networks 51(7) (May 2007)

 UDTv4: Improvements in Performance and Usability 23

[9] Gu, Y., Grossman, R.L., Szalay, A., Thakar, A.: Distributing the Sloan Digital Sky
Survey Using UDT and Sector. In: Proceedings of e-Science (2006)

[10] Herbert, T.: Linux TCP/IP Networking for Embedded Systems (Networking), 2nd edn.,
November 17, 2006. Charles River Media (2006)

[11] Katabi, D., Handley, M., Rohrs, C.: Internet Congestion Control for High Bandwidth-
Delay Product Networks. In: The ACM Special Interest Group on Data Communications
(SIGCOMM 2002), Pittsburgh, PA, pp. 89–102 (2002)

[12] Kohler, E., Handley, M., Floyd, S.: Designing DCCP: Congestion Control Without
Reliability. In: Proceedings of SIGCOMM (September 2006)

[13] Rhee, I., Xu, L.: CUBIC: A New TCP-Friendly High-Speed TCP Variant, PFLDnet,
Lyon, France (2005)

[14] Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM
Transactions on Computer Systems 2(4), 277–288 (1984)

[15] Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A Transport Protocol for
Real-Time Applications. RFC 3550 (July 2003)

[16] Stewart, R. (ed.): Stream Control Transmission Protocol. RFC 4960 (September 2007)
[17] Tan, K., Song, J., Zhang, Q., Sridharan, M.A.: Compound TCP: Approach for High-

Speed and Long Distance Networks. In: Proceedings of INFOCOM 2006. 25th IEEE
International Conference on Computer Communications, pp. 1–12. IEEE Computer
Society Press, Los Alamitos (2006)

	UDTv4: Improvements in Performance and Usability
	Introduction
	Protocol Design
	Protocol Overview
	UDP Multiplexing
	Flow Management
	Connection Record Index/Cache
	Garbage Collection

	Implementation
	Software Architecture
	UDP Multiplexer and Queue Management
	Connection and Flow Management
	Performance Considerations

	Evaluation
	Performance Characteristics
	Implementation Efficiency
	Usability

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

