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Abstract. This paper presents UDT version 4 (UDTv4), the fourth generation 
of the UDT high performance data transfer protocol. The focus of the paper is 
on the new features introduced in version 4 during the past two years to 
improve the performance and usability of the protocol. 

UDTv4 introduces a new three-layer protocol architecture (connection-flow-
multiplexer) for enhanced congestion control and resource management. The 
new design allows protocol parameters to be shared by parallel connections and 
to be reused by future connections. This improves the congestion control and 
reduces the connection setup time. Meanwhile, UDTv4 also provide better 
usability by supporting a broader variety of network environments and use 
scenarios. 

1   Introduction 

During the last decade there has been a marked boom in Internet applications, enabled 
by the rapid growth of raw network bandwidth. Examples of new applications include 
P2P file sharing, streaming multimedia, and grid/cloud computing. These applications 
vary greatly in traffic and connection characteristics. However, most of them still use 
TCP for data transfer. This is partly due to the fact that TCP is well established and 
contributes to the stability of the Internet. 

TCP was designed as a general-purpose protocol and was first introduced three 
decades ago. It is not surprising that certain requirements from new applications 
cannot be perfectly addressed by TCP. Network researchers have proposed many 
changes to TCP to address those emerging problems and requirements (SACK, ECN, 
etc.) [6]. The new techniques are carefully studied and deployed, albeit slowly. For 
example, TCP's inefficiency problem in high bandwidth-delay product (BDP) 
networks was observed almost a decade ago yet it is only recently that several new 
high speed TCP variants were deployed: (CUBIC on Linux [13] and Compound TCP 
on Windows Vista [17]). Furthermore, because new TCP algorithms have to be 
compatible with the TCP standard, improvements to TCP are limited. 

New transport protocols, DCCP [12] and SCTP [16], have also been proposed. 
However, it may take years for these new protocols to be widely deployed and used 
by applications (considering the example of IPv6). Moreover, both DCCP and SCTP 
are designed for specific groups of applications. New applications and requirements 
will continue to emerge and it is not a scalable solution to design a new transport 
layer protocol every few years. It is necessary to have a flexible protocol that provides 
basic functions and allows applications to define their own data processing. This is 
what UDP was designed for. 
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In fact, UDP has been used in many applications (e.g., Skype) but it is usually 
customized independently for each application. RTP [15] is a good example and it is a 
great success in supporting multimedia applications. However, there are few general-
purpose UDP-based protocols that application developers can use directly or 
customize easily. 

UDT, or UDP-based data transfer protocol, is an application level general-purpose 
transport protocol on top of UDP [8]. UDT address a large portion of the requirements 
from the new applications by seamlessly integrating many modern protocol design 
and implementation techniques at the application level. 

The protocol was originally designed for transferring large scientific data over 
high-speed wide area networks and it has been successful in many research projects. 
For example, UDT has been used to distribute the 13TB SDSS astronomy data release 
to global astronomers [9]. 

UDT has been an open source project since 2001 and the first production release 
was made in 2004. While it was originally designed for big scientific data sets, the 
UDT library has been used in many other situations, either with its stock form or in a 
modified form. A great deal of user feedback has been received. The new version 
(UDTv4) released in 2007 introduces significant changes and supports better 
performance and usability. 

• UDTv4 uses a three-layer architecture to enhance congestion control and reduce 
connection setup time by sharing control parameters among parallel connections 
and by using historical data. 

• UDTv4 introduces new techniques in both protocol design and implementation 
to support better scalability, hence it can be used in a larger variety of use 
scenarios. 

This paper describes these new features of UDTv4. Section 2 explains the protocol 
design. Section 3 describes several key implementation techniques. Section 5 presents 
the evaluation. Section 6 discusses the related work. Section 7 concludes the paper. 
Throughout the rest of the paper, we use UDT to refer the most recent version, 
UDTv4, unless otherwise explicitly stated. 

2   Protocol Design 

2.1   Protocol Overview 

UDT is a connection-oriented, duplex, and unicast protocol. There are 3 logical layers 
in design: UDT connection, UDT flow, and UDP multiplexer (Figure 1). 

A UDT connection is set up between a pair of UDT sockets as a distinct data 
transfer entity to applications. It can provide either reliable data streaming services or 
partial reliable messaging services, but not both for the same socket. 

A UDT flow is a logical data transfer channel between two UDP addresses (IP and 
port) with a unique congestion control algorithm. That is, a UDT flow is composed of 
five elements (source IP, source UDP port, destination IP, destination UDP port, and 
congestion control algorithm). The UDT flow is transparent to applications. 
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Fig. 1. UDT Connection, Flow, and UDP Multiplexer 

One or more UDT connections are associated with one UDT flow, if the UDT 
connections share the same five elements described above. Every connection must be 
associated with one and only one flow. In other words, UDT connections sharing the 
same five elements are multiplexed over a single UDT flow. 

A UDT flow provides reliability control as it multiplexes individual packets from 
UDT connections, while UDT connections provide data semantics (streaming or 
messaging) management. Different types of UDT connections (streaming or 
messaging) can be associated with the same UDT flow. 

Congestion control is also applied to the UDT flow, rather than the connections. 
Therefore, all connections in one flow share the same congestion control process. 
Flow control, however, is applied to each connection. 

Multiple UDT flows can share a single UDP socket/port and a UDP multiplexer is 
used to send and dispatch packets for different UDT flows. The UDP multiplexer is 
also transparent to applications. 

2.2   UDP Multiplexing 

Multiple UDT flows can bind to a single UDP port and each packet is differentiated 
by the destination (UDT) socket ID carried in the packet header. The UDP 
multiplexing method helps to traverse firewalls and alleviates the system limitation on 
the port number space. The number of TCP ports is limited to 65536. In contrast, 
UDT can support up to 232 connections at the same time. 

UDP multiplexing also helps firewall traversing. By opening one UDP port, a host 
can open virtually an unlimited number of UDT connections to the outside. 

2.3   Flow Management 

UDT multiplexes multiple connections into one single UDT flow, if the connections 
share the same attributes of source IP, source UDP port, destination IP, destination 
UDP port, and congestion control algorithm. 

This single flow for multiple connections helps to reduce control traffic, but more 
importantly, it uses a single congestion control for all connections sharing the same 
end points. This removes the unfairness by using parallel flows and in most situations  
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Fig. 2. UDT Flow and Connection 

it improves throughput because connections in a single flow coordinate with each 
other rather than compete with each other. 

As shown in Figure 2, the flow maintains all activities required for a regular data 
transfer connection, whereas the UDT connection is only responsible for the 
application interface (connection maintenance and data semantics). 

At the sender side, the UDT flow reads packets from each associated connection in a 
round robin manner, assigns each packet the flow sequence numbers and sends them out. 

2.4   Connection Record Index/Cache 

When a new connection is requested, UDT needs to look up whether there is already a 
flow existing between the same peers. A connection record index (Figure 3) is used 
for this purpose. 

The index is sorted by the peer IP addresses. Each entry records the information 
between the local host and the peer address, including but not limited to RTT, path 
MTU, and estimated bandwidth. Each entry may contain multiple sub-entries by 
different ports, followed by multiple flows differentiated by congestion control (CC). 

The connection record index caches the IP information (RTT, MTU, estimated 
bandwidth, etc.) even if the connection and flow is closed, in which case there is no 
port associated with the IP entry. This information can be used when a new 
connection is set up. Its RTT value can be initialized with a previously recorded 
value; otherwise it would take several ACKs to get an accurate value for the RTT. If  
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path MTU discovery is used, the MTU information can also be initialized with a 
historical value. 

The index entry without an active flow will be removed when the maximum length 
of the index has been reached, and the oldest entry will be removed first. 

Although the cache may be removed very quickly on a busy server (e.g., a web 
server), the client side may contain the same cache and pass the values to the server. 
For example, a client that frequently visits a web server may keep the link information 
between the client and the server, while the server may have already removed it. 

2.5   Garbage Collection 

When a UDT socket is closed (either by the application or because of a broken 
connection), it is not removed immediately. Instead, it is tagged as having closed 
status. A garbage collection thread will periodically scan the closed sockets and 
remove the sockets when no API is accessing the socket. 

Without garbage collection, UDT would have needed stronger synchronization 
protection on its APIs, which increases implementation complexity and adds some 
slight overhead for the additional synchronization mechanism. 

In addition, because of the delayed removal, a new socket can reuse a closed socket 
and the related UDP multiplexer when possible, thus it improves connection setup 
efficiency. 

Garbage collection also checks the buffer usage and decreases the size of the 
system allocated buffer if necessary. If during the last 60 seconds, less that 50% of the 
buffer is used, the buffer will be reduced to half (a minimum size limit, 32 packets, is 
used so that the buffer size will not be decreased to a meaningless 1-byte).  

3   Implementation 

UDT is implemented as an open source project and is available for download from 
SourceForge.net. The UDT library has been used in both research projects and 
commercial products. So far 18,000 copies have been downloaded, excluding direct 
checkout from the CVS and redistribution from other websites. 

The UDT implementation is available on both POSIX and Windows systems and it 
is thoroughly tested on Linux 2.4, 2.6, and Windows XP. The code is written in C++ 
with API wrappers for other languages available. 

The latest stable version of the UDT library (version 4.2) consists of approximately 
11,500 lines of C++ code, including about 4000 semicolons and about 20% of the 
code is comments. 

3.1   Software Architecture 

Figure 4 shows the software architecture of the UDT implementation. A global UDT 
API module dispatches requests from applications to a specific UDT socket. Data 
transfer for the UDT socket is managed by a UDT flow, while the UDT flow 
communicates via a UDP multiplexer. One UDP multiplexer can support multiple 
UDT flows, and one UDT flow can support multiple UDT sockets. Finally, both the  
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Fig. 4. UDT Software Architecture 
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Fig. 5. Data Flow over a Single UDT Connection 

buffer management module and the garbage collection module work at global space 
to support the resource management. 

Figure 5 shows the data flow in a single UDT connection. The UDT flow moves 
data packets from the socket buffer to its own sending buffer and sends the data out 
via the UDP multiplexer. The control information is exchanged on both directions of 
the data flow. At the sender side, the UDP multiplexer receives the control informa-
tion (ACK, NAK, etc.) from the receiver and dispatches the control information to the 
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corresponding UDT flow or connection. Lost lists are used at both sides to record the 
lost packets. Lost lists work at flow level and only record flow sequence numbers. 
Flow control is applied to a UDT socket, while congestion control and reliability 
control are applied to the UDT flow. 

3.2   UDP Multiplexer and Queue Management 

The UDP multiplexer maintains a sending queue and a receiving queue. The queue 
manages a set of UDT flows to send or receive packets via the associated UDP port. 

The sending queue contains a set of UDT flows that has data to send out. If rate 
based control is used, the flows are scheduled according to the next packet sending 
time; if pure window-based control is used, the flows are scheduled according to a 
round robin scheme. 

The sending queue checks the system time and when it is time to send out the first 
packet, it removes the first flow on the queue and sends out its packet. If there are 
more packets to be sent for the particular flow, the flow will be inserted into the queue 
again according to the next packet sending time by rate/congestion/flow control. 

The sending queue uses a heap structure to maintain the flows. With the heap 
structure, each send or insert action takes at most log2(n) steps, where n is the total 
number of flows in the queue. The heap structure guarantees that the sender can find 
the flow instance with the smallest next scheduled packet sending time; however, it is 
not necessary to have all the flows sorted by the next scheduled time. 

The job of the receiving queue is much simpler. It checks the timing events 
(retransmission timer, keep-alive, timer-based ACK, etc.) for each flow associated 
with the UDP multiplexer. Every fixed time interval (0.1 second), flows are checked 
in a round robin manner. However, if a packet arrived for a particular flow, the timers 
will be checked for the flow and the flow is moved to the end of the queue for the 
next round of check. 

The receiving queue uses a double linked list to store the flows and each operation 
takes O(1) time. 

The receiving side of the UDP multiplexer also maintains a hash table for the 
associated UDT connections, so that when a packet arrives, the multiplexer can 
quickly look up the corresponding connection to process the packet. Note that the 
flow processing handler can be looked up via the socket instance. 

3.3   Connection and Flow Management 

In the UDT implementation, a flow is a special connection that contains pointers to all 
connections within the same flow, including itself. 

The first connection of the flow is set up by the normal 3-way handshake process. 
More connections are set up by a simplified 2-way handshake as it joins an existing 
flow. The first connection automatically becomes the flow and manages all the 
connections. If the current "flow" connection is closed or leaves (because of IP 
address change), another connection will become the flow and related flow 
information will be moved to the new flow from the old one. 

The flow maintains a separate sending buffer in addition to the connections' 
sending buffers. In an ideal world, the flow should read packets from each connection 
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in a round robin fashion. However, in this way the flow would either need to keep 
track of the source of each packet or copy the packet into its own buffer, because each 
ACK or NAK processing needs to locate the original packet. 

In the current implementation, the socket sending buffer is organized as a link of 
multiple 32-packet blocks. The UDT flow reads one 32-packet block from each 
connection in round robin fashion, removes the block from the socket's sending 
buffer, and links the block to its own (flow) sending buffer. Note that there may be 
less than 32 packets in the block if there is not enough data to be sent for a particular 
connection. 

Flow control is enforced at the socket level. The UDT send call will be blocked if 
either the sender buffer limit or the receiver buffer limit is full. This guarantees that 
data in the flow sending buffer is not limited by flow control. 

By using this strategy, the flow simply applies ACKs and NAKs to its own buffer 
and avoids memory copies between flow and connections or a data structure to map 
flow sequence number to connection sequence number. In the latter case, UDT would 
also need to check every single packet being acknowledged, because they may belong 
to different connections and may not be continuous. 

At the receiver side, all connections have their own receiver buffer for application 
data reading. However, only the flow maintains a loss list to recover packet losses. 

Rendezvous connection setup. In addition to the regular client/server mode, UDT 
provides a method for rendezvous connection method. Both peers can connect to each 
other at (approximately) the same time, provided that they know the peer's address 
beforehand (e.g., via a 3rd known server). 

3.4   Performance Considerations 

Multi-core processing. The UDT implementation uses multiple threads to explore 
the multi-core ability of modern processors. Network bandwidth increases faster than 
CPU speed, and a single core of today's processors is barely enough to saturate 
10Gb/s. 

One single UDT connection can use 2 cores (sending and receiving) per data traffic 
direction on each side. Meanwhile, each UDP multiplexer has its own sending thread 
and receiving thread. Therefore, users can start more UDT threads by binding UDT 
sockets to different UDP ports, thus more UDP multiplexers will be started and each 
multiplexer will start their own packet processing threads. 

New select API. UDT provides a new version of the select API, in which the result 
socket descriptor set is an independent output, rather than overwriting the input 
directly. The BSD style select API is inefficient for large numbers of sockets, because 
the input is modified and applications have to reinitialize the input each time. In 
addition, UDT provides a way to iterate the result set; in contrast, for the BSD socket 
API, applications have to test each socket against the result set. 

New sendfile/recvfile API. UDT provides both sendfile and recvfile APIs to reduce 
one memory copy by exchanging data between the UDT buffer and application file 
directly. These two APIs also simplify application development in certain cases. 

It is important to mention that file transfer can operate under both streaming mode 
and messaging mode. However, messaging mode is more efficient in this case, 
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because recvfile does not require continuous data block receiving and therefore in 
messaging mode data blocks can be read into files out of order without the "head of 
line" blocking problem. This is especially useful when the packet loss rate is high. 

Buffer auto-sizing. All UDT connections/flows share the same buffer space, which 
increases when necessary. The UDT socket buffer size is only an upper limit and it 
does not allocate the buffer until it has to. 

UDT automatically increases the socket buffer size limit to 2*BDP, if the default 
or user-specified buffer size is less than this value. However, if the default or user-
specified value is greater than this value, UDT will not decrease the buffer size. The 
bandwidth value (B in BDP) is estimated by the maximum packet arriving rate at the 
receiver side. The garbage collection thread may decrease the system buffers when it 
detects that only less than half of the buffers are used. 

4   Evaluation 

This section evaluates UDT's scalability, performance, and usability. UDT provides 
superior usability over TCP and although it is at the application level, its 
implementation efficiency is comparable to the highly optimized Linux TCP 
implementation in kernel space. More importantly, UDT effectively addresses many 
application requirements and fills a blank left by transport layer protocols. 

4.1   Performance Characteristics 

This section summarizes the performance characteristics of UDT, in particular, its 
scalability. 

Packet header size. UDT consumes 24 bytes (16-byte UDT + 8-byte UDP) for data 
packet headers. In contrast, TCP uses a 20-byte packet header, SCTP uses a 28-byte 
packet header, and DCCP uses 12 bytes without reliability. 

Control traffic per flow. UDT sends one ACK per 0.01 second when there is data 
traffic. This can be overridden by a user-defined congestion control algorithm, if more 
ACKs are necessary. However, the user-defined ACKs will be lightweight ACKs and 
consumes less bandwidth and CPU [8]. ACK2 packet is generated occasionally, at a 
decreased frequency (up to 1 ACK2 per second). In contrast, TCP implementations 
usually send one ACK every one or two segments. 

In addition, UDT may also send NAKs, message drop request, or keep-alive 
packets when necessary, but these packets are much less frequent than ACK and 
ACK2.  

Limit on number of connections. The maximum number of flows and connections 
supported by UDT is virtually only limited by system resources (232). 

Multi-threading. UDT starts 2 threads per UDP port, in addition to the application 
thread. Users can control the number of data processing threads by using a different 
number of UDP ports. 

Summary of data structures. At the UDP multiplexer level, UDT maintains the 
sending queue and receiving queue. The sending queue costs O(log2n) time to insert 



18 Y. Gu and R. Grossman 

or remove a flow, where n is the total number of flows. The receiving queue checks 
timers of each UDT flow every 0.1 second, but it is self clocked by the arrival of 
packets. Each check costs O(1) time. Finally, the hash table used for the UDP 
multiplexer to locate a socket costs O(1) look up time. 

The UDT loss list is based on congestion events, and each scan time is proportional 
to the number of congestion events, rather than the number of lost packets [8]. 

4.2   Implementation Efficiency 

UDT's implementation performance has been extensively tuned. This sub-section lists 
the CPU usage for one or more data flows between two local directly connected 
identical Linux servers. The server runs Debian Linux (kernel 2.6.18) on dual AMD 
Opteron Dual Core 3.0GHz processors, 4 GB memory, and 10GE MyriNet NIC. All 
system parameters are left as default except that the MTU is set to 9000 bytes. No 
TCP or UDP offload is enabled. 

Figure 6 shows the CPU usage of a single TCP, UDP and UDT flow (with or 
without memory copy avoidance). The total CPU capacity is 400%, because there are 
4 cores. Because each flow has a different throughput (varies between 5.4Gb/s TCP 
and 7.5Gb/s UDT with memory copy avoidance), the values listed in Figure 6 are 
CPU usage per Gb/s throughput. 

According to Figure 6, UDT with memory copy avoidance costs similar CPU as 
UDP and less CPU time than TCP. UDT without memory copy avoidance costs 
approximately double CPU time of that in the other three situations. 

In the case of a single UDT flow without memory copy avoidance, at 7.4Gb/s, the 
CPU usage of the UDT thread and the application thread at the sender side cost 99% 
and 40%, respectively (per thread CPU time not shown in Figure 6); the UDT thread 
and the application thread at the receiver thread cost 90% and 36%, respectively.  
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Fig. 6. CPU Usage of Single Data Flow 
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Although memory copy avoidance happens in the application thread, when it is used, 
it also reduces CPU usage on both the UDT sending and receiving threads because 
more memory bandwidth is available for the UDT threads and cache hit ratio is also 
higher. 

Figure 7 shows the CPU usage (unit value is per Gb/s throughput, the same as in 
Figure 6) of multiple parallel connections of TCP and UDT. UDT memory copy 
avoidance is not enabled in these experiments because in the situation of multiple 
connections, the receiver side memory copy avoidance does not work well (see 
Section 3.6). The connection concurrency is 10, 100, and 500 respectively for each 
group (TCP, UDT with all connections sharing a single flow, and UDT with each 
connection having its own flow). 
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Fig. 7. CPU Usage of Concurrent Data Flows 

According to Figure 7, CPU usage of UDT increases slowly as the number of 
parallel connections increases. The design and implementation is scalable to connec-
tion concurrency, and it is comparable to the kernel space TCP implementation. 

Furthermore, the second group (all connections share one flow) costs slightly less 
CPU than the third group. In the case of multiple flows, the overhead of control 
packets for UDT increases proportionally to the number of flows, because each flow 
sends its own control packets. 

4.3   Usability 

UDT is designed to be a general purpose and versatile transport protocol. The stock 
form of UDT can be used in regular data transfer. Additionally, the messaging UDT 
socket can also be used in multimedia applications, RPC, file transfer, web services, 
etc. Currently UDT has been used in many real world applications, including data 
distribution and file transfer (especially scientific data), P2P applications (both data 
transfer and system messaging), remote visualization, and so on. 
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While TCP is mostly used for regular file and data transfer, UDT has the advantage 
of a richer set of data transfer semantics and congestion control algorithms. Proper 
congestion control algorithms can be used in special environments such as wireless 
networks. 

UDT does not increase Internet congestion by allowing users to easily modify the 
congestion control algorithm. It has always been trivial to obtain unfair bandwidth 
share by using parallel TCP or constant bit rate UDP. In fact, UDT's connection/flow 
design improves the Internet congestion control by removing the unfairness and 
traffic oscillation caused by applications that start parallel data connections between 
the same pair of hosts. 

The configurable congestion control feature of UDT can actually help network 
researchers to rapidly implement and experiment with control algorithms. To 
demonstrate this ability, six new TCP control algorithms (Scalable, HighSpeed, BiC, 
Westwood, Vegas, and FAST) are implemented in addition to the three predefined 
algorithms in the UDT release. Lines of code for the implementation of these control 
algorithms vary between 11 and 73 [8]. 

UDT can also be modified to implement other protocols at the application level. 
An example is to implement forward error correction (FEC) on UDT for low 
bandwidth high link error environments. 

While UDT is not a completely modularized framework like CTP [4] due to 
performance considerations, it still provides high configurability (congestion control, 
user defined packets, user controllable ACK intervals, etc.). 

It is also much easier to modify UDT than to modify a kernel space TCP 
implementation. Moreover, there are fewer limitations on deployment and protocol 
standardization. 

Finally, UDT is also more supportive for firewall traversing (e.g., NAT punching) 
with UDP multiplexing and rendezvous connection setup. 

5   Related Work 

While transport protocols have been an active research topic in computer networks for 
decades, there are actually few general purpose transport protocols running at the 
application level today. In this sense UDT fills a void left by the transport layer 
protocols where they cannot perfectly support all applications. 

However, without considering its application level advantage, UDT can be broadly 
compared to several other transport protocols. (In fact, the UDT protocol could 
actually be implemented on top of IP, but the application level implementation was 
one of the major objectives in developing this protocol.) 

UDT borrows the messaging and partial reliability semantics from SCTP. 
However, SCTP are specially designed for VoIP and telephony, but UDT targets 
general purpose data transfer. UDT unifies both messaging and streaming semantics 
in one protocol. 

UDT's connection/flow design can also be compared to the multi-streaming feature 
in SCTP. SCTP creates an association (analogous to UDT flow) between two 
addresses and multiple independent streams (analogous to UDT connection) can be 
set up over the association. However, in SCTP, applications need to explicitly create 
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the association and the number of streams is fixed at the beginning, while UDT 
implicitly joins the connections into the same UDT flow (applications only create 
independent connections). Furthermore, SCTP applies flow control at the association 
level. In contrast, UDT applies flow control at the connection level. 

This layered design (connection/flow in UDT and stream/association in SCTP) can 
also be found in Structured Stream Transport (SST) [7]. SST creates channels 
(analogous to UDT flow) between a pair of hosts while starting multiple lightweight 
streams (analogous to UDT connection) atop the same channels. However, the 
rationales behind SST and UDT are fundamentally different. 

In SST, the channel provides a secured (optional) virtual connection to support 
multiple independent application streams and to reduce stream setup time. This design 
particularly targets applications that require multiple data channels. In contrast, UDT 
flow automatically aggregates multiple independent connections to reduce control 
traffic and to provide better congestion control. Both protocols apply congestion 
control on the lower layer (channel and flow), but SST channel provides unreliable 
packet delivery only and the streams have to conduct reliability control independ-
ently. In contrast, UDT flow provides reliable packet delivery (unless a UDT connec-
tion requests a message drop). Beyond this 2-layer design, SST and UDT differ 
significantly on details of reliability control (ACK, etc.), congestion control, data 
transfer semantics, and API semantics. 

UDT enforces congestion control on the flow level, which carries traffic from 
multiple UDT connections. This leads to a similar objective as that of congestion 
manager (CM) [2, 3]. UDT's flow/connection design makes it a natural way to share 
congestion control among connections between the same address pairs. This design is 
transparent to existing congestion control algorithms, because any congestion control 
algorithm originally designed for a single connection can still work on the UDT flow 
without any modification. In contrast, CM introduces its own congestion control that 
is specially designed for a group of connections. Furthermore, CM enforces conges-
tion control at the system level and does not provide the flexibility for individual 
connections to have different control algorithms. 

UDT allows applications to choose a predefined congestion control algorithm for 
each connection. A similar approach is taken in DCCP. However, UDT goes further 
by allowing users to redefine the control event handlers and write their own 
congestion control algorithm. 

Some of the implementation techniques used in UDT are exchangeable with kernel 
space TCP implementations. Here are several examples. UDT's buffer management is 
similar to the Slab cache in Linux TCP [10]. UDT automatically changes socket 
buffer size to maximize throughput. Windows Vista provides socket buffer auto-
sizing, while SOBAS [5] provides application level TCP buffer auto-tuning. UDT 
uses a congestion event based loss list that significantly reduces the scan time on the 
packet loss list. This problem occurred in the Linux SACK implementation (when a 
SACK packet arrives, Linux used to scan the complete list of in-flight packets, which 
could be very large for high BDP links) and was fixed later. 

While there are so many similarities on the implementation issues, UDT's 
application level implementation is largely different from TCP's kernel space 
implementation. UDT cannot directly use kernel space thread, kernel timer, hardware 
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interrupt, processor binding, and so on. It is more challenging to realize a high 
performance implementation at the applications level. 

6   Conclusions 

This paper has described the design and implementation of Version 4 of the UDT 
protocol and demonstrated its scalability, performance, and usability in layered 
protocol design (UDP multiplexer, UDT flow, and UDT connection), data transfer 
semantics, configurability, and efficient application level implementation. 

As the end-to-end principle [14] indicates, the kernel space should provide the 
simplest possible protocol and the applications should handle application specific 
operations. From this point of view, the transport layer does provide UDP, while UDT 
can bridge the gap between transport layer and applications. This design rationale of 
UDT does not conflict with the existence of other transport layer protocols, as they 
provide direct support for large groups of applications with common requirements. 

The UDT software is currently in production quality. At the application level, it is 
much easier to deploy than new TCP variants or new kernel space protocols (e.g., 
XCP [11]). This also provides a platform for rapidly prototyping and evaluating new 
ideas in transport protocols. Some of the UDT approaches can be implemented in 
kernel space if they are proven to be effective in real world settings. Furthermore, 
many UDT modifications are expected to be application or domain specific, thus they 
do not need to be compatible with any existing protocols. 

Without the limitations of deployment and compatibility, even more innovative 
technologies on transport protocols will be encouraged and implemented than before, 
which is another ambitious objective of the UDT project. 
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