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Abstract. In this paper, we develop and evaluate a Localization Anomaly De-
tection (LAD) scheme for non-flat surfaces for wireless sensor networks. The 
beacon-less grid localization scheme proposed for non-flat terrains in [1] is used 
for localization and the localization anomaly detection uses observations of the 
sensor node at two different reception ranges. Moreover, a new Signal Strength 
(SS) Metric is proposed and evaluated for LAD. Simulations show that the bea-
con-less localization method when combined with the LAD scheme gives good 
detection rates with low false positive rates for the proposed Signal Strength 
Metric and the Difference Metric. The results show that Signal Strength Metric 
is comparable to existing metrics while being more difficult to attack. 
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1   Introduction 

Many Wireless Sensor Networks (WSNs) are deployed in unattended and often hos-
tile environments such as those in military and homeland security operations. There-
fore, security mechanisms providing confidentiality, authentication, data integrity, 
and non-repudiation, among other security objectives, are vital to ensure proper net-
work operations. A future WSN is expected to consist of hundreds or even thousands 
of sensor nodes. This renders it impractical to monitor and protect each individual 
node from either physical or logical attack. 

Location Anomaly Detection (LAD) is the ability of the sensor network to detect 
anomalies in the reported locations of the sensors. The anomalies may be caused by 
malicious attacks against the localization scheme to corrupt the sensor locations and 
thereby render the network measurements worthless. Most of the proposed techniques 
for location anomaly detection described in the literature cannot be applied to wireless 
sensor networks as they are computationally intensive. Furthermore, almost all of 
these are applicable to sensor networks with beacon nodes. 

Lazos and Poovendran proposed a Secure Range-independent Localization (SeR-
Loc) [4] scheme that assumes that the network is comprised of sensor nodes and an-
chors/locators. In [5], Tang et al. presented a RSSI based cooperative anomaly 
detection scheme to detect physical displacement attack in Wireless Sensor Networks.  
However there is not much work done in the area of location anomaly detection using 
beacon-less localization schemes. The authors Du, Fang and Ning in [2] proposed a 
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general scheme to detect localization anomalies that are caused by adversaries. Their 
method uses the deployment knowledge and actual observations of the nodes to detect 
localization anomalies in beacon-less sensor networks. Their scheme has been used as 
the basis for the proposed grid based location anomaly detection method.  

In this research, we propose a LAD method applicable to non-flat terrains based on 
the Beacon-less grid localization [1]. We discuss various attacks on localization and 
evaluate the impact of the attacks on the performance of our proposed scheme in 
terms of ROC curves for different metrics, degrees of damage, percentages of com-
promised nodes, node density, and different attacks.  

Moreover, a new Signal Strength Metric to detect anomalies in the localization is 
proposed and evaluated. The Difference metric, Add-all metric, Probability metric 
proposed by Du et al. [2] are modified and evaluated for the various cases. Our simu-
lation results show that the proposed location anomaly detection method gives good 
results for the sensor networks deployed over non-flat terrains. The results show good 
detection rates and low false positive rates.  

The organization of the paper is as follows: section II describes the proposed Bea-
con-less Grid Localization method, section III describes the proposed Location 
Anomaly Detection, section IV, introduces the new Signal Strength metric, section V 
presents simulation results of the proposed LAD method, and section VI presents the 
simulation results for the Signal Strength Metric. Section VII compares the localiza-
tion results and section VII provides a summary and proposed future work. 

2   Beacon-Less Grid Localization for Non-flat Terrains 

For beacon-less grid localization, two different deployment models are studied for 
non-flat terrains. The terrain used is shown in Figure 1, which is the terrain for Sea-
cliff [3]. In the Static deployment case, it is assumed that the sensor nodes fall around 
the deployment point in a Gaussian distribution and stay at their drop point on the 
non-flat terrain. In the Dynamic deployment case, the sensor nodes slide to their final 
locations based on the surface characteristics. The results presented in this paper are 
mainly for the more challenging dynamic deployment. 

 

Fig. 1. Sea-cliff Terrain 
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2.1   Static Node Deployment 

For a deployment over a 1000mx1000m area divided into a 10x10 grid of 
100mx100m each. The deployment points would be the centroids of each grid section.  

2.2   Dynamic Node Deployment 

In this case, the initial distributions of the nodes follow the Gaussian distribution as in 
the case of Static Node Deployment. However, due to the surface characteristics of 
the terrain, the nodes will not remain at the same location after the deployment. The 
nodes slide/roll to their final locations. This is modeled using the information about 
the terrain and the characteristics of the nodes and is described in [1]. 

2.3   Sensor Node Localization  

After sensors are deployed, each sensor broadcasts its group id to its neighbors, and 

each sensor can count the number of neighbors from group iG , for i = 1,….n, within 

a radius of the transmission range R. Assume that a sensor finds out that it has 

noo ,...,1  neighbors from group iGG ,...,1  , respectively. The actual observation of 

the sensor is ),...,( 1 nooo = , where n is the number of deployment points. Based on 

the actual observation of the sensor, and using the deployment knowledge, it finds the 

nearest location where the expected observation ),...,1( nμμμ = is closest to o. This 

location is the localization. The difference between the actual and the localization is 
the localization error. 

In our localization method, the deployment area is divided into a grid of suffi-
ciently high resolution. The resolution is chosen such that the constraints on sensor 
node memory are satisfied. Each sensor is equipped with the expected observations 

only for the localization grid points. The expected observation of each grid point ip , 

for i=1… l, where l is the number of grid points, is defined as ),..,1( nξξξ =  where 

ξi = {μ | location = pi}. The sensor finds the grid point whose expected observation ξ 
is closest to its actual observation o. This grid point location p is taken as the localized 
position of the sensor node. 

3   Localization Anomaly Detection for Non-flat Terrains 

The Localization Anomaly Detection (LAD) proposed here uses deployment knowl-
edge to find anomalies in the localization information of the nodes. The observations 
of sensor nodes within a certain radius are used for Localization. For the detection of 
location anomalies a different range, called the LAD Range is used for observations. 
Based on the deployment knowledge and its localization the sensor calculates the 
number of nodes from each group that should be observed within the LAD range. The  
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difference between this expected observation for the LAD range and the actual  
observation provides a measure of the location anomaly. Metrics to quantify the loca-
tion anomaly are then calculated using this error. The metrics are compared against 
preset thresholds to determine if there is an anomaly. 

After sensors are deployed, each sensor broadcasts its group id to its neighbors, and 

each sensor can count the number of neighbors from group iG , for i = 1,….m. As-

sume that a sensor finds out that it has noo ,...,1  neighbors from group iGG ,...,1 , 

respectively within its LAD range. ),...,( 1 nooo =  is the actual observation of the 

sensor. Based on the localization of the sensor, and using on-board deployment 

knowledge, it finds the expected observation within the LAD range ),...,1( nμμμ = .  

3.1   Attacks on Localization 

For localization anomaly detection, we first attack the sensor network by compromis-
ing N sensor nodes by dec-bounded and dec-only attacks [2]. To simulate the attacks 
with the degree of damage D, we use the following procedure. 

1. A node v at the location aL is randomly picked, and the actual observation, a  

obtained.  
2. To stimulate the attack against the localization, we add nodes to the neighborhood 

of aL such that the localization observation ip  equals the localization observa-

tion ig at a grid point a distance D away. A tolerance of gd2  is used to get grid 

points in all directions around the attacked node at a distance D where gd is the 

grid size. This is done as the node is not exactly at a grid point and so we need to 
get a list of nodes in a circular annulus close to the intended degree of damage D. 
From this list of nodes that are compromised a random attack location is chosen. 
Boundary nodes are not considered in this case.  

3. For the Dec-bounded attack, based on the above, the observation of the node o is 
obtained from its actual observation a by compromising nodes and using multi-
impersonating nodes. The nodes which are compromised are not considered for 
the localization and are dropped. 

4. For the Dec-only attack, the observation of the node o is obtained from its actual 
observation a by decreasing the nodes used to cause the localization error (g - p) 
in only a decreasing manner. 

5. For the locations attacked the expected observations within 100m radius, μ, are 
used for LAD metrics. 

3.2   LAD Scheme 

For the LAD scheme the deployment of nodes on the surface is simulated a priori for 
m nodes at each deployment point on the surface. The number of sensors from 
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different groups observed at each grid point is calculated and stored as the expected 
observation at the grid point. 

For the node to determine its location, the sensor finds the actual observation of the 
node using the neighbor information within the Localization Range, and determines 
its location as the grid point with the closest expected observation. Using this local-
ization, the sensor finds the expected observation within the LAD range using the a 
priori simulation data.  

Now the sensor compares the actual LAD observation within the expected LAD 
observation and detects anomalies using the metrics by specifying a threshold. For 
example, if the sensor node at location A observes the same set of neighbors as the 
sensor node at location B within the transmission range of 60m,  it is not possible for 
the LAD scheme [2] to detect the accurate location of the sensor node. However, in 
the proposed LAD method, it is possible to detect the location quite accurately as this 
method is using different transmission ranges for the Localization and for the LAD. 
Thus, if we look at the broader range, i.e. 100m, the observations are different and 
hence it is possible to detect the anomaly. 

3.3   Metrics 

In this research, we extend and implement the Difference, Add-all, and Probability 
metrics [2]. A new metric called Signal Strength Metric (SSM) is proposed and the 
results of the simulations are described in the following sections. 

3.3.1   Difference Metric 
The difference metric, DM, uses the sum of the differences in the nodes observed 
from each group for the expected and actual observations. 

∑
=

−=
n

i
iioDM

1
μ  

3.3.2   Add-All Metric 
The Add-all metric, AM, takes the union of the expected and actual observations and 
obtains the maximum value of the nodes observed for each group. These larger obser-
vations for each node group are summed to arrive at the final metric. The metric 
shows an increase with increasing localization error. 
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3.3.3   Probability Metric 
The Probability metric, PM, computes the probability that the localization of a node 

sees exactly io  neighbors from Group iG . We approximate the probability for nodes 

from each Group iG as iμ /m. Thus, if the localization is eL and iX  represents the 

number of neighbors that come from the Group iG , the probability metric is calcu-

lated as  
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In [8], iPM  is used as the probability metric and any abnormal drop is used to 

trigger the anomaly alarm. With our approximation of the probability density func-
tions for each node group, probabilities for some node groups are very low both in the 
case of regular nodes localized to a nearby grid point or attacked nodes incorrectly 
localized. However the probabilities are very easy to calculate. Hence we modify the 

probability metric as the sum ∑= iPMPM for our simulations. 

4   Signal Strength Metric 

We propose a new metric, the Signal Strength Metric, described by Figure 2, to utilize 
the information from the strength of the signal received by the sensor node. The 
strength of signals received from each node can be computed. Using this signal 
strength, an estimated distance can be obtained for each node within the transmission 
range. The difference between the expected and observed distribution of nodes is then 
used as the metric. In the Location Anomaly Detection method, the LAD range obser-
vations could themselves be attacked. However, using the distribution of all the nodes 
against distance ensures that any attack that adds or removes nodes from a particular 
distance is easily identified by a comparison of the expected and actual distributions. 
The signal strength metric performs such a comparison. 

The distances of all observed nodes from the center to the edge of the transmission 
range, for a group i, are obtained as { }

ik
od . Similarly, the expected nodes from 

group i are obtained as { }
ik

d μ . The metric in outward direction is computed as 

{ }( ) { }( )( )∫ <−<=
R
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0
μ  

However, this term is biased towards nodes which are close to the node being con-
sidered. In order to eliminate this bias, we integrate the cumulative error in observed 
and expected number of nodes for each group from the edge of the transmission range 
inwards towards the center. The metric for this calculation is 
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The signal strength metric for each observed group is thus computed by adding the 
center to edge and, edge to center metrics as shown in Figure 2. The values for each 
node group are then added together to obtain the final metric. 
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As described earlier, the advantage of the signal strength metric over the previous 
metrics is that it is able to detect changes in the distribution of the nodes even though 
the overall number of nodes from each node group is the same. Increasing differences 
between the observed and expected distribution of distances of the nodes would lead 
to larger values for the metric. 

Expected
Nodes

Cumulative Sum of Difference - Node to Edge of Range

Distance from Node

Range

Actual
Nodes

0

0

Cumulative Sum of Difference - Node to Edge of Range

1

- 1

0

1

- 1

Expected
Nodes

Cumulative Sum of Difference - Node to Edge of Range

Distance from Node

Range

Actual
Nodes

0

0

Cumulative Sum of Difference - Node to Edge of Range

1

- 1

0

1

- 1

 

Fig. 2. Signal Strength Metric 

The Signal Strength Metric outperforms the difference metric for short transmis-
sion ranges as the difference metric only considers the total number of observed nodes 
from each group without regard to their spatial distribution. With increasing transmis-
sion range and node density, more information about the distribution is available 

through }{ io  thereby reducing the advantage of the signal strength metric. 

5   Simulation Results 

The simulations of the location anomaly detection on the Sea-cliff terrain are de-
scribed in this section. 

5.1   Attacks on Localization 

A total of 1000 randomly selected nodes are simulated for values of Degree of Dam-
age, D of 80m, 120m and 160m respectively.  The nodes are attacked by dec-bounded 
and dec-only attacks. Several experiments by varying certain parameters such as  
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network density (m), Degree of Damage (D), percentage of compromised nodes (x) 
are carried out and ROC curves are plotted for different cases. 

5.2   ROC Curves for Different Metrics 

Figure 3 shows ROC curve for three metrics for dynamic deployment of nodes on a 
non-flat terrain. These ROC curves are for different detection metrics and different 
degrees of damage. The percentage of compromised nodes is set to 10% and the num-
ber of nodes deployed at each deployment point is set to 300.  

The results show that the LAD method gives better results for attacks with high de-
gree of damage. The Difference metric shows good anomaly detection rates for low 
false positive rates. Even though, the experiment was carried out on a non-flat terrain, 
the results are comparable to the results of static deployment on a flat terrain. As the 

degree of damage increases, the detection rate increases. 

 

Fig. 3. False Positive Rate vs. Detection Rate for Dynamic Deployment of Nodes on the Non-
flat Terrain 

5.3   ROC Curves for Different Attacks 

Figure 4 shows the ROC curves for the Diff metric for dec-bounded and dec-only 
attacks for the dynamic deployment. The results shown are for degree of damages D = 
40m and 80m. 

5.4   Detection Rate vs. Node Compromise Ratio 

In this experiment, the ROC curves are plotted for detection rare versus node com-
promise ratio. Figure 5 shows the ROC curve for dynamic deployment of nodes on 
the non-flat terrain. 
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As expected, the detection rate decreases as the percentage of compromised nodes 
increases. When the number of compromised nodes increases, the localization error 
increases which results in the anomalies. The detection rates are lower for the dy-
namic deployment when compared to static deployments as a result of the depletion 
of nodes from the slopes of the terrain. 

 

Fig. 4. False Positive Rate vs. Detection Rate for Different Attacks for Dynamic Deployment of 
Nodes 

 

Fig. 5. Detection Rate vs. Node Compromise Ratio (Degree of Damage = 80m, 120m, 160m) 
for Static Deployment of Nodes 

5.5   Detection Rate vs. Network Density 

The localization becomes more accurate when the number of nodes deployed at each 
deployment point in the sensor network increases. In order to demonstrate this, the 
false positive rate is set to 0.1, and the results show the detection rate for Diff metric 
when the attack is Dec-bounded. 
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Fig. 6. Detection Rate vs. Network Density (Percentage of Compromised Nodes = 10%, 20%, 
30%) for Dynamic Deployment 

As the Degree of Damage and the number of nodes deployed at each deployment 
point increases, the detection rate increases. Figure 6 shows good detection rates 
when the nodes are deployed dynamically which causes larger localization errors. The 
false positive rate is set to 0.1 in this case. In all these cases, the trend of the detection 
rate is observed and it increases as the network density increases. 

6   Simulation Results of Signal Strength Metric 

This section describes the simulation results of the signal strength metric. Here we 
compare the results of the signal strength metric with the results of the difference met-
ric. The simulation results, when 30% of the nodes are compromised are compared for 
the two metrics. 

6.1   ROC Curves for Different Metrics 

Figure 7 shows the ROC curve for detection rate vs. false positive rate. When com-
pared to the difference metric, the Signal Strength metric shows good detection rates 
for smaller transmission ranges while being close in performance overall. 

The main advantage of the signal strength metric is that it is not susceptible to an 
attack on the observations in the LAD range. That is, if both the Localization and 
LAD ranges are attacked the Diff metric would not be able to detect the attack. The 
entire distribution of nodes against distance needs to be exactly replicated in order to 
defeat the signal strength metric.  

6.2   Detection Rate vs. Degree of Damage 

Figure 8 shows the results of detection rate vs. degree of damage. In both the cases, 
the results of the Signal Strength metric are comparable to the results of the Differ-
ence metric. Signal Strength metric performs better for smaller ranges. 
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Fig. 7. Detection Rate vs. False Positive Rate for Diff Metric and Signal Strength Metric for 
Dynamic Deployment of Nodes 

 

Fig. 8. Detection Rate vs. Degree of Damage for Diff Metric and Signal Strength Metric for 
Dynamic Deployment of Nodes 

7   Conclusion and Future Work 

In this research, a LAD method for non-flat terrains is proposed and evaluated. The 
beacon-less localization scheme proposed for non-flat terrains in Krupadanam and Fu 
[1], is used to find the location of the sensor nodes for the LAD algorithm. A new 
metric based on signal strength is proposed for LAD. This metric achieves better de-
tection rates with low false positives for smaller signal ranges while being less sus-
ceptible to attack.  

Moreover, the LAD method developed in this research demonstrates significant ro-
bustness with a sparse localization grid. In future work, the impact of errors in the 
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deployment information on the performance of the LAD method needs to be quanti-
fied and analyzed. Other characteristics of the deployment such as wind effects and, 
non-uniform deployment grids need to be modeled. 
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