
P. Primet et al. (Eds.): GridNets 2008, LNICST 2, pp. 130 – 137, 2009.
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

A Video Broadcast Architecture with Server Placement
Programming

Lei He1, Xiangjie Ma2, Weili Zhang1, Yunfei Guo2, and Wenbo Liu2

China National Digital Switching System Engineering and Technology Research Center
(NDSC), P.O. 1001, 450002 Zhengzhou, China
{hl.helei,clairezwl}@gmail.com,
{mxj,gyf,lwb}@mail.ndsc.com.cn

Abstract. We propose a hybrid architecture MTreeTV to support fast channel
switching. MTreeTV combines the use of P2P networks with dedicated stream-
ing servers, and was proposed to build on the advantages of both P2P and CDN
paradigms. We study the placement of the servers with constraints on the client
to server paths and evaluate the effect of the server parameters. Through analy-
sis and simulation, we show that MTreeTV supports fast channel switching
(<4s).∗

Keywords: Internet video broadcast; mesh; fast channel switching; locality;
pastry.

1 Introduction

With the widespread penetration of broadband accesses, multimedia services are get-
ting increasingly popular among users and have contributed to a significant amount of
today’s Internet traffic. The sparse deployment of IP Multicast [1] have limited broad-
cast to only a subset of Internet content publishers. Both CDN-based and P2P based
architectures have their advantages and disadvantages, and each architecture alone
does not provide a cost-effective and scalable solution to streaming media distribution.

There has been considerable work in the area of peer-to-peer live-video streaming
[3]-[11]. There are two key drivers making the approach attractive. First, such technol-
ogy does not require support from Internet routers and network infrastructure, and
consequently is extremely cost-effective and easy to deploy. Second, in such a tech-
nology, a participant that tunes into a broadcast is not only downloading a video
stream, but also uploading it to other participants watching the program. Consequently,
such an approach has the potential to scale with group size. However, the P2P architec-
ture has the performance problem and suffers from long setup and source to end delay.
e.g., CoolStreaming [7] is one of the first data-driven systems, and its setup delay is
longer than 60 seconds. PPLive [8], a popular commercial peer-to-peer streaming sys-
tem, its source to end delay is between 20 and 60 seconds.

∗ This work is partially supported by National Basic Research Program of China (973 Program)

with No.2007CB307102.

 A Video Broadcast Architecture with Server Placement Programming 131

To reduce the delay, we propose a novel hybrid architecture MTreeTV that com-
bines the use of P2P networks with dedicated streaming servers, and was proposed to
build on the advantages of both paradigms. We emphasize on the effect of placing
servers in overlay networks. Through analysis and simulation, we show that MTreeTV
supports fast channel switching (<4s), it can provide high playback continuity (>98%)
with little control overload (<2%).

The remainder of this article is organized as follows. In Section 2, we present the
overview of hybrid architecture MTreeTV. We solve the server placement problem in
Section 3. In Section 4, we evaluate the performance of MTreeTV. Finally, Section 5
concludes the paper and offers potential future research directions.

2 Hybrid Architectures

We consider a live video streaming system using overlay multicast. The video stream,
originated from the source to multiple tree roots and then the other nodes, is divided
into equal-length segments. The clients that are interested in the video form an overlay
mesh by joining multiple trees simultaneously, and each overlay node, except for the
source, acts both as a receiver and, if needed, an application-layer relay that forwards
data segments. In addition, these nodes can join and leave the overlay at will, or crash
without notification.

Our hybrid video broadcast architecture MTreeTV is shown in Fig.1. The details of
MTreeTV overlay construction and scheduling algorithm is described in ref. [12]. In
this architecture, the two streaming technologies complement each other: The video
stream will be first pushed to streaming servers; then clients that are interested in the
video form a P2P overlay and pull the streaming data from the near peers.

Fig. 1. The hybrid video broadcast architecture MTreeTV. Dotted lines show the directions of
stream data transmission.

132 L. He et al.

The main entities of MTreeTV are:

• Control Server. The role of the Control server is to maintain client/channel in-
formation. When a client starts, it first registers to the control server, then it re-
trieves the information of channel/streaming-server from the control server;
finally, it joins the overlay and gets the video playing.

• Streaming Server. It holds a copy of all channels and is responsible for stream-
ing. It is also responsible for processing the data requests of direct connected
clients. We assume a zero downtime for the servers.

• Client. The set of user machines participating in the streaming system. It essen-
tially constructs a mesh out of the overlay nodes, with each node having a small
set of neighbors to exchange data.

We compared the performance of MTreeTV with CoolStreaming and the Tree.
Tree was a single tree of MTreeTV. We used several metrics to evaluate the perform-
ance. Setup delay is the time from the user first receives a segment to the video is
visible. Source to end delay is the delay between the content originator and the re-
ceiver, also known as playback delay. Playback continuity is the percentage of re-
ceived data packets before the deadline. Control overhead is Control message
volume/Video traffic volume at each node. Failure percent is the ratio of the failure
node number to all node number in an time interval T.

3 The Server Placement Problem

In this section, we study the placement of the streaming servers with constraints on
the client to server paths, reflecting the quality of service within the regional access
networks. We envision that this imposition of service quality constraints on server to
client paths is essential for the newer network services to achieve better service qual-
ity in order to attract and retain customers.

Given the network and their estimated service parameters, how many servers are
needed and where should an overlay service provider locate them to ensure a desired
service quality to all its clients? To answer the above question, we transform the
placement problem to the set cover problem and solve it using 0-1 programming, linear
programming (LP) relaxation and greedy heuristics.

3.1 Formal Definitions

The server placement maps to the set cover problem as follows: an element corre-
sponds to the network location of an client; the base element set contains all clients; a
set represents a potential server placement at one of the router locations, each set
includes all the network locations that are within the service range from the server
location represented by the same set. Given a base set of elements and a family of sets
that are subsets of this base set, find the minimum number of sets such that their union
includes all elements in the base set [10]. In Fig.2, the points are denoted by numbers
and the sets of points are denoted by names. The goal is to "cover" all the points by
choosing the minimum number of sets, e.g. we can choose S1, S3 and S4.

 A Video Broadcast Architecture with Server Placement Programming 133

Fig. 2. A set covering instance

Given a set of networks and their interconnections, as well as a specific routing pol-
icy, we can compute an end-to-end path for every pair of nodes in the networks. For
each node ni, we compute a set Si which includes all the nodes reachable from ni within
the server service range C. Let S1, S2,…, Sm be all the sets computed. The LP formula-
tion of the set cover problem is:

Objective:
1

min
j m

j
j

x
=

=
∑ (1)

Subject to:
1

1,
j m

ij j
j

a x
=

=

≥∑ for i=1 … n (2)

{0,1}jx ∈

where xj is the selection variable of Sj , aij is 1 if i jn S∈ and 0 otherwise. A variation

of the problem is to allow one primary and one backup server to cover each node. A
backup server can cover twice the distance of the primary server. Let T1, T2, … , Tm

be all the backup sets, and bij = 1 if i jn T∈ and 0 otherwise. The objective here is still

to minimize the number of selected sets but with the additional constraints of:

1

2,
j m

ij j
j

b x
=

=

≥∑ for i=1 … n (3)

Since all nodes in the primary set are also in the backup set centered at the same
server, bij = 1 if aij = 1; but we can not have a primary server also service the same
node as the backup server — the constraint in (3) ensures the selection of a different
server as the backup.

3.2 LP Based Algorithms

The above formulation can be solved by the 0-1 programming (also call binary integer
programming). 0-1 programming is a special type of integer programming, and xj is 0
or 1. An efficient method to solve Integer programming is the branch-and-bound

134 L. He et al.

method. Matlab provides functions to solve the 0-1 integer programming problem and
the linear programming problem.

The solution for the 0-1 programming naturally provides a lower bound =
*
jj

x∑ for the set cover problem, since it is an optimal solution and the 0-1 program-

ming is a super set of the set cover problem. We will use this lower bound to evaluate
the quality of the solutions produced by other algorithms.

The above formulation can also be approximated by first solving the LP relaxation
of the problem optimally and then rounding the fractional values to integers. The LP
relaxation of the problem is to allow the selection variables xj to take fractional values
between [0, 1]. The LP relaxation can be solved in polynomial time and the rounding
can be done in O(n). Reference [13] introduced a rounding algorithm which is a p-

approximation algorithm, where max { }i ijj
p a= ∑ is the maximum number of sets

covering an element. We refer to the rounding algorithm in [14] as the fixed-rounding
(FR) algorithm:

1. Solve the LP relaxation of the problem and let *{ }jx be the optimal solution;

2. Output
1

{ | }jsets j x
p

= > .

It is easy to see that the FR algorithms can still have redundant sets in the final solu-
tion. To prune these unnecessary extra sets, we use a simple pruning algorithm as the
final step to complete the set selection:

1. Sort all selected sets in increasing order of set size;
2. Starting from the smallest set, check if it can be removed without leaving any of

its nodes uncovered.
3. Repeat Step 2 until all sets are checked.

3.3 Greedy Heuristics

The basic greedy attribute of the algorithm is to select a set at every step that contains
the maximum number of uncovered elements. For the backup problem variant, we
extend the algorithm by treating any node that has not satisfied the constraints of (2)
and (3) as equally uncovered. At each step, we select a set that has the largest number
of remaining uncovered nodes and repeat till there are no more uncovered nodes. The
greedy heuristic is:

1. Sort all unselected sets in decreasing order of uncovered node number;
2. Picking up the largest set, and changing the elements’ state of the set to covered;
3. Repeat Step 1 and 2 until all nodes are covered.

Using simulation, we show that this rounding technique and the greedy heuristic
approach the lower bound very closely; in fact, it reaches the lower bound for many
configurations. Meanwhile, the greedy heuristic also provides good performance in all
instances with significantly less computation complexity.

 A Video Broadcast Architecture with Server Placement Programming 135

4 Simulation Results

We have performed a series of experiments on our segment-level, event-driven simulator.
Our simulation topologies has 100 routers and 1000 hosts, it is generated by the GT-ITM
topology generator using the transit-stub model. Message delays are determined using the
resulting distance metric. 1000 end nodes that were randomly assigned to routers in the
core of each topology with uniform probability. Each end system was directly attached by
a LAN link to its assigned router. The delay of each LAN link was 1ms and the average
delay of core links (computed by GT-ITM) was approximately 216ms.

200 400 600 800 1000 1200
0

20

40

60

80

100

Service range (ms)

N
um

be
r

of
 s

er
ve

rs

0-1 programming

0-1 programming+pruning

Greedy
Greedy+pruning

FR

FR+pruning

200 400 600

0

10

20

30

40

50

60

70

k=1 k=2 k=1, Backup server

N
um

be
r

of
 s

er
ve

rs

0-1 programming

Greedy
FR

Fig. 3. Performance comparison of the FR,
Greedy and 0-1 programming algorithms with
variation on server service range.

Fig. 4. Variation on the placement strategy
(service range =500ms)

200 400 600 800 1000
0

10

20

30

40

50

60

Bitrate of stream (Kbps)

Se
tu

p
de

la
y

(s
)

MTreeTV
Tree
CoolStreaming

2 4 6 8 10
0

2

4

6

8

10

Server bandwidth• Mbps•Mbps•

S
ou

rc
e

to
 e

nd
 d

el
ay

 (
s) C=200ms

C=500ms
C=*

Fig. 5. Setup delay as a function of the bitrate
of stream.

Fig. 6. Souce to end delay as a function of the
time of server bandwidth and service range.

We compare the greedy algorithm with the fixed rounding (FR) algorithm. The
results are further compared with the lower bound obtained as the optimal solution
from the 0-1 programming method. The programming and greedy algorithm solver
we used, is called Matlab7.0.1 which is an advanced computation and simulation
package. The simulations reveal the impact of different server and client parameters
(service range, server bandwidth, client buffer time) on the system performance. All
the nodes join the overlay initially, and the tree roots begin streaming from the time

136 L. He et al.

zero. We used different random join sequence for each run. All results are the aver-
age values of 10 times run.

In this section, we compare the fixed rounding (FR) algorithm and the greedy algo-
rithm with the 0-1 programming method. Given the network, we also use the previous
metrics to evaluate the effect of the server parameters (e.g., service range, bandwidth).
With this routing policy, we can compute a routing table for each node ni and the cost
of each routing path c(ni, nj), which is the sum of the hop distances along the path. For
each router ri, we compute a set Si which includes all the nodes reachable from ri
within the routing cost of C, C is the service range of this server. This is to say that if a
server is placed at the location of router ri, then all the nodes within this service range
can be serviced by this server.

Fig.3 shows the number of required servers when varying service range. In general,
both the FR (with pruning) and the greedy algorithm perform closely with the lower
bound. With increasing service range, the number of servers needed drops signifi-
cantly. Fig.4 shows the performance against the different server placement strategies.
We perform simulations on the following three scenarios: (a) k = 1, with only one
primary server required to cover each node; (b) k = 2, with two primary server required
to cover each node; (c) k = 1 and requiring one backup server. The backup server range
is twice that of the primary server for both networks. Fig.4 shows that two primary
servers will significantly increase the number of servers. And the addition of the
backup servers only increases the number of total servers slightly.

MTreeTV has the shortest source to end delay (From Fig. 5~6). Fig. 5 shows that
the high bitrate of stream will increase the setup Delay. When the number of nodes is
200, B=10Mbps, buffertime=16s, C=200ms, the SETUP delay of MTreeTV is about 4s
(Fig. 6). With the optimization of hybrid architecture optimize, the setup delay of
MTreeTV is only 1/4 of CoolStreaming’s. From the simulation results, MTreeTV also
gets high playback continuity (>98%) and little control overload (<2%).

5 Conclusion and Future Work

In the very near future, video may become the dominant type of traffic over the Inter-
net, dwarfing other types of traffic. Among the three video distribution modes: broad-
cast, on-demand streaming, and file download, broadcast is the most challenging to
support due to the strong scalability and performance requirements.

In conclusion, MTreeTV as a whole outperforms other systems under various envi-
ronments. Through analysis and simulation, we show that MTreeTV can support fast
channel switching, it provide high playback continuity with little control overload.

As part of our future work, we plan to further explore this class of application. We
will look at the extreme peer dynamics or flash crowd, access bandwidth scarce re-
gimes, incentives and fairness. We are going to simulate more system behaviors to
further improve the system’s performance.

Acknowledgment

Lei He would like to thank Prof. Julong Lan, Prof. Dongnian Cheng of NDSC for
their helpful comments.

 A Video Broadcast Architecture with Server Placement Programming 137

References

[1] Deering, S.: Multicast Routing in Internetworks and Extended LANs. In: Proceedings of
the ACM SIGCOMM (August 1988)

[2] Danzig, P., et al.: A case for caching file objects inside internetworks. In: Proc. ACM
SIGCOMM Conference (SIGCOMM 1993), pp. 239–248 (September 1993)

[3] Banerjee, S., Bhattacharjee, B., Kommareddy, C.: Scalable applicationlayer multicast. In:
Proc. ACM SIGCOMM 2002, Pittsburgh, PA (August 2002)

[4] Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstronand, A., Singh, A.:
SplitStream: High-bandwidth multicast in cooperative environments. In: Proc. ACM
SOSP 2003, New York, USA (October 2003)

[5] Chu, Y.h., et al.: A Case for End System Multicast. In: Proc. 2000 ACM SIGMETRICS
Int’l. Conf. Measurement and Modeling of Comp. Sys. (2000)

[6] Rowstron, A., et al.: Scribe: The design of a large-scale event notification infrastructure
(June 2001)

[7] Zhang, X.: CoolStreaming/DONet: A Data-driven Overlay Network for Peer-to-Peer Live
Media Streaming. In: Proc. INFOCOM 2005, Miami, FL, USA (March 2005)

[8] Hei, X., et al.: A Measurement Study of a Large-Scale P2P IPTV System. Tech. rep.,
Dept. of Comp. and Info. Sci., Polytechnic University (2006)

[9] Venkataraman, V., Francis, P., Calandrino, J.: ChunkySpread: Multitree unstructured
peer-to-peer multicast. In: Proc. The 5th International Workshop on Peer-to-Peer Systems
(February 2006)

[10] Shi, S., Turner, J.: Placing Servers in Overlay Networks. In: SPETS (July 2002)
[11] “Bittorrent”[EB/OL], http://www.bittorrent.com
[12] Lei, H., et al.: A Peer-to-Peer Internet Video Broadcast System Utilizing the Locality

Properties. In: HPCC, China (September 2008)
[13] Shi, S., Turner, J.: Placing Servers in Overlay Networks. In: SPETS (July 2002)
[14] Hochbaum, D.: Approximation Algorihtms for NP-Hard Problems. Brooks/Cole Publish-

ing Co. (1996)

	A Video Broadcast Architecture with Server Placement Programming
	Introduction
	Hybrid Architectures
	The Server Placement Problem
	Formal Definitions
	LP Based Algorithms
	Greedy Heuristics

	Simulation Results
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

