
A High Performance SOAP Engine for Grid

Computing

Ning Wang1, Michael Welzl2, and Liang Zhang1

1 Institute of Software, Chinese Academy of Sciences, Beijing, China
wangning@otcaix.iscas.ac.cn

2 Institute of Computer Science, University of Innsbruck, Austria
michael.welzl@uibk.ac.at

Abstract. Web Service technology still has many defects that make its
usage for Grid computing problematic, most notably the low performance
of the SOAP engine. In this paper, we develop a novel SOAP engine called
SOAPExpress, which adopts two key techniques for improving process-
ing performance: SCTP data transport and dynamic early binding based
data mapping. Experimental results show a significant and consistent
performance improvement of SOAPExpress over Apache Axis.

Keywords: SOAP, SCTP, Web Service.

1 Introduction

The rapid development of Web Service technology in recent years has attracted
much attention in the Grid computing community. The recently proposed Open
Grid Service Architecture (OGSA) represents an evolution towards a Grid sys-
tem architecture based on Web Service concepts and technologies. The new
WS-Resource Framework (WSRF) proposed by Globus, IBM and HP provides a
set of core Web Service specifications for OGSA. Taken together, and combined
with WS-Notification (WSN), these specifications describe how to implement
OGSA capabilities using Web Services.

The low performance of the Web Service engine (SOAP engine) is problematic
in the Grid computing context. In this paper, we propose two techniques for im-
proving Web Service processing performance and develop a novel SOAP engine
called SOAPExpress. The two techniques are using SCTP as a transport proto-
col, and dynamic early binding based data mapping. We conduct experiments
comparing the new SOAP engine with Apache Axis by using the standard WS
Test suite.1 The experimental results show that, no matter what the Web Service
call is, SOAPExpress is always more efficient than Apache Axis. In case of han-
dling an echoList Web Service call, SOAPExpress can achieve a 56% reduction
of the processing time.

After a review of related work, we provide an overview of SOAPExpress in
section 3, with more details about the underlying key techniques following in
section 4. We present a performance evaluation in section 5 and conclude.
1 http://java.sun.com/performance/reference/whitepapers/WS Test-1 0.pdf

P. Primet et al. (Eds.): GridNets 2008, LNICST 2, pp. 1–8, 2009.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2009

2 N. Wang, M. Welzl, and L. Zhang

2 Related Work

There have been several studies [3, 4, 5] on the performance of the SOAP process-
ing. These studies all agree that the XML based SOAP protocol incurs a substan-
tial performance penalty in comparison with binary protocols. Davis conducts
an experimental evaluation on the latency of various SOAP implementations,
compared with other protocols such as Java RMI and CORBA [4]. A conclusion
is drawn that two reasons may cause the inefficiency of SOAP: one is about the
multiple system calls to realize one logical message sending, and another is about
XML parsing and formatting. A similar conclusion is drawn in [5] by comparing
SOAP with CORBA. Chiu et al. point out that the most critical bottleneck in
using SOAP for scientific computing is the conversion between floating point
numbers and their ASCII representations in [3].

Recently, various mechanisms have been utilized to optimize the deserializa-
tion and serialization between XML data and Java data. In [1], rather than re-
serializing each message from scratch, a serialized XML message copy is cached
in the senders stub, which is reused as a template for the next message with the
same type. The approach in [8] reuses the matching regions from the previously
deserialized application objects, and only performs deserialization for a new re-
gion that has not been processed before; however, for large SOAP messages,
especially for SOAP messages whose data always changes, the performance im-
provement of [8] will be decreased. Also Java reflection is adopted by [8] as a
means to set and get new values. For large Java objects, especially deeply nested
objects, this will negatively affect the performance.

The transport protocol is also a factor that can degrade the SOAP perfor-
mance. The traditional HTTP and TCP communication protocols exhibit many
defects when used for Web Services, including “Head-Of-Line blocking (HOL)”
delay (to be explained in section 4.1), three-way handshake, ordered data deliv-
ery and half open connections [2]. Some of these problems can be alleviated by
using the SCTP protocol [7] instead of TCP. While this benefit was previously
shown for similar applications, most notably MPI (see chapter 5 of [6] for a
literature overview), to the best of our knowledge, using SCTP within a SOAP
engine as presented in this paper is novel.

3 SOAPExpress Overview

As a lightweight Web Service container, SOAPExpress provides an integrated
platform for developing, deploying, operating and managing Web Services, and
fully reflects the important characteristics of the next generation SOAP engine
including QoS and diverse message exchange patterns. SOAPExpress not only
supports the core Web Service standards such as SOAP and WSDL, but also in-
herits the open and flexible design style of Web Service technology because of its
architecture: SOAPExpress can easily support different Web Service standards
such as WS-Addressing, WS-Security and WS-ReliableMessage. It can also be
integrated with the major technology for enterprise applications such as EJB and

A High Performance SOAP Engine for Grid Computing 3

JMS to establish a more loosely coupled and flexible computing environment.
To enable agile development of Web Services, we also provide development tools
as plug-ins for the Eclipse platform.

Fig. 1. SOAPExpress architecture

The architecture of SOAPExpress consists of four parts as shown in Fig. 1:

– Transport protocol adaptor: supports client access to the system through a
variety of underlying protocols such as HTTP, TCP and SCTP, and offers
the system an abstract SOAP message receiving and sending primitive.

– SOAP message processing module: provides the effective and flexible SOAP
message processing mechanism and is able to access the data in the SOAP
message in three layers, namely byte stream, XML object and Jave object.

– Execution controller: with a dynamic pipeline structure, controls the flow of
SOAP message processing such as service identification, message addressing
and message exchanging pattern management, and supports various QoS
modules such as security and reliable messaging.

– Integrated service provider: provides an integrated framework to support
different kinds of information sources such as plain Java objects and EJBs,
and wraps them into Web Services in a convenient way.

4 Key Techniques

In this section, we will present the design details of the key techniques applied
in SOAPExpress to improve its performance.

4.1 SCTP Transport

At the transport layer, we use the SCTP protocol [7] to speed up the execution
of Web Service calls. This is done by exploiting two of its features: out-of-order
delivery and multi-streaming. Out-of-order delivery eliminates the HOL delay
of TCP: if, for example, packets 1, 2, 3, 4 are sent from A to B, and packet 1
is lost, packets 2, 3 and 4 arrive at the receiver before the retransmitted (and
therefore delayed) packet 1. Then, even if the receiving application could already

4 N. Wang, M. Welzl, and L. Zhang

use the data in packets 2, 3 and 4, it has no means to access it because the TCP
semantics (in-order delivery of a consecutive data stream) prevent the protocol
from handing over the content of these packets before the arrival of packet 1.

In a Grid, these packets could correspond with function calls, which, depend-
ing on the code, might need to be executed in sequence. If they do, the possibility
of experiencing HOL blocking delay is inevitable — but if they don’t, the out-
of-order delivery feature of SCTP can speed up the transfer in the presence of
packet loss. Directly using the out-of-order delivery mechanism may not always
be useful, as this would require each function call to be at most as large as one
packet, thereby significantly limiting the number and types of parameters that
could be embedded. We therefore used the multi-streaming feature, which bun-
dles independent data streams together and allows out-of-order delivery only for
packets from different streams. In our example, packets 1 and 3 could be asso-
ciated with stream A, and packets 2 and 4 could be associated with stream B.
The data of stream B could then be delivered in sequence before the arrival of
packet 1, thereby speeding up the transfer.

For our implementation, we used a Java SCTP library which is based on the
Linux kernel space implementation called “LKSCTP”.2 Since our goal was to en-
able the use of SCTP instead of TCP without requiring the programmer to carry
out a major code change, we used Java’s inherent support for the factory pattern
as a simple and efficient way to replace the TCP socket with an SCTP socket in
an existing source code. All that is needed to automatically make all socket calls
use SCTP instead of TCP is to call to the methods Socket.setSocketImplFactory
and ServerSocket.setSocketFactory for the client and server side, respectively.
In order to avoid bothering the programmer with the need to determine which
SCTP stream a function call should be associated with, we automatically assign
socket calls to streams in a round-robin fashion.

Clearly, it must be up to the programmer to decide whether function calls
could be executed in parallel (in which case they would be associated with multi-
ple streams) or not. To this end, we also provide two methods called StartChunk()
and EndChunk(), respectively, which can be used to mark parts of data which
must be consecutively delivered. All write() calls that are executed between
StartChunk() and EndChunk() will cause data to be sent via the same stream.

4.2 Dynamic Early Binding Based Data Mapping

The purpose of the data mapping is to build a bridge between the platform
independent SOAP messages and the platform dependent data such as Java
objects. The indispensable elements of the data mapping include XML data
definitions in an XML schema, data definitions in a specific platform, and the
mapping rule between them. Before discussing our data mapping solution, let us
first explain two pairs of concepts.

– Early binding and late binding: The differences between early binding and
late binding focus on when to get the binding information and when to

2 Java SCTP library by I. Skytte Joergensen: http://i1.dk/JavaSCTP/

A High Performance SOAP Engine for Grid Computing 5

use them, as illustrated in the Fig. 2. Here the binding information refers to
mapping information between XML data and Java data. In early binding, all
the binding information is retrieved before performing the binding, while in
late binding, the binding is performed as soon as enough binding information
is available.

– Dynamic binding and static binding: Here, dynamic binding refers to the
binding mechanism which can add new XML-Java mapping pairs at run
time. In contrast, static binding refers to a mechanism which can only add
new mapping pairs at compilation time.

Fig. 2. Early binding and late binding

According to the above explanation, the existing data binding implementa-
tions can be classified into two schemes: dynamic late binding and static early
binding. Dynamic late binding gets the binding information by Java reflection
at run time, and then uses the binding information to carry on data binding
between XML data and Java data. Dynamic late binding can dynamically add
new XML-Java mapping pairs, and avoid generating assistant codes by using
dynamic features of Java; however, this flexibility is achieved by sacrificing effi-
ciency. Representatives of this scheme are Apache Axis and Castor. For example,
Castor uses java reflection to instantiate the new class added to the XML-java
pairs at the run time, and initialize it using the values in XML through method
reflection. Static early binding generates Java template files which record the
binding information before running, and then carries on the binding between
XML data and Java data at runtime. Static early binding (as, e.g., in XML-
Beans) improves the performance by avoiding the frequent use of Java reflection.
However, new XML-Java mapping pairs cannot be added at runtime, which re-
duces the flexibility.

As illustrated in Fig. 3, we use a dynamic early binding scheme. This scheme
can establish the mapping rules between the XML schema for some data type
and the Java class for the same data type at compilation time. At run time, a
Java template is generated based on the XML schema, the Java class and their
mapping rules, which we call Data Mapping Template (DMT), by dynamic code
generation techniques. The DMT is used to drive the data mapping procedure.
Dynamic early binding avoids Java reflection so that the performance can be
distinctly improved. Simultaneously, the DMT can be generated and managed
at run time, which gives dynamic early binding the same flexibility as dynamic

6 N. Wang, M. Welzl, and L. Zhang

Fig. 3. Dynamic early binding

late binding. Dynamic early binding combines the advantages of static early
binding and dynamic late binding.

5 Performance Evaluation

We begin our performance evaluation with a study of the performance improve-
ment from using SCTP with multi-streaming. We executed asynchronous Web
Service calls with JAX-WS 2.0 to carry out a simple scalar product calculation,
where sequential execution of the individual calls (multiplications) is not nec-
essary. Three PCs were used: a server and client (identical AMD Athlon 64 X2
Dual-Core 4200 with 2.2 GHz), and a Linux router which interconnected them
(a HP Evo W6000 2.4 GHz workstation). At the Linux router, we generated
random packet loss with NistNet.3

Figure 4 shows the transfer time of these tests with various packet loss ratios.
The results were taken as an average of running 100 tests with the same packet
loss setting each. As could be expected from tests carried out in a controlled
environment, there was no significant divergence between the results of these
test runs. For each measurement, we sent 5000 Integer vaues to the Web Service,
which sent 2500 results back to the client. Eventually, at the client, the sum was
calculated to finally yield the scalar product.

Clearly, if SCTP is used as we intended (with unordered delivery between
streams and 1000 streams), it outperforms TCP, in particular when the packet
loss ratio gets high. SCTP with one stream and ordered behavior is only included
in fig. 4 as a reference value — its performance is not as good as TCP’s because
the TCP implementation is probably more efficient (TCP has evolved over many
years and, other than our library, operates at the kernel level). Multiple streams
and ordered transmission of packets between streams would theoretically be
pointless; surprisingly, the result for this case is better than with only one stream.
We believe that this is a peculiarity of the SCTP library that we used.

3 http://snad.ncsl.nist.gov/nistnet/

A High Performance SOAP Engine for Grid Computing 7

Fig. 4. Transfer time of TCP and SCTP using the Web Service

We then evaluated the performance of SOAPExpress as a whole, including
SCTP and dynamic early binding based data mapping. We chose the WS Test 1.0
suite to test the time spent on each stage in the SOAP message processing. Sev-
eral kinds of test cases were carried out, each designed to measure the perfor-
mance of a different type of Web Service calls:

– echoVoid: send/receive a message with empty body.
– echoStruct: send/receive an array of size 20, with each entry being a complex

data type composed of an integer, a floating point number and a string.
– echoList: send/receive a linked list of size 20, with each entry being the same

complex data type defined in echoStruct.

The experimental settings were: CPU: Pentium-4 2.40 GHz; Memory: 1 GB; OS:
Ubuntu Linux 8.04; JVM: Sun JRE 6; Web Container: Apache Tomcat 6.0. The
Web Service client performed each Web Service call 10,000 times, and the work
load was 5 calls per second.

The benchmark we have chosen is Apache Axis 1.2. Fig. 4 shows the experi-
mental results. For echoStruct and echoList, the XML payload was about 4KB.
The measure started from receiving a request and ended with returning the

Fig. 5. Performance comparison among different types of Web Service calls

8 N. Wang, M. Welzl, and L. Zhang

response. We observed that for echoVoid, the processing time is very close be-
tween the two SOAP engines, since echoVoid has no business logic and just
returns the SOAP message with an empty body. For echoStruct, the process-
ing time of SOAPExpress is about 46% of Apache Axis, and for echoList, the
proportion reduces to about 44%. This is a very sound overall performance im-
provement of SOAPExpress over Apache Axis.

6 Conclusion

In this paper, we presented the SOAPExpress engine for Grid computing. It
uses two key techniques for reducing the Web Service processing time: the SCTP
transport protocol and dynamic early binding based data mapping. Experiments
were conducted to compare its performance with Apache Axis by using the
standard WS Test suite. Our experimental results have shown that, no matter
what the Web Service call is, SOAPExpress is more efficient than Apache Axis.

Acknowledgments

We thank Christoph Sereinig for his contributions. This work is partially sup-
ported by the FP6-IST-045256 project EC-GIN (http://www.ec-gin.eu).

References

1. Abu-Ghazaleh, N., Lewis, M.J., Govindaraju, M.: Differential serialization for opti-
mized SOAP performance. In: HPDC 2004: Proceedings of the 13th IEEE Interna-
tional Symposium on High Performance Distributed Computing, Washington, DC,
USA, pp. 55–64. IEEE Computer Society Press, Los Alamitos (2004)

2. Bickhart, R.W.: Transparent TCP-to-SCTP translation shim layer. In: Proceedings
of the European BSD Conference (2007)

3. Chiu, K., Govindaraju, M., Bramley, R.: Investigating the limits of SOAP perfor-
mance for scientific computing. In: HPDC 2002: Proceedings of the 11th IEEE In-
ternational Symposium on High Performance Distributed Computing, Washington,
DC, USA, p. 246. IEEE Computer Society Press, Los Alamitos (2002)

4. Davis, D., Parashar, M.P.: Latency performance of SOAP implementations. In: CC-
GRID 2002: Proceedings of the 2nd IEEE/ACM International Symposium on Clus-
ter Computing and the Grid, Washington, DC, USA, p. 407 (2002)

5. Elfwing, R., Paulsson, U., Lundberg, L.: Performance of SOAP in Web Service
environment compared to CORBA. In: APSEC 2002: Proceedings of the Ninth
Asia-Pacific Software Engineering Conference, Washington, DC, USA, p. 84. IEEE
Computer Society Press, Los Alamitos (2002)

6. Sereinig, C.: Speeding up Java web applications and Web Service calls with SCTP.
Master’s thesis, University of Innsbruck (April 2008), http://www.ec-gin.eu

7. Stewart, R.: Stream Control Transmission Protocol. RFC 4960 (September 2007)
8. Suzumura, T., Takase, T., Tatsubori, M.: Optimizing web services performance by

differential deserialization. In: ICWS 2005: Proceedings of the IEEE International
Conference on Web Services, Washington, DC, USA, pp. 185–192. IEEE Computer
Society Press, Los Alamitos (2005)

http://www.ec-gin.eu

	A High Performance SOAP Engine for Grid Computing
	Introduction
	Related Work
	SOAPExpress Overview
	Key Techniques
	SCTP Transport
	Dynamic Early Binding Based Data Mapping

	Performance Evaluation
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

