
C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 87–100, 2009.
© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Parallel Data Transfer with Voice Calls for
Energy-Efficient Mobile Services

Jukka K. Nurminen and Janne Nöyränen

Nokia Research Center, Helsinki, Finland
{jukka.k.nurminen,janne.noyranen}@nokia.com

Abstract. Battery consumption is one challenge for mobile applications and
services. In this paper we explore the scenario where mobile phones delay the
transfer of non-urgent data and perform the communication while a voice call is
active. Our measurements show that data transfer during voice call requires
only slightly over 10% additional power and that simultaneous voice call slows
down the file transfer by 3%-14%. As a result we can save over 80% of energy
in data transfer if we can delay the communication to a time when user is speak-
ing at the mobile phone. For a user speaking 26 minutes a day this would allow
50MB of low energy data communication. A large class of applications can de-
lay their data transfer without major effect to the user experience. The power
saving mechanism can be implemented either in an application specific fashion
or, preferably, at the middleware layer.

Keywords: Energy-efficiency, mobile services, data transfer, application
cooperation.

1 Introduction

The introduction of mobile services has resulted into increased need to transfer data
between mobile phones and external computing devices, typically server computers.
The communication between the mobile device and the server consumes energy.
Extensive use of mobile services thus drains the battery and results into user
dissatisfaction.

In this research, we investigate new possibilities for energy efficiency that are
based on co-operation between different applications residing on the mobile device.
In particular, we explore the effect of parallel voice calls and data transfers.

While some researchers have investigated the battery consumption of mobile
applications [1-3], there is little work that studies the cooperation of different
applications. Since the adoption of mobile services is still in an early state, it is not
very common that a mobile phone accesses multiple services. However, this is likely to
change when the popularity of mobile services grows. Intelligent cooperation between
the different applications is likely to reduce needed energy in comparison to the case
where each application in isolation tries to minimize its own energy consumption.

In spite of the emergence of new mobile services, using the mobile phone for
conversations, voice calls, is likely to be an important use case also in the future. The

88 J.K. Nurminen and J. Nöyränen

idea we investigate in this paper is to delay non-time critical data transfers and
perform them during voice calls. This kind of collaboration between the applications
has potential for major energy savings. Once the radio of the mobile device is
activated for voice communication, we can use it for the transfer of other data with
little extra energy consumption. The bandwidth needed for voice is so small that in a
typical network the radio channel can be used to transfer other data in parallel to the
voice stream.

For many application the needed data transfer is not very time critical. For instance,
downloading of upgrades, podcasts, emails, or RSS feeds as well as uploading of
photos, backups, or calendar settings can be delayed in many cases without major effect
on user experience. Naturally, the needs of different users and different applications
vary but the set of services a user is using is likely to contain also a number of non-time
critical ones. The possibility to delay some of the communication to happen in parallel
with voice calls may allow us to develop new mechanisms for energy efficiency.

The key contribution of this research is to present the concept of delaying non-
urgent data transfers so that they would take place during voice calls. We evaluate the
proposed approach by power measurements with actual mobile phones. Finally we
discuss the applicability of this approach and discuss the implementation alternatives.

The rest of the paper is structured as follows. Section 2 describes the situation when
multiple services are in use in a mobile device. Section 3 presents our measurements
that allow us to compare standalone data transfer with data transfer during a voice call
in UMTS networks. Section 4 discusses the underlying mechanisms why data transfer
in parallel with voice call is energy efficient. Section 5 discusses alternative
architectural solution that would allow extending applications with this functionality.
Section 6 discusses the solution and in particular evaluates its usage potential and its
limitations. Section 7 reviews related research. Finally, section 8 concludes the paper
and presents ideas for further research.

2 Interoperability of Mobile Service Data Transfer and Voice
Calls

Currently, when multiple services are running on the same mobile device they
typically schedule their activities independently without considering the other applica-
tions and services. Figure 1 shows an example of a case when the mobile phone is
using email service and a photo upload service. The active periods of different
applications are marked with colored rectangles.

Email service is an example of a periodic service. It checks periodically (with in-
terval δemail) if new mail has arrived. If new mail has arrived it is downloaded to the
mobile phone. The length of the activity period varies as a function of the number and
size of the email messages.

Photo upload is an example of a user (or application) triggered activity. User takes
a photo and the system uploads it to a photo sharing service. The uploading activity is
started by a user action (shooting the picture or decision to store it).

Finally, voice call activities are started at arbitrary time points either by the user or
by calls coming in from the network.

 Parallel Data Transfer with Voice Calls for Energy-Efficient Mobile Services 89

Fig. 1. Example sequence of events of three applications: email, photo upload, and voice call.
Combined (trivial) shows the case where communication is started immediately for each appli-
cation. Combined (delayed) shows the case where the communication is delayed to the time of
the next voice call.

When we analyze the combined effect of these three services as depicted on the
line “Combined (trivial)” in Figure 1, we can see that when the starting times of these
activities are chosen independently from each other, they occupy a large part of the
time axis. This means that whenever any single application is active and transferring
data, the radio of the mobile phone has to be powered on. As a result the energy con-
sumption of the combined use case is high.

However, if we have a possibility to delay the communication of the mobile ser-
vices we can improve the situation. The line “Combined (delayed)” of Figure 1 shows
the case when we delay the data transfer of non-urgent communications (email and
photo upload activities in the example). Instead of following application specific
schedules we put the data transfer needs into a waitlist and whenever a user makes or
receives a voice call we activate the data transfers of the waiting services. As can be
seen from Figure 1 the time when there are no ongoing data transfer activities is much
longer when the delayed combination of different services is done.

Although the example shows the email and photo upload services as examples it
should be easy to realize that there are a number of applications where such a combi-
nation makes sense. In fact, the more services the user is running on his device the
higher the potential benefit from their smart combination.

Building on the idea of Figure 1 it seems promising to schedule the data transfer of
mobile services so that as much of the data transfer activities are taking place at the
same time. A very simple mechanism to achieve this is to delay the data transfer of
non-urgent services until a time when the user is having a phone call. The exact bene-
fit of this approach depends on the services the user is using, the available bandwidth,
and on the pattern of events that take place. Naturally the potential savings also

90 J.K. Nurminen and J. Nöyränen

depend on how much extra energy is consumed when data transfer is happening in
parallel to voice call and on the slowdown that simultaneous voice call causes for the
data transfer. In the next section we investigate these aspects in detail.

3 Quantitative Evaluation with Nokia N95

In this section we evaluate the potential of the concept by analyzing the energy con-
sumption of a mobile phone. We used Nokia N95 as the test device and performed
the energy measurements with the Nokia Energy Profiler application that is available
free of charge at Forum Nokia (www.forum.nokia.com). We performed the meas-
urements in downtown office area in Helsinki, Finland, using the network of Elisa
cellular operator.

Figure 2 shows the chart of an example measurement. The x-axis of the chart
shows the time and the y-axis the power consumption. For this chart we downloaded a
2M email attachment with IMAP protocol using the native messaging application of
the mobile phone.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

Voice Call

2MB DL HSDPA

Both

W

s

Fig. 2. Power consumption when a) a voice call is active, b) a data download is active, and c)
both voice call and data download are active at the same time

The chart shows the energy consumption in three different cases:

• The light gray/orange curve shows the energy consumption when only a voice call
is active. In the early part 15-80s the voice call is active and the display light is on.
When the display light is switched off at 80s the energy consumption drops from
1.5 W to 1.2W.

 Parallel Data Transfer with Voice Calls for Energy-Efficient Mobile Services 91

• The dark grey/blue curve shows the energy consumption when the phone is
downloading content. As the figure shows the energy consumption is rather similar
than in the case of voice call. When the display light is on the power consumption
is around 1.5W (20-90s and 110-115s). When the display light is off the power
consumption is around 1.2W

• The thick gray/green curve shows a case when both voice call and data download
are active simultaneously. The energy consumption is around 1.7W and 1.4 W
when the display light is on and off respectively.

We can see from the combined curve than when data download is performed during a
voice call the power consumption is only slightly higher than what the voice call
would anyhow require. In this measurement the extra power is only 10%. Likewise
we can see that the data transfer time increases when done during voice call but the
increase is not very big, only 12%. As a result if we do the data transfer during a
voice call we are able to perform the same activity with only 23% of the energy that it
would take without the voice call.

Table 1. Measurement results comparing parallel data transfer during voice call with stand-
alone data transfer

 Power (W) Transfer time (s) Energy (J)

 Avg Diff Total Diff Total Additional Ratio

IMAP download of an email attachment (2.0 MB)

Data

transfer

only

1.25 101 126 119

Data

transfer

during

voice call

1.39 11.2% 109 7.9% 152 16 14%

HTTP download of a 3gp video (2.1 MB)

Data

transfer

only

1.22 109 133 125

Data

transfer

during

voice call

1.35 10.7% 124 13.8% 167 14 11%

Video Center download (10.1 MB)

Data

transfer

only

1.23 476 585 552

Data

transfer

during

voice call

1.38 12.2% 488 2.6% 676 68 12%

92 J.K. Nurminen and J. Nöyränen

The detailed measurement results are listed in Table 1. We measured three
different cases:

• download of a 2.0 MB email attachment with IMAP protocol with the native mes-
saging client,

• download of a 2.1 MB video with HTTP protocol with the native browser (“Ein-
stein the bird” from www.free-3gp-video.com),

• and download of a 10.1 MB video with the Video Center application (“E90” from
“Nokia N-series” channel).

To eliminate the variance of service load and network congestion we performed the
measurements simultaneously with two similar Nokia N95 phones. One phone had a
voice call connection during the entire download. The other one was only download-
ing. After the first measurement we swapped the roles of the phones and performed
the same measurement again. The results are averages of these two measurements.

The power and transfer time columns show the measured values and their growth
percentage when data transfer takes place in parallel with the voice call. The energy
column shows the absolute energy of the each case.

The “Additional” subcolumn of energy shows the extra energy needed to perform
the operation in comparison to the energy that the phone would anyhow consume dur-
ing the same time. For the baseline values we use the phone idle power consumption
(0.07W) for data transfer only and voice call power consumption (1.24W) for data
transfers during voice calls. Finally the “Ratio” subcolumn shows the ratio of the
additional energies.

The energy column, and especially its “Additional” subcolumn, shows clearly that
the additional energy needed to transfer data during a voice call is small in compari-
son to the additional energy needed to transfer the same data without the voice call.
This means that it is possible to save close to 90% of the data communication energy
if we can perform the communication during voice calls.

This is a remarkable saving and it can be achieved with only a small increase in
transfer time (between 3% and 14%). Naturally the biggest impact for the user is not
the actual transfer time but the delay before the data transfer is started. The potential
applications and the data transfer potential of the mechanism are discussed in greater
detail in the following sections.

4 Background of the Phenomenon

The phenomenon that the measurements of the previous chapter capture can be
explained by looking at the way the cellular radio in modern mobile phones is work-
ing. In terms of energy consumption the radio interface is the most power hungry
component of a mobile phone accounting to around 50% of energy consumption in a
connectivity use case [4]. The radio resources of a mobile phone are managed by a set
of radio resource control algorithms that in addition to battery consumption influence
signal quality, interference, mobility management and response time. (see e.g. [5] for
details WCDMA radio resource management). While the details vary between differ-
ent technologies the essential mechanism is that there are at least two main states. Idle

 Parallel Data Transfer with Voice Calls for Energy-Efficient Mobile Services 93

state when power consumption is low and there is no traffic. Or active state, in which
case the amount of transferred data has minor effect on the power consumption.

When the user is having a voice call the radio of his mobile phone has to be used to
transfer the voice stream both to and from the mobile phone. Transferring the voice
stream requires frequent activity from the radio circuitry so that there is not a possibil-
ity to power it down into an idle state. However, the radio interface of a mobile phone
is able to handle a much larger bandwidth than what is needed for the voice. Whether
this bandwidth is used or not does not have a major effect on the energy consumption.
Therefore for the most energy efficient activity it makes sense to use as much of the
available bandwidth as possible if the radio in any case is active.

5 Implementation

To illustrate the implementation alternatives we will use Nokia Podcasting application
(http://europe.nokia.com/A4577364) as an example. Podcasting client is a good exam-
ple of an application that can benefit from the mechanism because downloading pod-
cast episodes in most cases is not time critical. The idea is to automatically download
the new podcast episodes to your phone and listen or watch them later when you have
time. Currently, the podcast application for Nokia phones only supports periodic
downloading (every 15/60 min, twice/once a day). This will automatically turn on the
selected radio at a specific time and start downloading eventual new episodes. If
these automated downloads could be synchronized with phone calls, it would make a
difference in power consumption with minimal change in the user experience.

On a general level the implementation will consist of the following steps:

• The application will register to a call listener, so that it can activate every time a
call will be set up and deactivate when the call ends.

• In the podcasting case, when a phone call begins, the application would refresh the
RSS feed and start/continue downloading the episodes when activated.

• When the phone call is terminated, podcasting application would be notified and it
would pause ongoing downloads allowing radio to enter low-power state.

The same kind of functionality could be implemented to any application that does not
require instant data transfer. For most applications this feature should be configurable
in the options settings. For instance, busy executives may want to receive their emails
immediately while private users may not mind if there is some delay before they re-
ceive their emails.

5.1 Application Level Implementation

There are at least two basic alternatives to implement the mechanism. It can be im-
plemented at the application level or at the middleware level.

The straightforward approach is to implement the concept at the application level.
Each application would create a listener to recognize when voice calls are started and
finished. Managing the communication would then be completely application
specific. This would be an easy extension to applications which already have a
mechanism to manage the frequency of the communication. For instance, the Video
center application has settings for feed subscriptions for video podcasts that allow

94 J.K. Nurminen and J. Nöyränen

selection of download times like night, morning, day, evening. It would be possible to
add the new mechanism simply as another selection and implement the necessary
functionality in the code.

Although the application level implementation is easy it has a number of
limitations. First, each application would need to implement the same mechanisms.
Different implementations of the same mechanism would increase the risk of mistakes
and enlarge the code base. Providing the common mechanisms in some form of
library would reduce this problem. Secondly, smarter interoperability between
different applications would not be possible. For instance, there would be no way to
manage the order of the different communication activities when a voice call starts. In
some cases sequencing the communication activities may be a better alternative than
having all of them run in parallel.

It would also be impossible to handle application specific deadlines in a
cooperative way. We assume that many applications would need to limit the time how
long the communication can be delayed. For instance, email user may require that the
emails are synchronized once in every hour also in the absence of voice calls. If such
deadline events are triggered independently by each application there would be no
possibility to synchronize them. Instead, only the voice call initiation would allow the
applications to synchronize their communication activities.

5.2 Middleware Level Implementation

The second way to implement the mechanism would be at the middleware level. In
this case the basic mechanisms would be handled by the middleware and the applica-
tions would only perform the data communication according to the needs of the
individual applications. The key parts of the mechanism would be made available to
developers via an API. Note that in addition to the middleware support we would still
need modifications to the applications using this mechanism. Applications would
need to specify their communication policies and handle the details of the data trans-
fer. These aspects are so application-specific that it is difficult to think how to do this
without changes in the actual applications.

Figure 3 illustrates the middleware level implementation. The new component is
the Schedule manager which is responsible for detecting the call event initiations and
terminations, and signaling these to the applications.

When the Schedule manager is used the following sequence of steps takes place:

1. Applications will register to Schedule manager with a deadline value (max. delay
for the download to start)

2. Incoming/outgoing call activates Schedule manager. Alternatively Schedule man-
ager is activated when a deadline is reached.

3. Schedule manager gives a notification to applications to start data transfer
4. Applications start data transfer
5. When the voice call is terminated the Schedule manager gets a notification from

the operating system.
6. Schedule manager tells the applications to finish their data transfer. Applications

can react to this in an application specific way. For instance, they could continue
the data transfer to a feasible termination point.

7. Applications can register a new deadline to schedule manager

 Parallel Data Transfer with Voice Calls for Energy-Efficient Mobile Services 95

Middlew areMiddlew are

Operating systemOperating system

Schedule managerSchedule manager

App. 1App. 1 App. 2App. 2 App. 3App. 3 App. 4App. 4

InternetInternet

Fig. 3. Implementation of the concept as a schedule manager in the middleware level

The above sequence of steps allows room for extensions and added intelligence.
Step 3 can be implemented in multiple ways. In the simplest case all registered appli-
cations would get the signal at the same time. In more sophisticated solutions the
Schedule manager could further schedule the individual applications. For instance, for
non-urgent bandwidth hungry applications a round robin scheduling might be better
than activating all of them at a same time. This would need further mechanisms for
the application to signal the Schedule manager when their data transfer activity has
been finished.

Notice that even in the absence of voice calls the above mechanism would provide
energy savings. The system would queue all delayed communication requests and once
the deadline of the first request is reached the system could active also the other ones.
The resulting coordinated transfer of data from different applications would reduce the
need to power on and off the radio and thus decrease the energy consumption.

6 Discussion

6.1 Data Transfer Potential During Voice Calls

The potential for data transfer during voice calls is reasonably high as illustrated by
the sample calculation in Table 2. According to StrategyAnalytics [6] the average

96 J.K. Nurminen and J. Nöyränen

Table 2. Calculation showing the potential for data transfer during voice calls

Average call duration (min) 26
Average data transfer speed during call (kB/s) 30
"Low energy" data transfer potential (MB/day) 46.8
MP3 songs (#) [4MB/song] 12
video clip (min) [2.5 MB/min Reuters News] 19
email messages (#) [10kB/message] 4792

minutes of use (MOU) per subscriber per day is 26 min in US. With such talk times
and assuming a relatively slow data transfer rate (30 kB/s) the daily potential for low-
energy data transfer is already close to 50 MB. This amount of data is significant and
allows the transfer of a large number of textual email messages and a considerable
amount of multimedia content.

6.2 User Experience

In order to take advantage of this phenomenon for energy saving we need to postpone
the data transfer to a later time point. For some applications such delay may not be
tolerable. Fortunately, there is a large group of applications where the delayed data
transfer is not likely to cause any major harm for the user experience.

Some of the candidate applications where such a feature is likely to be useful are:

• Synchronization: emails, calendar events, address book updates
• Downloading content to the phone: podcasts, video episodes, software upgrades,

RSS feeds
• Uploading content to server: backups, photos

The essential concept does not depend on the kind of data that is being transferred or
on the protocol used. The only essential aspect is that the user experience is not
dependent on immediate action.

A further effect to the user experience is that notifications, for example of incom-
ing mail, would arrive when the user is on the phone and displayed when the call
ends. The potential benefit is less disruptions for the user, since the notifications from
different services would come roughly at the same time and the user has already been
interrupted by the voice call.

6.3 Limitations

Perhaps the biggest challenge for the proposed mechanism is to find a proper balance
between user experience and energy efficiency. For some applications and some users
the delay requirements are much stricter than for others. As discussed in the Imple-
mentation section the system would allow setting a maximum delay for each applica-
tion. Naturally, the user could specify the delay but it would be yet another setting
which would complicate the adoption of new service. How to provide the necessary
flexibility but at the same time allow good enough control possibility to the user is a
difficult question. The same question applies to many other parameters of mobile
applications as well.

 Parallel Data Transfer with Voice Calls for Energy-Efficient Mobile Services 97

Our measurements show that the solution works nicely with current mobile phones.
However, old model GSM phones supporting GPRS class B do not allow simultane-
ous voice and data connections. Therefore, even if the mechanism could be applied as
a software upgrade also to older devices, it will not work unless the device supports
class A functionality.

In a similar fashion it is unclear how the future communication technologies will
benefit from the idea. Voice over IP packets would be competing of the same channel
with the data transfer needs of the applications. Excessive use of data connections
during VoIP call could influence the voice quality unless the packets are prioritized
differently.

7 Related Research

The sensitivity of mobile devices to energy consumption has been widely recognized.
Solutions to the energy consumption can be found on different levels. For instance,
Keqiu et al. [7] is a rather recent survey of techniques for energy-efficient mobile
computing analyzing the solution in different levels. They summarize research on
methods and techniques at network interface, network protocols, operating systems,
and application design layers. In addition to the energy-efficient communication the
techniques for energy-efficient hardware and low-level software (see e.g. [8]) apply.

A lot of research has investigated the energy-efficiency of wireless sensor net-
works. Akyildiz et al. [9] present a good overview. More detailed, and more recent,
survey of scheduling mechanisms in sensor networks is available by Wang and Xiao
[10]. Anastasi et al. [11] is another survey of energy-efficiency in wireless sensor net-
works. Because the replacement of batteries is often very expensive in wireless sensor
network the ability to maximize the run time of a wireless sensor is extremely impor-
tant. One of the obvious solutions is to enter power saving mode where the activity of
the wireless sensor is reduced for a period of time. In comparison to our research in
sensor networks the traffic is often homogeneous. Often there is just a single applica-
tion and in case of multiple applications there is seldom a dominant application. In
mobile phones this is different since for most users the essential use is to make and
receive phone calls.

A lot of the research on different communication layers has been layer specific and
application independent. Obviously, generic application independent layered solutions
are ideal in the respect that they do not limit the solution to a certain context. Anastasi
et al. [12] is an example of the protocol level ideas to improve the energy-efficiency.
They analyze the TCP protocol behavior for mobile web access. When fetching a web
page consisting of multiple components they fetch components first to an intermediate
access point so that device does not need to wait for the server processing. Thus de-
vice radio is on only during actual data transmission.

Many researchers see cross-layer design as a source of new solutions (see [13] for
an overview). For instance, Anastasi et al. [14] show how taking the application level
information into account can result into energy savings between 20% and 96%. The
essence of their idea is that the mobile device is able to detect and differentiate be-
tween bursts and user think times. Our concept is similar but we apply it at higher
protocol layers with different granularity. Instead of detecting burst and active

98 J.K. Nurminen and J. Nöyränen

communication intervals we detect voice calls and dynamically schedule activities for
those time intervals.

In comparison to related research our approach is clearly application layer driven.
Instead of focusing on the needs of a single application the starting point of our idea is
the typical mix of different applications and services a user typically has (or is likely
to have in the future). Furthermore it takes advantage of the fact that the dominant use
case of mobile phone is voice calls.

The area of mobile services is so new that very few energy-efficient general
mechanisms have been investigated. Most of the effort has been invested in novel in-
novative services. The energy-efficiency of the services often comes as an after-
thought. Moreover, the battery consumption of each service is often optimized only
within the context of the particular service. The fact that multiple services are likely to
be used on the same device is frequently ignored.

There are a couple of studies which present ideas a bit analogous to ours but on dif-
ferent applications and domains.

Xiao et al. [15] propose an idea where the processing and user interface modules of
the device are powered down when there is no incoming traffic. Our work shares the
aspect with theirs that powering down components saves energy. In their work they
always keep the communication interface powered up. However, in a modern mobile
phone the communication is module is a major energy consumer and having a policy
to allow it to sleep is very influential for the energy consumption of the device.

Conceptually a related system is in use at another abstraction layer in Linux operat-
ing system. The GLIB library used by GTK has a function, g_timemout_add_seconds,
which will fire after a given number of seconds or when the first such timeout expires.
GTK collects all timeouts to a single queue and all of them are executed at the same
time when the earliest wake-up happens. This reduces the number of times the proc-
essor needs wake up and thus provides a drop in the power consumption [8].

A related concept is also available for energy-efficient disk I/O where the idea is to
minimize the number of times the disk is spun up. The laptop mode of Linux kernel
queues all write requests and executes them when the disk is spun up to serve a read
request or when a timer value is exceeded [16].

8 Conclusions

The essential observation of our research is that there is a huge saving in battery con-
sumption if we delay non-urgent data transfers and perform them while a voice call is
active. Our measurements show that file transfer during voice call requires slightly
over 10% extra power over the voice call and that simultaneous voice call slows down
the file transfer only by 3%-14%. As a result we can save over 80% of energy in data
transfer if we can delay the communication to a time when user is speaking at the
mobile phone. For a typical user speaking 26 minutes a day there would be capacity
for 50MB of data transfer during the voice calls.

It turns out that there is a large class of applications where the delayed data transfer
would be applicable without major effect to the user experience. Examples of such
application include synchronization (emails, calendar events, address book updates),
downloading content to the phone (podcasts, video episodes, software upgrades, RSS
feeds), and updating content to the server (backups, photos).

 Parallel Data Transfer with Voice Calls for Energy-Efficient Mobile Services 99

Since voice calls are the “necessary evil" for power consumption and require the
radio to be active we should take advantage of these periods and transfer data at the
same time.

The mechanism can be implemented either in an application specific fashion or,
preferably, at the middleware layer. In any case applications need to be modified to
take advantage of the mechanism.

With the increasing number and popularity of mobile services the idea has wide
applicability. Enabling more energy-efficient use it can boost the adoption and use of
mobile services and increase user satisfaction.

This paper presents and quantifies the basic phenomenon as well as discusses
implementation alternatives. Further research would be needed on multiple areas.
First, how sensitive are the users to the delayed content transfer? It seems that for
many applications the delay is not an issue but this would require further
confirmation. Second, what would be the optimal way to implement the solution and
what kind API to use ssto expose the mechanism to application developers? Third,
how to extend the idea to cover cases we have not investigated? Could the idea, for
instance, work together with voice over IP? Finally, energy-efficient data transfer
during voice calls could be a basic building block that might enable new ideas on
mobile services and on their protocols.

References

1. Xiao, Y., Kalyanaraman, R.S., Ylä-Jääski, A.: Energy Consumption of Mobile YouTube:
Quantitative Measurement and Analysis. In: Second International Conference and Exhibi-
tion on Next Generation Mobile Applications, Services and Technologies, Cardiff, Wales,
UK (2008)

2. Nurminen, J.K., Nöyränen, J.: Energy-Consumption in Mobile Peer-to-Peer – Quantitative
Results from File Sharing. In: 5th IEEE Consumer Communications & Networking Con-
ference CCNC 2008, Las Vegas, Nevada (2008)

3. Kelenyi, I., Nurminen, J.K.: Energy Aspects of Peer Cooperation - Measurements with a
Mobile DHT System. In: IEEE CoCoNet Workshop 2008 Cognitive and Cooperative
Wireless Networks collocated with IEEE ICC 2008, Beijing, China (2008)

4. Neuvo, Y.: Cellular phones as embedded systems. In: IEEE International Solid-State Cir-
cuits Conference, Digest of Technical Papers, vol. 1, pp. 32–37 (2004)

5. Holma, H., Toskala, A.: WCDMA for UMTS. John Wiley & Sons, Chichester (2000)
6. Wireless Operator Performance Benchmarking Q2 2008, Strategy Analytics (2008)
7. Keqiu, L., Nanya, T., Wenyu, Q.: Energy Efficient Methods and Techniques for Mobile

Computing. In: Third International Conference on Semantics, Knowledge and Grid, pp.
212–217 (2007)

8. Garrett, M.: Powering down. Commun. ACM 51(9), 42–46 (2008)
9. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a

survey. Computer Networks 38(4), 393–422 (2002)
10. Wang, L., Xiao, Y.: A survey of energy-efficient scheduling mechanisms in sensor net-

works. Mob. Netw. Appl. 11(5), 723–740 (2006)
11. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy Conservation in Wireless

Sensor Networks: a Survey. Ad Hoc Networks 7(3) (2009)

100 J.K. Nurminen and J. Nöyränen

12. Anastasi, G., Conti, M., Gregori, E., Passarella, A.: Performance comparison of power-
saving strategies for mobile web access. Perform. Eval. 53(3-4), 273–294 (2003)

13. Srivastava, V., Motani, M.: Cross-layer design: a survey and the road ahead. IEEE Com-
munications Magazine 43(12), 112–119 (2005)

14. Anastasi, G., Conti, M., Gregori, E., Passarella, A.: 802.11 power-saving mode for mobile
computing in Wi-Fi hotspots: limitations, enhancements and open issues. Wirel.
Netw. 14(6), 745–768 (2008)

15. Xiao, Y., Chen, C.L.P., Kinateder, K.K.J.: An optimal power saving scheme for mobile
handsets. In: Sixth IEEE Symposium on Computers and Communications, pp. 192–197
(2001)

16. Samwel, B.: Kernel korner: extending battery life with laptop mode. Linux J. 2004(125),
10 (2004)

	Parallel Data Transfer with Voice Calls for Energy-Efficient Mobile Services
	Introduction
	Interoperability of Mobile Service Data Transfer and Voice Calls
	Quantitative Evaluation with Nokia N95
	Background of the Phenomenon
	Implementation
	Application Level Implementation
	Middleware Level Implementation

	Discussion
	Data Transfer Potential During Voice Calls
	User Experience
	Limitations

	Related Research
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

