
C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 58–71, 2009.
© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

Middleware Solutions for Self-organizing Multi-hop
Multi-path Internet Connectivity Based on Bluetooth

Paolo Bellavista and Carlo Giannelli

Dept. Electronics Computer Science and Systems (DEIS), University of Bologna
Viale Risorgimento, 2 – 40136 Bologna, Italy

{paolo.bellavista,carlo.giannelli}@unibo.it

Abstract. The availability of heterogeneous wireless interfaces and of growing
computing resources on widespread portable devices pushes for enabling inno-
vative deployment scenarios where mobile nodes dynamically self-organize to
offer Internet connectivity to their peers via dynamically established multi-hop
multi-path opportunities. We claim the suitability of novel, mobility-aware, and
application-layer middleware based on lightweight evaluation indicators to
support the complexity of that scenario, involving heterogeneous wireless
technologies over differentiated and statically unpredictable execution envi-
ronments. To validate these claims, we have implemented an innovative mid-
dleware that manages the durability/throughput-aware formation and selection
of different multi-hop paths simultaneously. This paper specifically focuses on
how our middleware effectively exploits Bluetooth for multi-hop multi-path
networking, by pointing out the crucial role of i) compliance with standard
solutions to favor rapid deployment over off-the-shelf equipment and ii) the re-
duction of the usual overhead associated with some expensive Bluetooth opera-
tions, e.g., device inquiry. In particular, the paper shows how it is possible, on
the one hand, to extend JSR-82 to portably access monitoring indicators for
lightweight mobility/throughput estimations and, on the other hand, to reduce
the time needed to update the set of available Bluetooth-based connectivity op-
portunities via approximated and lightweight forms of discovery.

Keywords: Mobile Computing, Middleware, Bluetooth, Always Best Served
Networks, Multi-hop Multi-path Connectivity, Collaborative Connectivity.

1 Introduction

Nowadays mobile devices, usually equipped with multiple wireless interfaces, can get
connectivity to the traditional wired Internet by taking advantage of multiple connec-
tivity opportunities provided by many infrastructure-based components, which tend to
be ubiquitously available, e.g., IEEE 802.11 Access Points (APs) or UMTS Base
Stations (BSs). In the following, we will call these connectivity components as infra-
structure connectors. In addition, the increasing and increasing resources of mobile
terminals potentially enable novel and more complex scenarios where client nodes
can also help other clients to achieve Internet connectivity in a peer-to-peer way, e.g.,
via Bluetooth Personal Area Network (PAN) or IEEE 802.11 Independent Basic

 Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity 59

Service Set (IBSS) connections. In other words, peer nodes can offer their resources
by acting as intermediate entities in a multi-hop (possibly heterogeneous) path to-
wards the Internet. We use the term peer connectors to indicate these novel connec-
tivity opportunities. In these envisioned scenarios peer connectors are in charge of
creating and properly managing a simple and small Mobile Ad-hoc NETwork (MA-
NET) with the peers in proximity and of correctly routing packets between their MA-
NET and the Internet by exploiting the near infrastructure connectors.

The increased complexity of this scenario, enabled by the concurrent exploitation
of infrastructure/peer connectors, is widely counterbalanced by its potential benefits.
In fact, benefits include not only the possibility to exploit a significantly wider set of
connectivity opportunities, but also to dynamically select which opportunity to use at
any time depending on system/user/node/application-specific requirements. For in-
stance, a dynamic selection mechanism could be useful for connector load balancing,
for always privileging connectivity opportunities that are for free, for preserving cli-
ent/global node battery, or for respecting bandwidth requirements (see Section 2).
However, the dynamic selection of the wireless interface for a client to exploit with its
connectors is not trivial. Only to mention an example of such complexity from the
beginning, let us consider that, nowadays, most mobile phones integrate
GPRS/UMTS and Bluetooth interfaces (and several of them are equipped also with
IEEE 802.11). In addition, many laptops and PDAs already combine medium/short-
range IEEE 802.11 and Bluetooth wireless technologies with wide-range
GPRS/UMTS/HSDPA cellular communication interfaces. We claim that it is inap-
propriate to leave to client application designers the whole burden of properly manag-
ing the wide set of Multi-hop Multi-path Heterogeneous Connectivity (MMHC)
opportunities that are dynamically available. Therefore, in our opinion there is the
need for novel, suitable, and lightweight middleware solutions for effective MMHC
management, which should mainly work at the client side in a decentralized way to
minimize management overhead and generated network traffic.

These middlewares should have visibility of different kinds of innovative context
data to take proper MMHC decisions, especially to ensure the usability of enabled
MMHC opportunities by selecting the ones expected to be more reliable during the
service session that is going to be established. In particular, lightweight estimations
about client mobility (with regards to both fixed infrastructure and mobile peer con-
nectors) could allow to exclude the connectors that are probably going out of the
coverage area of the considered client soon. In that way it is possible to reduce the
search space of potential connectivity opportunities to take into account. Similarly,
context data about estimated throughput (achievable by a single wireless hop and by
the multi-hop paths including that hop) can help filtering out connectors that do not
comply with session quality requirements. Finally, context data about connector re-
sidual energy could help in balancing energy consumption and in taking proactive
re-configuration of exploited paths if some composing hops are expected to fail soon
due to power exhaustion.

Our previous work has already demonstrated the crucial role of context to dynami-
cally evaluate networking opportunities in MMHC scenarios [1] and presented the
architecture and the primary design guidelines of our MMHC middleware [2, 3]. Our
MMHC prototype is able to self-organize client nodes, by dynamically retrieving the
set of available infrastructure and peer connectors. In addition, MMHC client nodes

60 P. Bellavista and C. Giannelli

self-hail multi-hop paths to the Internet, by possibly modifying routing rules at run-
time in case of intermediate peer failure. Here, the paper originally focuses on how
our novel middleware supports the exploitation of Bluetooth to get and provide Inter-
net connectivity via peer-to-peer multi-hop paths. In general, let us notice that Blue-
tooth is widely considered as a complementary connectivity technology to IEEE
802.11 and cell-based communications: in fact, on the one hand, it exhibits signifi-
cantly lower power consumption, thus maximizing node battery life, and, on the other
hand, its limited throughput (less than 1Mbps for Bluetooth1.2, about 3Mbps for
Bluetooth2.0EDR) is sufficient for many commercial applications, e.g., periodic
download of email messages. Also note that only a subset of Bluetooth capabilities
are currently exploited by a large public of users: Bluetooth is mainly used only to
connect mobile clients with remote devices, e.g., a wireless mouse/keyboard or a
printer, with a very few industrially-relevant support solutions for exploiting it to
get/provide Internet connectivity, as MMHC can enable.

In particular, this paper originally addresses (and presents related de-
sign/implementation solutions) two key aspects for the support of Bluetooth-based
multi-hop multi-path networking, i.e., the adoption of standard solutions capable to
be rapidly deployed over off-the-shelf equipment and the achievement of perform-
ance efficiency by limiting the usual overhead associated with some expensive Blue-
tooth operations. Standardization is crucial to provide a solution that can run on
different mobile clients, equipped with heterogeneous resources in terms of operating
systems, wireless card interfaces, and related drivers, provided by different manufac-
tures. That is particularly relevant given the high heterogeneity of current wireless
devices, from PDAs to smart phones. In addition, the efficiency improvement of some
Bluetooth mechanisms, such as device discovery via the Bluetooth inquiry procedure,
is of primary importance to quickly determine new paths at runtime. In fact, node
mobility may delve into frequent abrupt disconnections, periodically requiring dis-
covery and reconnection phases which call for fast, effective, and possibly approxi-
mated lightweight solutions for the dynamic update of available connectivity
opportunities.

The remainder of the paper is organized as follows. Section 2 presents our target
deployment scenario, by pointing out the main characteristics of Bluetooth-based
multi-hop multi-path networking and the need for improved efficiency in Bluetooth
connector discovery and connectivity establishment. Section 3 sketches the architec-
ture and the primary components of our MMHC middleware, while Section 4 details
the MMHC tasks to support multi-hop paths, by specifically showing how Bluetooth
devices may represent a performance bottleneck for path management. Section 5
proposes our original extension of the JSR-82 Java APIs for Bluetooth [4], integrated
in the MMHC middleware to easily achieve a portable and efficient solution for Blue-
tooth-based MMHC networks. Conclusive remarks and directions of current research
end the paper.

2 Deployment Scenario, Motivations, and Solution Guidelines

The MMHC scenario relevantly improves the traditional networking capabilities of
wireless environments. First of all, it extends connectivity opportunities via multi-hop

 Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity 61

ad-hoc paths, thus allowing the Internet access of nodes not directly in the coverage
area of infrastructure connectors. Second, it enables the exploitation of multiple paths
simultaneously, e.g., to improve the overall throughput available at clients. Third, it
permits to increase connectivity availability, e.g., by enabling the rapid rerouting of
traffic flows to alternative paths when the exploited ones become unavailable.

To better and practically point out these advantages, let us rapidly sketch an exam-
ple of a possible MMHC deployment scenario, involving different wireless interfaces,
Bluetooth included. Consider the realistic case of a group of tourists moving together
and sharing pictures via Bluetooth single-hop links. Due to their limited coverage
range, there could be the need for multi-hop paths to reach target friends who are
currently lingering in a shop; that is enabled by collaborating tourist devices that, for
instance, can transparently exploit Bluetooth to receive and forward packets along the
right direction, e.g., node C in Fig. 1. In addition, some tourists may be willing to
periodically publish their pictures on their Web blogs even if they have no direct
UMTS connectivity, e.g., they do not want to subscribe to a local UMTS provider
while visiting Italy. These tourists can benefit from Bluetooth multi-hop ad-hoc con-
nectivity toward the devices of friends with flat-rate UMTS subscription, who offer
them free Internet connectivity, e.g., the E-C-A node chain toward BS1. In that way
client nodes greatly benefit from the widening of connectivity opportunities: thanks to
MMHC, they can reach other peers and infrastructure connectors even if they are not
directly available via single-hop links. Note that tourists' mobility may reduce the
reliability of MMHC opportunities; usually there is the need to favor the selection of
MMHC opportunities with application-compatible reliability (especially in terms of
expected durability).

Similarly, when moving from city to city by train, tourists should be able to exploit
MMHC opportunities offered by other passengers, possibly in other cars, reachable
via multi-hop heterogeneous paths, and connected to the Internet via Wi-Fi/WiMAX
APs, such as node B. In this case the nodes tend to move together (joint mobility) and
MMHC opportunities have similar expected durability. Therefore, MMHC selection
should not only be mobility-aware, but also consider application-specific quality

A

C D

E

InternetInternet

BS1 BS2

UMTS

Bluetooth

Wi-MAX

getting
connectivity

offering
connectivity

F

B

IEEE 802.11

Bluetooth

Fig. 1. An example of MMHC scenario

62 P. Bellavista and C. Giannelli

requirements, e.g., expected throughput. MMHC enables to fully take advantage of all
the paths that are simultaneously available, e.g., by dynamically switching to a path
with estimated larger bandwidth. Moreover, if node A leaves the network, e.g., to
limit its battery consumption, node D can reroute its active connections from node A
to B, thus minimizing user-perceived service disruption. However, in that case, node
C would have no access to the Internet anymore, since A was its only connector. In
that simple MANET, MMHC self-organizes to provide new Internet access opportu-
nities, e.g., with node F starting to serve as connector, thus providing C with connec-
tivity towards BS2. Thus, MMHC contributes to increase connectivity availability, by
self-healing paths via dynamic reconfiguration of network topology.

To clearly position our approach with regards to very recent related literature, our
novel MMHC middleware solution enables multi-hop multi-path networking in a
similar way, to some extent, to what the Extended Service Set mesh network intends
to do in the upcoming IEEE 802.11s standard [5]. MMHC and IEEE 802.11s scenar-
ios have some similarities but also relevant differences in terms of node roles, multi-
hop multi-path connectivity establishment, and management metrics for routing rules.

First of all, both MMHC and IEEE 802.11s define different possible roles for par-
ticipating nodes: the nodes getting and providing connectivity to others (i.e., MMHC
peer connectors and IEEE 802.11s Mesh Points) and the ones only getting connec-
tivity (client nodes in MMHC, client stations or STAs in the traditional IEEE 802.11
terminology). In addition, IEEE 802.11s supports the exploitation of Mesh Access
Points, to provide also mesh-external nodes with connectivity, and of Mesh Portals, to
interconnect the supported mesh network with other external networks. Our MMHC
solution does not remark the static distinction among Mesh Points, Mesh Access
Points, and Mesh Portals; any (peer) connector can dynamically decide which of the
three roles to play depending on the execution environment and also different roles
simultaneously. Moreover, MMHC connectors offer connectivity opportunities
without requiring a global notion of the mesh network, thus promoting local and de-
centralized management decisions.

Furthermore, both MMHC and IEEE 802.11s provide multi-hop multi-path access
to the Internet, also in order to facilitate and improve the effectiveness of connectivity
self-healing in the case of intermediate node failure. However, for routing purposes
IEEE 802.11s can only exploit Mesh Nodes, Mesh Access Points, and Mesh Portals
based on IEEE 802.11s. On the contrary, MMHC enables the exploitation of multiple
wireless technologies simultaneously, integrated into the MMHC solution with an
application-layer approach, thus allowing also the exploitation of paths made up by
heterogeneous single-hop links. Finally, IEEE 802.11s exploits a low-level radio-
aware link metric, mainly based on bit error rate. On the contrary, to evaluate link and
multi-hop paths, MMHC can exploit more expressive context information: node mo-
bility estimations for reliability purposes, path throughput estimations to maximize
quality, and energy availability estimations to enhance long-term availability [1].

In our opinion, there is wide space for proposing innovative solutions for evolving
towards more powerful and dynamic heterogeneous scenarios where nodes can col-
laborate by exploiting different interfaces simultaneously to receive and send data in
multi-hop paths. For instance, [6] proposes a two-hop-relay architecture, based on
Relay Gateway (RG) nodes that can behave both as usual nodes and as cellular gate-
ways. They can seamlessly switch interfaces depending on network availability. In

 Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity 63

addition, they can improve WLAN coverage by exploiting cellular interfaces where
WLAN connectivity is not available. Mobile nodes have to explicitly request for RG-
based connectivity in a non-transparent way. In [7] mobile nodes, namely the Proxy
Client, can interwork with both cellular and IEEE 802.11 ad-hoc networks. Differ-
ently from previous examples, in [7] mobile nodes can interact with Proxy Clients not
only directly, but also via intermediate mobile nodes in a multi-hop ad-hoc way. With
an additional degree of mobile node involvement, there are a very few proposals
aiming at the coordination of a set of mobile nodes to create MANET connectivity
opportunities. Cooperating ad Hoc networking to sUpport Messaging (CHUM) dy-
namically elects one node to play the role of gateway between the MANET and the
fixed network infrastructure [8]. In particular, CHUM exploits WLAN connectivity
on the MANET side and 3G on the infrastructure side. [9] provides a similar example
of MANET-3G integration, by exploiting SIP as the signaling protocol between nodes
and the gateway.

In short, as a final comparative consideration, we claim that our MMHC middle-
ware can relevantly extend the potential benefits targeted by IEEE 802.11s Extended
Service Set mesh networks via the interconnection and exploitation of heterogeneous
wireless technologies. In addition, MMHC can easily integrate with IEEE 802.11s
and other wireless technologies, e.g., IEEE 802.11abg and Bluetooth, by exploiting
them as possible wireless interfaces for its connectors.

By focusing on Bluetooth-enabled connectivity, which is the specific original topic
of this paper, we claim that, nowadays, the primary issues limiting the adoption of
Bluetooth in multi-hop multi-path scenarios are i) the lack of a portable and standard
solution to enable multi-hop paths on heterogeneous clients and ii) the poor efficiency
of currently adopted Bluetooth discovery/connection procedures.

First, Bluetooth is supported in a differentiated way, e.g., with differentiated APIs
with heterogeneous functions and capabilities, over different operating systems and
even depending on implementor-specific drivers. That calls for support solutions that
can identify the execution context at runtime, in order to load and use specific mod-
ules to access the dynamically available drivers by exploiting different facilities (or
sequence of facilities) to achieve the same goal in different environments. To this
purpose, JSR-82 Java APIs for Bluetooth represents a notable example of industrial
standardization effort. The JSR-82 APIs provide a uniform interface to Bluetooth
capabilities, already available on many execution environments; however, they do not
provide some features that are crucial for MMHC, such as gathering Received Signal
Strength Indication (RSSI) values and establishing Bluetooth Network Encapsulation
Protocol (BNEP) connections, as better detailed in Section 5.

Secondly, despite Bluetooth is primarily designed for mobile environments, it does
not manage dynamically available connections promptly, requiring a long time period
for pairing (i.e., connecting, according to Bluetooth terminology) two devices. For
instance, it requires 10.24s for a complete inquiry procedure (i.e., remote device dis-
covery in the Bluetooth terminology) and more than 6s for PAN connection plus
DHCP configuration [3]. Of course, in mobile environments where clients can freely
and abruptly move, there is the central need of efficient mechanisms for node discov-
ery and connection creation. For instance, just to give a rough, preliminary, but
practical idea, considering that the Bluetooth coverage range of most devices is
around 10m, two mobile nodes should have a relative speed of less than 2m/s just to

64 P. Bellavista and C. Giannelli

have enough time to perform mutual discovery; to enable real data transferring, addi-
tional time for pairing and setup network configuration is required.

Starting from the above considerations, we have worked to include in our MMHC
middleware novel facilities to access Bluetooth-related low-level details in a portable
and effective way. On the one hand, our MMHC prototype exploits the JSR-82 APIs
to minimize connection activation time portably. On the other hand, we have signifi-
cantly extended the JSR-82 APIs to fully support the monitoring features required by
our advanced MMHC estimation functions (portable and effective visibility of RSSI
values for node mobility evaluation) and the efficient creation of BNEP connections.

3 The MMHC Architecture

By following the above design guidelines and considerations, we have developed and
experimentally validated our MMHC solution, an open-source middleware prototype
for the wireless management research community, available for download at our
MMHC-companion Web site, in different distributions for the most spread operating
systems (Linux, MS Windows XP/Vista, and MacOSX1).

Fig. 2 gives a high-level overview of our MMHC middleware architecture. Its main
components are Network Interface Provider (NIP), which provides homogeneous
management access to heterogeneous interfaces, Connection Manager (CM), which
operates to establish and manage single-hop links, and Routing Manager (RM), which
creates and dynamically handles multi-hop paths.

Network Interface Provider

pr
ov

id
e

co
nn

ec
tiv

ity

single-hop
opportunities

multi-hop
paths

Connection
Manager

connect

IEEE 802.11 Bluetooth UMTS

Routing
Manager

local node
requirements

single-hop
connections

receive remote context

send local context

Fig. 2. Our MMHC middleware architecture

3.1 Network Interface Provider (NIP)

NIP interacts with network interfaces and provides upper layers with a transparent
access to interface capabilities, by hiding low-level details of heterogeneous interface
drivers and operating systems. NIP is organized into two layers: features and

1 http://lia.deis.unibo.it/Research/MMHC/

 Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity 65

wrappers. At middleware initiation time the feature layer considers the underlying
execution environment and loads the right wrappers to communicate with the avail-
able interface drivers. In addition, it exposes an API to upper layers in order to enable
the access to wireless interfaces even without any knowledge of low-level and inter-
face-specific implementation details. The wrapper layer is in charge of directly
interacting with interface drivers to perform the commanded operations, possibly in a
system-dependent way. Note that the upper layer is developed once for all interfaces,
while the lower layer has been implemented in different versions for each supported
operating system. In that way, NIP also facilitates the introduction and exploitation of
new interfaces over different operating systems by simply extending the only lower
layer.

By delving into finer details, the feature component of NIP provides a set of capa-
bilities common to any interface:

• perform as peer connector, to start offering connectivity with a specific interface
in a peer-to-peer way;

• connect to a connector, to require the connection of an interface with a given
connector and consequently establishing the associated channel, thus enabling
inter-node communication;

• get available connectors, to obtain the list of connectors and their related infor-
mation (e.g., the RSSI value) that an interface can currently access.

Additional details on how MMHC provides these features with Bluetooth devices on
heterogeneous client nodes in the Section 5.

3.2 Connector Manager (CM)

CM gathers RSSI sequences from wireless interfaces in order to estimate node mobil-
ity for any single-hop MMHC opportunity. On this basis, it takes local decisions on
the sub-set of single-hop paths to activate. CM is a crucial component of the MMHC
middleware because it has a direct and relevant impact on client channel decisions. It
interacts with the underlying interfaces to change their configuration. Due to the criti-
cality of the actions it performs, CM cannot be directly configured by a single appli-
cation: in fact, one application may be selfish and require always the maximum
connectivity performance at the expense of other applications running at the same
node. For these reasons, CM provides RM and any application with a limited set of
channel possibilities, i.e., only with the channels that are considerable feasible for the
whole client node, with “no risks” for other running applications. In order to correctly
estimate whether a connector is suitable for establishing a channel, CM has to gather
and consider many client-related context data, since channel realization may affect the
capabilities of the whole mobile client. In first approximation, CM determines the set
of single-hop paths to activate based on durability estimation inferred by mutual dis-
tance monitoring: if several one-hop-distant devices have durability estimation values
compliant with application requirements, CM prioritizes APs and BSs (see [1] for
additional details on MMHC connector evaluation and selection schemas).

66 P. Bellavista and C. Giannelli

By delving into finer details, CM is in charge of:

1) discovering new connectors for all the supported wireless interfaces;
2) evaluating their suitability degree;
3) performing layer2 connections with the subset of selected connectors;
4) configuring layer3 parameters of established connections via DHCP.

The implementation of steps 1 and 3 strictly depends on the adopted wireless tech-
nology, e.g., inquiry procedure and PAN connection for Bluetooth and AP scan and
association for IEEE 802.11, while steps 2 and 4 are independent from it.

3.3 Routing Manager (RM)

RM is in charge of establishing, controlling, and updating heterogeneous multi-hop
channels by properly managing routing rules at runtime. It works to send/collect in-
formation/requirements on path suitability to/from collaborating nodes with the goal
of estimating path durability (based on both node mobility end energy availability)
and throughput. It interacts with CM to get the set of activated single-hop connec-
tions. When notified of a single-hop path disruption, it autonomously changes routing
rules. In addition, routing rules are updated in an on-demand way anytime a new
device becomes available or there is the need for a path renegotiation, e.g., because a
path goes below the negotiated thresholds for expected throughput.

Since the main goal of RM is to modify paths based on local information provided
by CM and remote information from collaborating nodes, the RM implementation
does not depend on any particular wireless technology. In fact, RM:

1) interacts with one-hop distant nodes to send/receive context information;
2) evaluates the suitability of available single-hop links to form activated multi-

hop and possibly heterogeneous channels;
3) changes routing rules to force the creation/update of valuable multi-hop paths.

By specifically focusing on Bluetooth exploitation in our MMHC middleware, let
us stress that RM can interconnect multiple piconets together to form the dynamically
needed multi-hop path and does not work to create a single multi-hop scatternet. In
fact, while piconet-based multi-hop connectivity may introduce slightly additional
overhead, that is greatly counterbalanced by a notable improvement in terms of proper
dynamic selection of the most suitable connectivity opportunity depending on high-
level context information. In addition, in this way MMHC can manage Bluetooth and
IEEE 802.11 single-hop links in a homogeneous manner, with relevant advantages in
terms of middleware/application development.

4 Implementation Insights and Performance Considerations

Based on our in-the-field experience with the creation and management of Bluetooth-
based multi-hop paths, we have observed that the complexity of the middleware tasks
needed for MMHC usually varies if they have to exploit basic mechanisms offered by
either the operating system or the wireless technology.

 Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity 67

First of all, middleware operations that do not depend on the local operating system
and on the exploited wireless interface have minimum impact on total overhead and
on the MMHC performance. For instance, the dynamic evaluation of remote Blue-
tooth connectors simply depends on quantitative data related to context information:
CM spends about 120ms to evaluate a set of 5 connectors (further details on the
adopted quantitative indicators are in [1]).

On the contrary, the operating-system-dependent middleware tasks are generally
more complex to design and implement because they should perform equivalent but
different actions on different execution environments. For instance, to create a new
multi-hop Bluetooth path on Linux nodes, RM should perform the commands re-
ported in Fig. 3, where interfNameInt is the name of the local interface offering
connectivity and interfNameExt is the name of the local interface connected to the
next hop of the path (an infrastructure connector in case of single-hop paths, a peer
connector in case of multi-hop paths). In particular, lines 1-6 enable incoming, outgo-
ing, and traversing packets to exploit interfNameInt and interfNameExt interfaces.
It is the last line that actually creates the multi-hop path, by changing the routing rules
to forward packets coming from the remote client with clientIP address connected
via the interfNameInt interface to the external interfNameExt one.

iptables -A INPUT -i interfNameInt -j ACCEPT
iptables -A INPUT -i interfNameExt -j ACCEPT
iptables -A FORWARD -i interfNameInt -o interfNameExt -j ACCEPT
iptables -A FORWARD -o interfNameInt -i interfNameExt -j ACCEPT")
iptables -A OUTPUT -o interfNameInt -j ACCEPT
iptables -A OUTPUT -o interfNameExt -j ACCEPT"

iptables -t nat -A POSTROUTING -o interfNameExt -s clientIP -j MASQUERADE

Fig. 3. Example of RM commands on Linux to create a new Bluetooth-based multi-hop path

On the opposite, on MSWindows nodes, RM should perform the command

ROUTE ADD destination_ip MASK 255.255.255.0 gateway IF interface_number

where destination_ip is the destination network address, gateway the peer connec-
tor address, interface_number the identifier of the interface according to the MS
Windows interface ordering. Anyway, despite the heterogeneity-related complexity
and the need to perform different actions on different operating system, multi-hop
path creation is not the most relevant source of overhead in MMHC: for instance, on
Linux nodes, RM takes less than 300ms to create a new multi-hop path [3] by exploit-
ing the commands in Fig. 3.

Instead, the MMHC tasks that significantly depend on specific features of the ex-
ploited wireless technologies may impose the most relevant delays. In particular, we
have already shown in a previous paper [3] that the performance results achieved by
MMHC when establishing new Bluetooth single-hop links are mainly the result of
overheads due to the discovery of remote Bluetooth connectors and to PAN connec-
tion. The former's latency is about 11s (10.24s for the inquiry procedure, the remain-
der because of process initialization and result parsing), the latter more than 3s. It is
worth noting that this relevant delay greatly limits (indeed, it is the primary bottle-
neck) the MMHC capability to quickly react to connectivity changes in Bluetooth-
based deployment environments. This is particularly true at system startup and

68 P. Bellavista and C. Giannelli

whenever in-use connectors become abruptly unavailable, because there is the need to
wait for a whole inquiry procedure before evaluating and connecting to new connec-
tors. In other words, this heavy overhead significantly limits the degree of node mo-
bility/dynamicity that MMHC can support when exploiting Bluetooth.

While it is impossible to shorten the PAN connection phase without modifying the
Bluetooth standard, the latency of the inquiry procedure can be relevantly reduced at
the potential cost of not discovering all available connectors. Peterson et al. [10] have
demonstrated that it is possible to shorten the Bluetooth inquiry of 50%, by assuming
the risk of not discovering, on the average, less than 1% of the totally available Blue-
tooth devices. We have followed a similar approach and designed CM to minimize
the latency in creating single-hop Bluetooth connections: our CM implementation
adopts a quick discovery procedure (with halved inquiry time according to Peterson's
guidelines) at system startup and whenever there are no Bluetooth connectors avail-
able; otherwise, when latency requirements are less stringent, a "traditional" discovery
procedure is exploited to ensure the completeness of the set of discovered connectors.

NIP exploits the JSR-82 APIs standard to access Bluetooth devices and, through
the invocation of these APIs, CM implements the optimized inquiry in a portable way.
However, as better detailed in the following section, even if the JSR-82 adoption
permits to achieve relevant advantages in terms of portability, the JSR-82 APIs are
insufficient to support some crucial features of the MMHC middleware, such as
BNEP networking and RSSI monitoring, thus calling for a portable extension of both
the JSR-82 specification and its reference implementation. Finally, let us observe that
the JSR-82 APIs are a relevant support for NIP and for its rapid deployment over off-
the-shelf equipment, but cannot be in place of it. In fact, JSR-82 provides a homoge-
neous access only to Bluetooth devices (operating system and driver independency),
while NIP supports homogeneous access to a set of heterogeneous wireless technolo-
gies, by supporting common features independently of the exploited wireless
interface. In other words, in the MMHC architecture, NIP exploits JSR-82 as much as
possible to access Bluetooth devices portably, while CM exploits NIP to access any
heterogeneous interface available on MMHC nodes in an interface-independent way.

5 The MMHC Extensions to the JSR-82 APIs

The JSR-82 Java APIs for Bluetooth has the purpose of providing Java developers
with homogeneous access to Bluetooth features, transparently with regards to under-
lying operating systems, Bluetooth drivers, and card implementors. For instance,
JSR-82 portably supports the discovery of remote devices, the browsing of services
offered by discovered devices, and the creation of RFCOMM/L2CAP/OBEX connec-
tions. In addition, by exploiting the mechanisms provided by JSR-82, it is possible to
reduce the latency of the inquiry procedure (see the DiscoveryAgent class and its
startInquiry() and cancelInquiry() methods).

To the purpose of easy and runtime portability, our NIP wrapper exploits the JSR-
82 APIs to access Bluetooth devices as much as possible. In particular, it exploits the
JSR-82 implementation by BlueCove [11], an open-source project for the Mac OS X,
Linux, and MS Windows operating systems; over MS Windows, BlueCove supports
multiple drivers, such as Widcomm, BlueSoleil, and the ones compliant with the MS
Bluetooth stack available starting from Windows XP SP2. However, as already

 Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity 69

pointed out, JSR-82 cannot provide some features that are central for MMHC working
and, for that reason, we have decided to significantly extend its capabilities as detailed
in the following.

First of all, JSR-82 does not provide any support for the BNEP protocol, which is
extremely suitable to setup an IP-based network via DHCP in an Ethernet-like style.
In fact, the JSR-82 specification is mainly oriented on the simple provisioning of
communication channels for data exchange. It does not support, instead, the possibil-
ity of setting up networking capabilities via the discovery/pairing of remote devices
and the explicit successive establishment of higher-layer channels, e.g., standard
TCP/IP sockets exploited by application-level clients and servers. Secondly, JSR-82
does not provide any facility to gather RSSI values describing the quality of active
connections. Instead, the periodic monitoring of RSSI values is crucial for CM to
correctly evaluate the mobility degree of candidate connectors [12].

Given the above limitations, we have worked to extend the JSR-82 APIs and refer-
ence implementation (on both Linux and MS Windows XP/Vista2) primarily to
provide BNEP and RSSI features. We have implemented our extensions by properly
modifying the Bluecove project source code; on Linux we have exploited BlueZ, its
official Bluetooth protocol stack; on MS Windows we have focused on Widcomm
drivers for Bluetooth.

In particular, by referring to the functionality supported by NIP, the Perform as
peer connector feature requires setting up a Group ad-hoc Network (PAN GN) [13]
and activating a DHCP server to automatically configure client-side network parame-
ters. Analogously, Connect to a connector requires accessing to a remote PAN GN
network and then activating the DHCP client.

To that purpose, we have extended the JSR-82 APIs by adding a novel BNEPCon-
nector class: it supports both server- and client-side BNEP capabilities via the serv-
er() and client(String remote_addr) methods, respectively exploited by Perform
as peer connector and Connect to a connector. The server() method is provided on
Linux nodes based on the exploitation of the BlueZ pand command:

pand -i hciX --listen --role GN --devup ./devup.sh --master

where hciX is the identifier of the local Bluetooth device and devup.sh is a script that
activates a DHCP server whenever a new remote device connects. Note that it is im-
possible to activate the DHCP server before the execution of the BlueZ pand
command because BlueZ creates a new bnepX virtual interface only after actual con-
nection establishment. For this reason, in this case the DHCP server is started only
after connection establishment in MMHC, by introducing an additional delay when
performing new Bluetooth connections. The server() method is not currently im-
plemented on MS Windows because the Widcomm driver does not support the setup
of a PAN server. In addition, MS Windows XP/Vista does not provide a standardized
command to configure and start a DHCP server from MMHC, forcing to rely on addi-
tional manual configurations (a command-line and standardized DHCP server is
available only on MS Windows Server 2008). Therefore, the current implementation
of MMHC supports Perform as peer connector only for Linux machines, while MS
Windows nodes can only behave as clients.

2 We are currently working on the prototype of the extended JSR-82 implementation for Ma-

cOSX; that version is the only one not available yet on the MMHC Web site.

70 P. Bellavista and C. Giannelli

On Linux nodes, also the client(String remote_addr) method is provided by
exploiting the BlueZ pand command but in this case with PAN User role:

pand -i hciX --connect remote_addr --role PANU --service GN

where remote_addr is the Bluetooth address of the remote device offering the PAN
GN network. Once connected, NIP activates the DHCP client via dhclient bnepX
where bnepX is the virtual interface created at PAN connection establishment. On MS
Windows the client(String remote_addr) method, instead, exploits the Widcomm
function:

LAP_RETURN_CODE CreateConnection(
BD_ADDR bda,
GUID guid,
CSdpDiscoberyRec &sdp_rec

)

where bda represents the Bluetooth address of the remote device and guid the PAN type
(set to CBtlf::guid_SERVCLASS_GN for PAN GN networks). Once connected, NIP per-
forms ipconfig /renew * to properly update the related IP parameters via DHCP.

The Get available connectors function implemented in our NIP prototype has two
operating modes: a basic one performing an entire inquiry procedure and another one
reducing the discovery latency by properly invoking startInquiry() and cancelIn-
quiry() methods of the JSR-82 DiscoveryAgent class according to Peterson's pro-
posal. Moreover, Get available connectors requires gathering not only the list of
available remote Bluetooth devices, but also their RSSI values. To this purpose we
provide an implementation of the JSR-82 DiscoveryListener listener which, when-
ever a new remote device is discovered, i) performs a Baseband connection, ii)
gathers the corresponding RSSI value and iii) provides it to the upper layers (to the
requesting middleware and/or applications). Note that the establishment of the Base-
band connection is necessary because in Bluetooth there is visibility of RSSI indica-
tions only after device connection. In particular, our MMHC prototype exploits, on
Linux nodes:

hcitool -i hciX cc remote_addr
hcitool -i hciX rssi remote_addr

to respectively get a Baseband connection (not requiring PIN authentication) and to
gather RSSI values. Instead, the implementation for MS Windows nodes exploits:

BOND_RETURN_CODE Bond(BD_ADDR bda, BT_CHAR *pin_code);
BOOL GetConnectionStats(BD_ADDR bda, tBT_CONN_STATS *p_conn_stats);

where pin_code is a PIN code of at most 16 characters and p_conn_stats includes
various data about the connections, such as their RSSI. Note that, differently from
BlueZ, Widcomm does not currently provide the capability to perform Baseband
connections; instead it supports the pairing of remote nodes via the Bond function,
which provides Baseband-like connections with the additional requirement of typing
PIN codes.

6 Conclusions

Our research efforts for the design/implementation of the MMHC prototype and our
practical experience on its in-the-field deployment over multi-hop networks with
off-the-shelf equipment demonstrate the feasibility of middleware solutions for

 Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity 71

self-organizing MMHC solutions. By specifically focusing on Bluetooth multi-hop
networking, this paper contributes to show the crucial importance of considering both
client heterogeneity and wireless technology efficiency to support MMHC challeng-
ing scenarios in a feasible, effective, and easily deployable way. Our novel middle-
ware solution exploits the JSR-82 APIs to access Bluetooth devices in an efficient and
portable manner by realizing an enhanced JSR-82 version to fully support BNEP
networking and RSSI gathering. The current prototype fully supports Linux nodes,
while implementation limitations of Widcomm drivers allow MS Windows nodes to
behave only as MMHC clients.

The encouraging results that we have already obtained are stimulating our further
research work in the field. In particular, we are working on lightweight and com-
pletely decentralized models for trust management and incentives to encourage the
collaborative peer offering of MMHC opportunities in a completely open and dy-
namic execution environment.

References

1. Bellavista, P., Corradi, A., Giannelli, C.: Context-aware Middleware for Reliable Multi-
hop Multi-path Connectivity. In: 6th IFIP Work. on Software Technologies for Future
Embedded & Ubiquitous Systems (SEUS 2008), Anacapri, Italy (October 2008)

2. Bellavista, P., Corradi, A., Giannelli, C.: A Layered Infrastructure for Mobility-Aware
Best Connectivity in the Heterogeneous Wireless Internet. In: 1st Int. Conf. on MOBILe
Wireless MiddleWARE, Operating Systems, and Applications (Mobilware 2008), Inns-
bruck, Austria (February 2008)

3. Bellavista, P., Corradi, A., Giannelli, C.: Mobility-aware Middleware for Self-Organizing
Heterogeneous Networks with Multi-hop Multi-path Connectivity. IEEE Wireless Com-
munications Magazine 15(6), 22–30 (2008)

4. JSR-82 Bluetooth API, http://java.sun.com/javame/reference/apis/
 jsr082/

5. Camp, J., Knightly, E.: The IEEE 802.11s Extended Service Set Mesh Networking Stan-
dard. IEEE Communications Magazine 46(8), 120–126 (2008)

6. Wei, H.-Y., Gitlin, R.D.: Two-hop-relay Architecture for Next-Generation WWAN/
WLAN Integration. IEEE Wireless Communications 11(2), 24–30 (2004)

7. Luo, H., Ramjee, R., Sinha, P., Li, L.E., Lu, S.: UCAN: a Unified Cellular and Ad-hoc
Network Architecture. In: 9th Int. Conf. Mobile Computing and Networking, San Diego,
CA, September 2003, pp. 353–367 (2003)

8. Kang, S.-S., Mutka, M.W.: A Mobile Peer-to-peer Approach for Multimedia Content
Sharing using 3G/WLAN Dual Mode Channels. Wiley Journal on Wireless Communica-
tions and Mobile Computing 5(6), 633–645 (2005)

9. Fu, C., Khendek, F., Glitho, R.: Signaling for Multi-media Conferencing in 4G: the Case
of Integrated 3G/MANETs. IEEE Communications Magazine 44(8), 90–99 (2006)

10. Peterson, B.S., Baldwin, R.O., Kharoufeh, J.P.: Bluetooth Inquiry Time Characterization
and Selection. IEEE Trans. on Mobile Computing 5(9), 1173–1187 (2006)

11. BlueCove JSR-82 Project, http://www.bluecove.org/
12. Bellavista, P., Corradi, A., Giannelli, C.: Mobility-Aware Connectivity for Seamless Mul-

timedia Delivery in the Heterogeneous Wireless Internet. In: 2nd Work. on multiMedia
Applications over Wireless Networks (MediaWiN 2007), Aveiro, Portugal (July 2007)

13. Bluetooth Profile Specifications, Personal Area Networking Profile (February 2003),
http://www.bluetooth.com/

	Middleware Solutions for Self-organizing Multi-hop Multi-path Internet Connectivity Based on Bluetooth
	Introduction
	Deployment Scenario, Motivations, and Solution Guidelines
	The MMHC Architecture
	Network Interface Provider (NIP)
	Connector Manager (CM)
	Routing Manager (RM)

	Implementation Insights and Performance Considerations
	The MMHC Extensions to the JSR-82 APIs
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

