
Developing and Benchmarking Native Linux
Applications on Android

Leonid Batyuk, Aubrey-Derrick Schmidt, Hans-Gunther Schmidt,
Ahmet Camtepe, and Sahin Albayrak

Technische Universität Berlin, 10587 Berlin, Germany
{aubrey.schmidt,leonid.batyuk,hans-gunther.schmidt,ahmet.camtepe,

sahin.albayrak}@dai-labor.de
http://www.dai-labor.de

Abstract. Smartphones get increasingly popular where more and more
smartphone platforms emerge. Special attention was gained by the open
source platform Android which was presented by the Open Handset Al-
liance (OHA) hosting members like Google, Motorola, and HTC. An-
droid uses a Linux kernel and a stripped-down userland with a custom
Java VM set on top. The resulting system joins the advantages of both
environments, while third-parties are intended to develop only Java ap-
plications at the moment.

In this work, we present the benefit of using native applications in
Android. Android includes a fully functional Linux, and using it for
heavy computational tasks when developing applications can bring in
substantional performance increase. We present how to develop native
applications and software components, as well as how to let Linux appli-
cations and components communicate with Java programs. Additionally,
we present performance measurements of native and Java applications
executing identical tasks.

The results show that native C applications can be up to 30 times as
fast as an identical algorithm running in Dalvik VM. Java applications
can become a speed-up of up to 10 times if utilizing JNI.

Keywords: software, performance, smartphones, android, C, Java.

1 Introduction

With the growing customer interest in smartphones the number of available
platforms increases steadily. Several open platforms emerged in the last years,
including OpenMoko, LiMo, Mobilinux and, the most hyped one, Android. The
latter has been presented by the Open Handset Alliance (OHA) where Google
is one member beside others, including carriers like T-Mobile and Telefónica,
and handset manufacturers like Motorola and HTC. Android’s source code is
freely available under terms of several open source licenses, which makes it an
interesting open mobile platform. Android is modifiable and thus not limited to
smartphones - it targets mobile internet devices and netbooks, too.

C. Giannelli (Ed.): Mobilware, LNICST 0007, pp. 381–392, 2009.
c© Institute for Computer Science, Social Informatics and Telecommunications Engineering 2009

382 L. Batyuk et al.

The key feature of Android is that is has a Java application framework on
top of an Linux 2.6 Kernel - this construction unifies the mature security model
of Linux with the convenient development in Java language. Most of the appli-
cations developed for Android are intentionally Java programs - but Linux-level
C/C++ programming is possible, too.

The question arises whether it makes always sense to stay on the Java layer,
or cases can be identified in which native C/C++ code is preferable. A very inter-
esting aspect is the performance of computation - time-critical applications or
software components which involve heavy computation might be moved to Linux
layer for improving the execution speed. Since the graphical user interface is only
accessible from Java framework (unless the user utilizes a terminal emulator),
another resulting question is how to provide access to the information produced
by native software components.

In this paper we will investigate the benefit of moving applications to the
Linux layer of Android. We present mechanisms which enable communication
between native and Java applications. This is of special interest since the OHA
does not provide an officially supported way for doing so. Additionally, we present
a performance comparison of Java and native Linux applications in Android
for different kinds of tasks. This will help software designers to create efficient
Android applications.

This work is structured as follows: in Section 2, we give an overview of the
Android platform. In Section 3, we provide a summary on methods and tools
which can be utilized in order to build native applications for the Linux layer in
Android. In Section 4, we analyze the performance of the methods described in
Section 3. In Section 5, we draw conclusions and describe viable future work.

2 Android

Following the descriptions of the Open Handset Alliance (OHA) [1], Android
represents a software stack including an operating system, middleware, and ap-
plications. A significant aspect of this software stack is that Android uses Linux
2.6 as underlying operating system for core system services such as security,
memory management, process management, network stack, and driver model.
On top of Linux OHA placed a modified Java interpreter and runtime envi-
ronment called Dalvik virtual machine (Dalvik VM). Intentionally, applications
developed for Android will only use the Java Dalvik VM for execution. A key
feature of this VM is the ability to run several instances of itself, each applica-
tion in its own process. Executables for the Dalvik VM (.dex files) are optimized
for minimal footprint where the Dalvik VM uses the threading and memory
management functionality of the underlying Linux system.

For developing Android applications, the OHA provides an SDK with
full access to the same framework APIs used by the core applications.
The corresponding application architecture is intended to simplify the reuse of
already developed components. In turn, this feature enables developers to replace

Developing and Benchmarking Native Linux Applications on Android 383

(b) T-Mobile G1 [14]

Application

Application Framework

Linux

Libraries Dalvik VM

(a) Archtitecture [1]

Fig. 1. Android

already existing components. Android applications are developed using the Java
programming language. Therefore, Android includes a set of core libraries that
mostly match the core libraries of the Java standard edition. Additional libraries
were added to provide more convenient support for mobile needs, such as blue-
tooth and camera support.

The first phone running a port of Android is G1, which has been manufactured
by HTC and introduced by T-Mobile in the USA. More devices running Android,
including unofficial ports to existing hardware, are to be awaited since the source
code of Android has been released under terms of free software licenses.

3 Software Engineering Aspects of Android

In this section we discuss the possible ways to develop software for the Android
platform. In 3.1, we provide an overview on development of Java applications.
Section 3.2 describes tools and techniques used to compile native applications. 3.3
contains additional information on Android specifics and possible workarounds.

3.1 Android Java Application Development

Different to most other mobile platforms, development of user applications for
Android is pretty straight-forward. First of all, you need to download the SDK
from Google page [1]. If you prefer to use an IDE for development, then you have
to obtain Eclipse [6] or Netbeans [7]. For improving the development process,
Eclipse users can download a plugin called Android Developer Tools (ADT)
[1]. The SDK includes a built-in emulator that supports most of the important
interfaces and can be used for application testing. If testing is successful, devel-
opers have to sign their application for making it available to devices. Android
applications are packaged in APK files, which contain the executable bytecode,
necessary resources (layout schemes, images, raw binary data), and application
metadata. The metadata includes the name of the application, its version and
the permissions which the program requires in order to run, such as access to
contact database, using the internet connection or even making calls. Then, the

384 L. Batyuk et al.

signed APK can be distributed to end devices through Android Market [3] - an
internet platform which is open for developers and promises low rejection rates
on new software. At this point it is important to mention that the signing of the
application is, contrary to the Symbian platform, free of any cost and is primarily
intended to make the distributor identifiable, and not to prevent software from
unsubscribed developers from running on end devices.

3.2 Android Linux Application Development

Android provides a complete operating system running currently on the ARM-
Architecture. Compiling software for ARM requires a specific environment. In
following sections, we will describe two different ways of compiling software suc-
cessfully within an ARM-compatible environment. Additionally, a list of working
open source security tools running on Android can be found in our previous work
[15].

Base environment. Ubuntu i686 GNU/Linux [10], a Linux-distribution pro-
vided and supported by Canonical, provides the basis for all further steps. Based
on the Intel-architecture, a vast amount of tools, especially for creating and com-
piling software, can be obtained through Ubuntu’s package repositories. Addi-
tional, non-standard, package repositories can be easily integrated.

GNU toolchain for ARM processors. CodeSourcery [8] offers the cross-
compile toolchain G++ Lite that can be used to cross-compile source code for
ARM on various architectures other than ARM. Consisting of C/C++-compiler,
linker, libraries, several tools for debugging and more, it offers everything re-
quired for compiling tools that can be executed in an Android environment.
Providing the required information during configuration run (passing parame-
ters to use a different compiler, compile for a different architecture, additional
usual compile parameters), there is little to no difference between compiling
source code for ARM or for Intel architectures. Once compiled, the software
needs to be transferred to the Android environment in order to test its function-
ality. This might be, at some times, a tiring task, and may be even restricted
on the end device. Therefore, a second way to compile source code for ARM is
presented in the next section.

Scratchbox cross-compilation toolkit. Scratchbox [9] not only provides the
necessary compilers and linkers, it also provides a complete environment simu-
lating an ARM platform-based operating system. All tools compiled within this
environment can be tested immediately giving a very fast feedback to the de-
veloper. Once, the Ubuntu package repository has been extended by the official
Scratchbox repository, all necessary files for Scratchbox can be easily installed
via Ubuntu’s package management tools. Scratchbox offers a wide variety of pos-
sible compilers, in different versions and characteristics. After installation, a user
account has to be created for use within the Scratchbox environment. Shortly

Developing and Benchmarking Native Linux Applications on Android 385

after logging into the new environment, preliminary steps are required: select
the desired compiler and add additional tools if wanted (strace, gdb). From
this point, source code can be compiled as usual, no specific parameters have to
be provided. The host and build type are distinguished automatically, standard
locations for installing binaries, libraries, etc. are provided. As long as the given
source code is ARM-compatible, it will most likely compile within Scratchbox
without any significant problems. Having successfully compiled all files, these
can be packed into an archive for being transferred to the Android environment
for deployment.

3.3 Important Facts for Native Development

Filesystem specifics. Google provides an ARM Linux with a filesystem layout
which greatly differs from usual Linux filesystem layouts:

– System relevant files are found in the System image, mounted to /system
(binaries are, for the most part, found in /system/bin, libraries reside in
/system/lib, configuration files in /system/etc, etc.)

– User data relevant files reside within the user data image, mounted to /data.

Handling these changes does not require much adaptation.

All-in-one binary toolbox. Furthermore, Google provides standard Linux
tools with the help of the all-in-one binary toolbox. It only offers a very re-
stricted set of tools making it at certain times hard to accomplish standard
procedures. Special care has to be taken here when including shell scripts that
rely upon various Linux system tools, since, if at all available, their behaviour
would probably differ from what one would expect.

Installing Busybox [11], also a all-in-one static binary offering numerous stan-
dard Linux system tools, helps greatly, but is restricted on the G1.

Location-awareness of tools. Certain tools within Android are location-
aware. A specific action, e.g. changing file permissions or ownership, will execute
successfully without any further notice in /system. The same action, executed
for files in your SD-Card-image will simply fail. This implies that tools can only
be executed from within /system or /data. Adding and executing tools via a
freely resizeable SD-Card-image will not be possible.

Disk space limitations. /data and /system offer only very limited flexibility
as they are both limited to a maximum filesystem size of 65Mbytes. While in a
standard, untouched, Android Linux, there is about 40MB of space left within
/data, the System image, at the same time, offers only approximately 20MB for
additional tools. This fact requires appropriate counter-measures when configur-
ing given source code for compilation (e.g. ClamAV database needs to be placed
in a different location as it exceeds the given 20MB on /system).

386 L. Batyuk et al.

Page alignment causes changes in linking. Of very high impact on the
success of compiling software for Android is the fact that Google forces compat-
ible binaries to not be page aligned for the text and data section. This requires
changes in the way of linking object files. For self-written software, one can take
precautions and react on this fact with compiling all shared libraries accordingly.
For already existing source code, changing the linker’s behavior can present a
very tiring and, often, an even impossible task.

Static linking. Due to the different approach of linking, the only way to run
open source software on Android without altering the source code is to compile
the source code statically. The output binary will have only small dependencies to
existing libraries making it relatively autonomous. For a fair amount of available
open source software, this method has been executed successfully. Still though,
tools like ”iptables” or ”Snort” will not accept this method and fail compiling.

3.4 Bridging between Java and Linux

As already discussed in Section 1, it could be an interesting option to delegate
certain computational tasks from Java to native binaries written in, e.g., the C
programming language. We cover two possible solutions - Java Native Interface
(JNI), a commonly accepted standard in the Java development community, and
named pipes which are commonly used on unixoid systems for simple inter-
process communication.

Java Native Interface (JNI). JNI is used to call native functions of the un-
derlying operating system. Using this interface, the developer risks losing the
platform independence of Java unless the native call exists on all intended plat-
forms. At the moment, JNI is not supported on Android although it is used
across the system. Following Romain Guy, an Android developer at Google, An-
droid currently uses JNI only for the framework and not for the applications [4].
Nonetheless, Google seems to be working on a native SDK officially providing
JNI calls.

Despite the official Google statement that JNI is currently not supported for
user applications and won’t work, we have successfully compiled a Java applica-
tion which uses a custom JNI shared library. It was possible to install and run the
application on the G1 without any further modification. The native component
has been packaged into an APK as a raw binary resource and unpacked upon
first execution of the Java program. After doing so, it is possible to load the
shared object as a JNI library via invoking java.lang.System.load(String
filename).

From our point of view, JNI is rather hard to implement, since compiling a
shared library for Android is a challenging task because of the unusual page align-
ment. But, it is most probably going to become the only official way to include
native code in Android applications, and also has shown good performance.

Developing and Benchmarking Native Linux Applications on Android 387

Pipes. Using pipes is a commonly used technique in Linux and Unix systems
to allow communication between separated processes. Two main types of pipes
are known: unnamed pipes [12] and named pipes (also called FIFOs) [13].

Unnamed pipes are well known to most Linux and Unix users: e.g. have a look
at the command cat help.txt | grep a. The first command displays the every
line of the text file help.txt while the second command displays only the lines
which contain the letter a. The horizontal bar indicates the usage of unnamed
pipes where the results of the first command are stored in the kernel-side-located
pipe and then are used by the second command. Writing and reading pipes works
line-by-line following the First-in-First-out paradigm.

Named pipes are called FIFOs and are similar to unnamed pipes in their func-
tionality. The main difference is that they are created explicitly and unrelated
pipes are able to use them if no appropriete access control specifications are
made. For creating named pipes the command mkfifo can be used. Additional
information on pipes can be found in the corresponding man pages.

Using pipes on Android for communication between Java and native executa-
bles is rather straight-forward, since Java provides a lot of convenient writer,
reader, and stream classes. But, when it comes to deploying and executing the
binary in the restricted environment where an application can only write to its
own folder, this approach requires decent programming skills. We have packaged
the binary as a “raw resource”, then the application itself unpacked it to the
writieable directory. Then, the binary has to be made executable in order to
be started, which is impossible from within Java. This is where the sources of
the Android OS are needed - using the Android Build System instead of Ant,
it is possible to utilize the class android.os.Exec, which is not included in
the SDK classpath. It allows execution of native binaries as a subprocess of the
Java application. Using Exec.createSubprocess("/system/bin/sh", ...), it
is possible to start the Linux shell and utilize chmod to make the binary exe-
cutable. Afterwards, we can launch the native program and communicate with
it through a named pipe.

We make use of an undocumented class, android.os.Exec. Still, the fact that
it is present on the G1, in the emulator and in the source code of the platform,
it is rather improbable that it will ever be removed, especially since some of the
Google and third-party software on the Android Market already utilizes it.

The pipe technique is much more complex in its deployment than JNI, but
it gives the developer a possibility to start a persistent daemon on a Linux
layer which would collect information while being independent from the Java
application lifecycle. The performance evaluations in Section 4 show that this
approach is rather unsuitable for data-intensive tasks. But it is still a good
option to consider if the application’s logic forces the developer to work around
the application lifecycle of Dalvik VM.

4 Software Performance on Android

Only few up-to-date references can be found pointing out comparisons between
different programming languages and the corresponding compilers. The reason

388 L. Batyuk et al.

Fig. 2. Execution time of quick sort run in a Java VM and as a native binary, comparing
the relative performance of Java to C in Dalvik and in Sun’s JRE. While the execution
time of both techniques on a Linux PC grows similarly and no significant difference
occurs, the Dalvik VM shows a very bad performance and takes up to 30 times as long
as a native Android executable.

for this might be the fast progress in the technology and computer sector that
renders such kinds of results useless only few years after gathering them. A
newer publication was made by McConnel [16] in the year 2004. In this book
he describes in “Chapter 25: Code-Tuning Strategies” how to improve software
code and presents performance comparisons on different types of programming
styles as well as of different programming languages and compilers. Additionally,
he states that Java programs have 50% higher relative execution time than, e.g.
C++ or Visual Basic. If these results were applicable to Android, this would mean
that a performance increase would be achieved by transferring data sets from
Java to a native executable, and retrieving back the results after computation.
Of course, this is only true if we assume that the speed of the data transfer
between the layers is fast enough for a trade-off to be found.

We would benefit from this increase until the prediction of Reinholtz [5] turns
true. He stated that, in future, Java will be faster than C++ since dynamic com-
pilation gives the Java compiler access to runtime information not available to a
C++ compiler. But regarding the current Android platform, our current findings
show that this state is far away from being reached in most cases.

4.1 Performance Evaluation

We have performed a series of microbenchmarks to compare the performance
of identical sorting algorithms on various platforms. In the first experiment, we
have compared the performance of various sorting algorithms implemented as
standalone Java and C executables. Second, we have evaluated the performance
of possible techniques which allow delegation of heavy computational tasks to

Developing and Benchmarking Native Linux Applications on Android 389

the native layer or to built-in Java facilities, which we assumed to be faster than
our own implementations.

Raw performance of sorting algorithms. In [20], Okumura et al. propose
various benchmarking techniques to evaluate the performance of Java VMs. One
of those is sorting objects and primitives, which we see as the most fitted for our
purpose, since we concentrate on data-intensive tasks.

First, we have implemented three common sorting algorithms in both Java and
C: bubble sort [17], quicksort [18], and heapsort [19]. Arrays of random integers
have been generated and sorted with the corresponding algorithms in standalone
executables. The time used for each of the algorithms has been recorded while the
size of the array steadily increased. This first simple measurement was performed
on the Android emulator, and on a Linux PC for a reference.

Analysis of bridging and built-in techniques. After receiving the first
benchmark results it becomes obvious that delegating computational tasks

Fig. 3. Performance of sorting algorithms using various techniques on Android. All test
runs involve random data generation on Java, handing over the unsorted array to the
sorting function, and then retrieving back the results. Using a priority queue for sorting
numbers has proved to be the slowest approach, followed by the pipe. All pure-Java
sorting algorithms show similar performance, and only JNI shows a significant increase
in performance.

390 L. Batyuk et al.

Fig. 4. Performance of sorting algorithms using various techniques on a Linux based
OS using Sun JRE 1.6. The values on this environment show substantially different
results. Using a pipe is the slowest approach, and JNI is also relatively slow. This
proves the efficiency of Sun’s Java platform and shows that the Dalvik VM has room
for optimization.

to the native layer could drastically improve the speed of Java applications.
We have analyzed the performance of the two bridging techniques intro-
duced in section 3.4: the more common JNI, and a more straight-forward
and platform-independent direct file communication through named pipes. Ad-
ditionally, built-in Java techniques are being evaluated: object-oriented sort-
ing using a java.util.PriorityQueue as a heap and a built-in sort with
java.util.Arrays.sort(int[]). For comparison, heapsort, and quicksort im-
plemented in plain Java are also presented. Figures 3 and 4 show the results for
the Android emulator and a Linux PC, respectively.

Benchmark results. Our measurements show clearly that there is a great
difference between the Dalvik VM and the JRE from Sun. Sun’s optimization of
byte code is very effective, which results in performance which is comparable to
native binaries. Since JNI involves significant overhead when a function is being
called, it is not the fastest technique on a regular PC.

Developing and Benchmarking Native Linux Applications on Android 391

Contrary to this, the fastest computational technique for Android devices
is JNI. It beats even the optimized built-in algorithm from java.util.Arrays.
Unfortunately, the simple approach of data delegation through a pipe has proven
to be relatively slow, which can be explained by the slow IO performance of the
Dalvik VM. The most disappointing results have been delivered by the object-
oriented method using Java’s PriorityQueue as a min-heap.

5 Conclusion and Future Work

Our results show that Google still has much room for optimization. On one
hand, just-in-time compilation should be considered, and on the other hand,
native implementations of computationally complex classpath methods should
be introduced. Since Google is supposedly planning to introduce JNI capabilities
to the Android SDK, we recommend developers to embrace its potential and shift
heavy computation to the native layer.

In our future work, we are planning to port an existing benchmarking suite
to Android, most probably LINPACK [21]. We will port the benchmark to both
Java and C for Android and test the performance of real hardware, including the
G1 and other handsets which will emerge this year. Benchmarking different mo-
bile operating systems on the same hardware would also deliver valuable results.
Comparing the performance of OpenMoko and Android on the Neo FreeRunner
handset is currently the only option available, but we are looking forward to new
flashable handsets in 2009.

References

1. Android - An Open Handset Alliance Project (2008/12/05), http://code.google.
com/android/

2. Android Open Source Project (2008/12/05), http://source.android.com/
3. Android Market (2008/12/05), http://www.android.com/market/
4. Android Developer Mailing List Post (2008/12/05), http://groups.google.com/

group/android-developers/browse thread/thread/f87e6fce2b26db36
5. Reinholtz, K.: Java will be faster than C++. ACM SIGPLAN Not. 35, 25–28 (2000)
6. Eclipse Intergrated Development Environment (2008/12/05), http://www.

eclipse.org/
7. Netbeans Intergrated Development Environment (2008/12/05), http://www.

netbeans.org/
8. Codesourcery (2008/12/05), http://www.codesourcery.com/
9. Scratchbox (2008/12/05), http://www.scratchbox.org/

10. Ubuntu Home Page (2008/12/05), http://www.ubuntu.com/
11. Busybox (2008/12/05), http://www.busybox.net/
12. Unnamed Pipes (2008/12/05), http://docs.sun.com/app/docs/doc/816-1042/

6m7g4ma79
13. Named Pipes (FIFOs) (2008/12/05), http://docs.sun.com/app/docs/doc/

816-1042/6m7g4ma7a
14. HTC T-Mobile G1 (2008/12/05), http://www.htc.com/www/product/g1/

overview.html

http://code.google.com/android/
http://code.google.com/android/
http://source.android.com/
http://www.android.com/market/
http://groups.google.com/group/android-developers/browse_thread/thread/f87e6fce2b26db36
http://groups.google.com/group/android-developers/browse_thread/thread/f87e6fce2b26db36
http://www.eclipse.org/
http://www.eclipse.org/
http://www.netbeans.org/
http://www.netbeans.org/
http://www.codesourcery.com/
http://www.scratchbox.org/
http://www.ubuntu.com/
http://www.busybox.net/
http://docs.sun.com/app/docs/doc/816-1042/6m7g4ma79
http://docs.sun.com/app/docs/doc/816-1042/6m7g4ma79
http://docs.sun.com/app/docs/doc/816-1042/6m7g4ma7a
http://docs.sun.com/app/docs/doc/816-1042/6m7g4ma7a
http://www.htc.com/www/product/g1/overview.html
http://www.htc.com/www/product/g1/overview.html

392 L. Batyuk et al.

15. Schmidt, A.-D., Schmidt, H.-G., Clausen, J., Yüksel, K.A., Kiraz, O., Camtepe, A.,
Albayrak, S.: Enhancing Security of Linux-based Android Devices. In: Proceedings
of 15th International Linux Kongress. Lehman Verlag, Hamburg (2008)

16. McConnel, S.: Code Complete, 2nd edn., pp. 180–197. Microsoft Press, Redmond
(2004)

17. Knuth, D.E.: The Art of Computer Programming, 2nd edn. Sorting and Searching,
vol. 3, pp. 180–197. Addison-Wesley, Reading (1997)

18. Hoare, C.A.R.: Quicksort. Computer Journal 5(1), 10–15 (1962)
19. Williams, J.W.J.: Algorithm 232 - Heapsort. Communications of the ACM 7(6),

347–348 (1964)
20. Okumura, T., Childers, B., Mossé, B.: Running a Java VM Inside an Operating

System Kernel. In: VEE 2008: Proceedings of the fourth ACM SIGPLAN/SIGOPS
international conference on Virtual execution environments, Seattle, WA, USA
(2008)

21. Dongarra, J.J.: The LINPACK Benchmark: An explanation. In: Houstis, E.N.,
Polychronopoulos, C.D., Papatheodorou, T.S. (eds.) ICS 1987. LNCS, vol. 297.
Springer, Heidelberg (1988)

	Developing and Benchmarking Native Linux Applications on Android
	Introduction
	Android
	Software Engineering Aspects of Android
	Android Java Application Development
	Android Linux Application Development
	Important Facts for Native Development
	Bridging between Java and Linux

	Software Performance on Android
	Performance Evaluation

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

